Conditions for underflow and overflow of an arithmetic

stack
D. T. Goodwin

Department of Computer Science, University of Keele, Keele, Staffordshire ST5 5BG

The behaviour of an arithmetic stack is formally described as the loading of an arbitrary string of a
context free language symbol by symbol on to a stack. Instances of a special symbol in the string being
loaded invoke an operation which removes the top cell of the stack in some undefined way. Necessary
and sufficient conditions for stack length boundedness are stated and proved. One application of the
results concerns the choice between compile time and run time checks for underflow and overflow.
Another concerns the testing for applicability of a certain algorithm for inverting Metcalfe-Reeves

translators.
(Received June 1975)

The formal device studied by this paper is a push-down store
or stack on to which a string of symbols is being loaded, one
symbol at a time. One special symbol C causes the top two
cells of the stack to be replaced by one cell, in some undefined
way. Similarly, ‘other special symbols P,, P,, ... Pg, ... may
be used. Any instance of Py in the string is not loaded, but
instead causes a particular (non-identity) permutation of a
fixed number ry of the top cells of the stack. The only restriction
on the input is that it is an arbitrary string of a fixed context
free (CF) language, as defined briefly in the section on notation
below.

Example

Let the only Py be denoted by X, which interchanges the top
two cells of the stack, and let C concatenate the top two cells
of the stack. Then the string cbXCaXC is processed from left
to right as follows:

Stack contents
(top cell at right)

String to be loaded

cbXCaXC

c bXCaXC
ch XCaXC
bce CaXC
bc aXC
bca XC
abc C

abc —

This device and the special symbols C and X of this example
were used by Metcalfe (1964) and Reeves (1967) to edit the
output from a syntax driven translation system. In Goodwin
(1975) a translation system on the same lines was developed
which allowed the input/output grammars or ‘translators’ to be
inverted automatically under certain given conditions. These
conditions were restrictions on the ways in which translators
were able to form items on the edit stack, using C. However,
no proofs were given of stated algorithms for determining for
an arbitrary translator whether the conditions were true.
These proofs are given here.

Another application of more general interest is the provision
of compile time and run time checks on whether certain high
level language programs will cause underflow or overflow of a
run time arithmetic stack. FORTRAN programs whose
translated form uses a hardware or software stack could be
processed, and also and more generally, ALGOL 60 and
certain POP2 programs, where the user can access the stack
directly, and where recursive function calls are allowed. These
possibilities. are discussed further at the end of the paper.

In what follows only the number of cells on the stack is
studied and not their contents. This explains how it is possible

to leave C undefined except in so far as it removes the top cell.
As seen above, it could have the additional effect of concaty
enating cell contents, or in the second application it might be @
arithmetic operator, or a transfer to store instruction.

The theorems below are on the following loosely descrnbecﬁ
topics:

Theorem 1 When the stack length is unbounded

Theorem 2 Uniqueness of the stack length

Theorem 3 Conditions for boundedness of the stack lengths
after loading of the string

Theorem 4 Conditions for boundedness of the stack lengt
during loading of the string

Theorem 5 Restrictions on stack length bounds during loadmgz

Theorem 6 Disturbances caused by permutations of the stack—3
cells. o

The next two sections give the notation to be used in thez
discussion of context free languages and graphs, and includeX
some simple lemmas. The treatment of the number of cells thelg
proceeds.

no- o@‘epeoé’ﬁ sdpy woyy ps

1. Notation
A context free language is a language defined by a grammar
as follows. G consists of:

1. A finite alphabet of ‘terminal symbols’. Here the unsuffixed=
letters a, b, c. .. are used for these. A general terminal i
denoted by ¢. 8

2. A finite alphabet of ‘nonterminal symbols’. A general non
terminal is denoted by N, which is often suffixed. Sometimes>
Ny, Ny,...N,,...N,, are used to denote all the nons
terminals of G. S

3. A finite number of ‘production rules’ each of which is of theg
form

ZGOL%/?)S/L/OZ

N—‘>C1C2...C

joo

.C

P

where each of the C; may be either a single terminal or a
single nonterminal. There may be a number of rules with
N,, say, on the left hand side. These are called ‘the rules of
N,’. Any rule of G is identified as R,(N), the ith rule of N,
where the rules of N are numbered in some arbitrary order.
When all the rules of N are being considered at once, the ith
rule is written

N—> C“C,-z...cij...ci‘,.

(It is understood that in general the value of p, the index of
the last symbol of a rule, will vary from rule to rule).
4. A special nonterminal S which is one of {N,, N,,...N,}.
The word ‘string is now restricted to meaning an arbitrary
concatenation of symbols, possibly empty, which unless other-

The Computer Journal

wise stated may be any out of the alphabets 1 and 2. A general
string is denoted by u, v, or w, possibly suffixed. A general string
of terminals only is denoted by s. x is used for a single symbol
which is either a terminal or a nonterminal. #" denotes the
string uu . . . u where u is repeated n times.

If a string w, contains a nonterminal N, it can be ‘expanded’
by an application of a rule R(N,). Let wy = uoNyv,. Having
chosen i, this instance of N, is replaced in w, by

Cilciz LY Cij DR Ci" .
This operation is written

Wo = uoNovo => uOC“ oo CU . Cipvo = Wl (Say) .

Similarly if w, contains an instance of N, (say), not necessarily
distinct from N,, a rule of N, can be used to expand w, into w,.
This operation w, => w,,; can be continued as long as w,
contains at least one nonterminal. From now on the mark =>
is used more generally to show that w, has been expanded from
W, in one or more steps, for any k > 0. w, => w, is a ‘deriva-
tion’ or a ‘derivation of w, from wy’.

Notice that w,,, contains symbols of two distinct origins.
It contains C;; . . . C;, which appear because of the application
of the N, rule, and also other symbols which were present in
w,. In the derivation of w,,, the nonterminal N,,, may be
chosen from either group of symbols in w,, ;. However, it will
be useful to discuss wo => w; => ... => w, => ... W,
in whichfor each k, N, is chosen only out of the C;; ... C;,,
in w,,, which arise from the expansion of N,. Such a
derivation w, => w, is here called a ‘chained derivation’ and
is denoted by w, => w, It follows that there exist

Ug, g, . . . Uy, Uy . . . sSuch that

Wo = uoNovo => uoulvalvo => uouluzszzvlvo

.u,N,v

=>...=>u0u1 q{VqVq * vlvo=wq

A derivation N = w, = > w, can be expressed as a ‘generation
tree’, which is a tree whose nodes are (all the instances of) the
symbols of wgy, wy, . . . w,. Branches leave a node N, to arrive
at the symbols into which N, is expanded by a rule application.

Example:

Given rules Ny —> N,N,, N, —> ab, N, — > ¢N;, N3 —
dN,e, then N, => abcN,; has the generation tree shown
in Fig. 1. The chained derivation N, <> N,cdN,e has the
generation tree in Fig. 2, which shows its characteristic linear
sequence of rule applications.

The strings of the CF language determined by G are now
defined as those (finite) terminal strings s such that S => s.

G is ‘admissible’ if for each N not the same as S, there exist
some u, v such that S => uNv and there exists s such that
uNv = > 5. Only admissible grammars are considered below.

A ‘recursive derivation’ is a derivation of the form N < >
uNv for arbitrary words u, v. The generation tree of a re-
cursive derivation is also called recursive.

A ‘chained recursive derivation’ is a derivation N => uNv
which is both chained and recursive, corresponding to a
generation tree which is a linear sequence of rule applications
beginning and ending at N-nodes.

A ‘cycle’ C of G is defined by a sequence

Nl(il: il)NZ(iZ’jZ) e Nr(ir,jr) e Nm(imajm)
of alternating nonterminal instances N, and number pairs
(i,, j,) such that

1. for each r < m, Ci,j, = N,., in the ith rule of N,,

and
2. Cipim = Ny, in the i,th rule of N,,.
Given such a sequence, any cyclic permutation such as

Nz(iZajZ) e Nr(ir’jr) s Nm(im,jm)Nl(il’jl)

Volume 20 Number 1

identifies the Same cycle.
Leta cycle C' be N{(i{,j}) . . . N,(i..,j.) and let Cand C’ have
a common nonterminal N; = N/. Then the sequence

Nl(ilrjl) LRI Nm(imajm)Nl’(il’,ji) o anl(inlvjn,,)
also defines a cycle which is said to be ‘composed’ from C and
C.
Now in Ri,-(Nr) let u, = Ci,lci,Z e Cirjr—l’ and let
v, =Cij41.--Cip -

Choose a cycle C of G and N, in it. Then these choices identify
a chained recursive derivation
Uplyly o o U (N, 105 ...

c
N =>upyq... V1U0pUp—q -+ +

Ups 10y -

Given a cycle C all such chained recursive derivations are called
‘the chained recursive derivations of C’. It follows that

Lemma 1
In all the chained recursive derivations N = > u.Nv_ of a given I
cycle C, the strings u,, v, are constant, except for permutations 35
of symbols.

Further notation is introduced as required.

2. A useful graph
It is helpful to introduce below a directed graph Gg associated
with G. The simple graph theory and terminology used here is :
adapted from Berge and Ghouila-Houri (1969).

A finite graph consists of a finite number of points or ‘nodes
joined together by a finite number of directed lines or ‘arcs’.

A ‘path’ is a sequence of arcs such that the end node of one o
arc is the start node of the next. A path may pass through aﬁ
particular node more than once, and use a particular arc§
more than once.

A ‘circuit’ is a path in which any node of the path can be
considered as both the start node and end node of the path.

An ‘elementary circuit’ is a circuit in which no node occurs
more than once. There are clearly only a finite number of o
elementary circuits.

If two circuits 4, B have a common node p then anotherg
circuit C can be composed’ out of the ‘components’ 4, B by &
joining them at p. Thus no composed circuit can be elementary.
By examining multiple instances of nodes on a circuit it is easy I\)
to see that:

"olBpeoe)/: sduq W0l POPEO|UMO

ole/|ulloo/wo

/1/0C/

01senb Aq

Lemma 2
Every (finite) circuit of a graph is either elementary or can be >
composed out of a finite number of elementary circuits, perhaps @
repeated. =

The graph Gy is now constructed. Its nodes are single instances S
of the nonterminals and terminals of G. Draw from each N an
arc to every C;; in each rule R(N). This arc may be labelled X
(N, i,j). Add a special end node E, and draw an arc ¢ from
every terminal ¢ to E.

Example

For the rules S — > NS R,(S)
S—>b R,(S)
N —> aNC R,(N)
N—>b RyN)

the graph Gy is shown in Fig. 3. Gy exhibits some of the
properties of G, and it will be a useful tool in establishing by
graph theory the conditions of solution and methods of solution
of certain systems of equations and recurrence relations.

Lemma 3
Every cycle of G is composed of one or more of a finite basis of

57

SN
a/ \b c/ \Na

Fig. 1 Generation Tree for the Derivation No = > abcNs

/N
VAN

L

d N,

Fig. 2 Generation Tree for No => NicdNse

S
(S, 1, 2)@ ws)
(S, 1,1) b
W, 2, 1)
, I,Z)CN
WS)

C
W, 1, 1) —

AR

Fig. 3 Example of a graph Gr

a

cycles of G, repeated as required. These basic cycles correspond
to the elementary circuits of Gp.

Proof
It is sufficient to note that there is a one-to-one correspondence

between the chained derivations of G and the paths of Gg, and
hence between the cycles of G and the circuits of Gg. The result
then follows by using Lemma 2.

3. The net number of items yielded by a nonterminal
For any string u define /(1) to be the ‘length’ or net number of
items deposited on the stack by a terminal expansion of u.
Then for any string v, I(uv) = I(u) + I(v), by juxtaposition on
the stack. Notice that /(x) is a slight generalisation of what one
might expect ‘length’ to mean. If N — > CCaaa, then I/(N) = 1
although the full effect is to replace the top three items of the
stack by one and then to add three more. The section below on
“The gross number of items yielded by a nonterminal’ considers
this ‘full effect’ in more detail. Negative lengths are also possible,
as for N —> CCC, when /(N) = —3.

In general the string # (which may contain nonterminals) will

have a set {/(u)} of such /-values, possible infinite, and if
v —> wthen {/(v)} 2 {/(w)}, since every terminal expansion
of w is a terminal expansion of v. If {/(»)} has a (least) upper
bound, call it / *(u). If {/(u)} has a (greatest) lower bound, then
call it /~(u). The string u is termed / ~-bounded, / *-bounded, or
just I-bounded if respectively / ~(u) exists, I * (u) exists or both of
these exist. A particular case of /-boundedness is ‘/-uniqueness’,
when /*(u) = 17 (u), and /(u) is unique.

Examples

l.S —> N1N2, Nl —-> aNl, Nl —> a, Nz —> CNz, N2
— > C. A terminal string of S is a™C", for any integers
m,n >= 1. Thus I(S) = m — n and is completely un-
bounded.

2.8 —> aS, S — > a. The terminal strings are a”, m >= 1.
I(S) = m, so that I ~(S) = 1. I*(S) does not exist.

3.8 —> CS, S —> C. Here I7(S) does not exist, /*(S) =
-1

4.S—> N1N2, Nl - > a,Nl -> C,N2 - > b, Nz -> C,
N, —> N,bC. I(N,) = +1 = I(N,). Thus {{(S)} = {—-%F
0, +2},17(S) = —2,1%(S) = 2. Thelast rule of N,, thoug
recursive, adds no further lengths to {/(N,)}.

5.S'—> N1N2C, N1_> aSC, N1—> a, N2—> CS
N, —> b. Here I(S), I(N}), and I(N,) are all unique.

Since the above definitions concerning /(u) can apply to any X
and thus to S, the terminology can be applied naturally t§

wouy SSpeo)

grammars as well. o
Also for a chained derivation N = > uxv, define the ‘lefthang
length’ JhI(N < > uxv) = I(u). 3
o

©

4. Recurrence relations for the /(N) 2
Consider a rule N —> C;...C;...C, and let C; be Ny
A derivation of N which starts with the above rule is unrestricted
as to which derivation of N, C; expands into. Thus all that can
be said of I(C;) is that I(C;) is in {/(N,)}. For any suc
derivation

G/1/0Z/3101 et

I(N) =J_=Z‘P1 <y .

Hence to find a /(N) value choose known values for each of the
I(C;) and add them. This is a kind of recurrence relation whicg
may be written

6

1sonb Aq g

I(N) <—); IC) .

Moreover, by taking all the rules of G at once, the recurrence

relations which arise determine all the /() values, for all Ny
By applying a number of rules it is easy to see that

N=>u=w;...w,...Ww, then

I(N) < — él Iw,) .

¥202 YoJleimy

Out of this comes a trivial theorem which helps to determine
the unboundedness (or non-uniqueness) of G—it is sufficient
to find just one unbounded (or non-unique) nonterminal.

Theorem 1
1. G is I ~-bounded if and only if all N are /™ -bounded.

2. G is I*-bounded if and only if all N are /*-bounded.
3. G is I-bounded if and only if all N are I-bounded.
4. G is l-unique if and only if all N are l-unique.

Proof

1. Necessity

Since G is admissible, then for every N not the same as S, there
exist u, v, s such that S = > uNv => s, so that there exists at

The Computer Journal

least one /(S) value generated by /(S) < — I(u) + I(N) + l(v).
Now u, N and v can be expanded independently into strings of
terminals, and so their lengths cannot always compensate each
other to keep /(S) /~-bounded unless they are all / ~-bounded.
Thus S and hence Gis/ ~-bounded only ifevery Nis / “-bounded.

Sufficiency
If all N are /”-bounded then S is and so is G.
2, 3 and 4: The proofs are analogous to 1.

5. The ‘/-uniqueness’ of G

l-uniqueness is a desirable property in the translator-inversion
application in particular and for clarity of understanding in
general. When G is /-unique the recurrence relations

IN) <- Z I(cy

become consistent equations 1n the I(N). 1t is interesting to
consider the converse, i.e. whether the /() are unique if the
equations are consistent. A set of linear equations does not in
general have a unique solution (see, say, Griffiths, 1947).
However the origin of these equations gives them a special
form which does ensure uniqueness as the following theorem
shows.

Theorem 2

Let [L(N,), L(N5), . . . L(Ny) . . . L(N,))] ‘be a solution of the
equations {I/(N,) = X' I(C;;)}, (for all possible 4, i and j) which
arise from the production rules of G. Then this solution is
unique, so that G is /-unique.

Proof
The proof is by induction on the number r of rule-applications
necessary to expand N into a string sy.

Consider a derivation N => sy in which just one rule-
application is used. This rule must be N — > C;;... Cj;...Cyy,
for some i, in which each of the C;; is a terminal. Because the
length of the righthand side is constant /(sy) = L(N). Thus
I(N) is unique for all N = > sy such that r = 1.

The induction step is as follows. Assume that for all r up to
some r > 1, every derivation N => sy which has r rule
applications has the unique length L(N). Now consider
N => sy, if any, with r + 1 rule applications, where the
derivation starts with N — > C,;... C;;... C;,. Here some of
the C;; may be nonterminals. Let ry,...r;...r, be the
numbers of rule applications in the subtrees starting at
Cit> ... Cijs ... Cy, respectively. Then

P
j=1

so that for each j, r > =r;. Hence the assumption of the
induction step is applicable and the lengths /(C;;) are unique.
Thus the length of the whole righthand side is unique and
therefore must be L(N).
Thus by induction L(N) is unique however many rule
applications are involved in a derivation N = >sy.
To determine G’s /-uniqueness the steps are therefore:
1. Construct a tentative set of lengths [L(N,),...L(N), ...
L(N,)] by using the simplest rules of G.
2. Substitute these in all the equations of G. If all the equations
are satisfied, then G is /-unique.

6. /-boundedness conditions

The theorem of this section (Theorem 3) proves necessary and
sufficient conditions for the lower and upper /-boundedness of
G, and also gives a little more when these properties occur
together. The proofs concerning upper and lower /-bounded-
ness are analogous, and only / ~-boundedness is dealt with in
detail. Lemma 4 which precedes the theorem is written in terms
of the /™ proof only.

Volume 20 Number 1

The proof is by induction on the ‘recursiveness’ of a derivation
N => sy, which is a measure of its complexity defined as
follows:

A generation tree of the derivation N = > sy of a terminal
string sy, is ‘q-recursive’ where ¢ is the number of recursive
subtrees it contains, including itself if it is recursive.

A general string u is said to be g-recursive if attention is
restricted to the subset of derivations of # in which no symbol
of uis more than g-recursive, but in which at least one symbol of
u is a g-recursive.

Now define /,(u), IF (1), I (4) to be analogous to /(u), I*(u),
1™ (u) but where only g-recursive derivations of u are considered.

From the above definitions it follows that if u is g-recursive
then the symbols of u can be rearranged arbitrarily without
affecting its g-recursiveness or, of course, its length. From
Lemma 1 it is therefore reasonable to refer to the length of a
cycle C as I(C) = I(u.) + I(v,), where there is a chained
recursive derivation N => u Nv, of C. Similarly [(C) =
I(uv,). Also needed later is the lefthand-length /h/(C) = I(u,).

The proof of Theorem 3 relates all /() values to I5(N), the

lower bound of the finite set {/,(N)}. Lemma 4 now providesS

the induction step. s
(o]

Q

Lemma 4 3
For any N, I-(N) > =I5 (N), ¢ > 0, provided that for all r,5
0=<r<y, 3
1-(N) > = I; (N), and (c1)*3

that for all cycles C, I;(C) >=10 . (C2)m

)

Proof g

Consider a g-recursive derivation N = > sy of N. The aim 1sc
to construct from this another derivation N => s,v which lSo
at most (¢ — 1)-recursive and which is no greater in length.3 e

Then [(N => sy) >= (N = >sN)>—I(N)wherer-<o
I(N) is5

qg — 1, from (C1). By choosing N => sy so that
minimal the relation becomes I, (N) > = I (N) as required.

V)
N => sy is constructed as follows. Let N’ be the nontermmalf—g

in the base-node of one of the recursive subtrees of N = > S
so that N = > uN'v for some strings u, v. Let N” be an em-=
bedded instance of the same nonterminal N’, so that N' => 9

u'N"v', say. Now form the tree for N = > s, by replacing the®
N’ subtree by the N” subtree. Because one recursive use of N'@
has been removed, N => s, cannot be more than (g — 1)-
recursive, and similarly the string '

which is more than (¢ — 1)-recursive, so that
(W) >=1I;W), from (C1),>
>=0, from (C2).=
Hence I(N => sy) = I(uN'v)
= l(uu'N"v'v)

= I(uN"v) + I(u'v")
> = I(N => sy), as required .

Theorem 3

1. G is I~ -bounded and for every N I~ (N) = I;(N) if and only
_if I;(C) > = 0 for each basic (i.e elementary) cycle C of G.
2. G is I *-bounded and for every NI *(N) = I3 (N) if and only
__if I (C) = < 0 for each basic cycle C of G.

3. G is I-bounded and for every N {I{(N)} = {lo(N)} if and only
if 1,(C) = 0 for each basic cycle C of G.

Proof
Necessity
1. Suppose G is /”-bounded, and I7(N) = [(N), all N, but

@

~
)

o
<
v’ cannot have any symbole

uo jsen

Wel

¥20¢ Yyoie

there is an elementary cycle C for which /;(C) > =0 is

false. Then there exists a derivation N = > u,Nv, of C such
that /(u,v,) < 0. Choose some derivation N = > sy, and let

it have length (/V. Then N = >u Nv, defines a recurrence
relation:

i+11N < - l(us) + iIN + I(Us), i > = 0
= l(uwy) + N < V.
Hence the integer sequence oIV, IV, ... ; . has no lower

bound so that N is not / ~-bounded, contrary to hypothesis.
Hence /5(C) > = 0 for all C of G.

2. The proof is analogous to 1.
3. Apply 1 and 2 together.

IN

Sufficiency

1. The proof is inductive using Lemma 4. It remains to prove
(C2) and to show that (Cl1) holds for ¢ = 1, r = 0. (Cl)
reduces to showing that /5 (V) exists, which is true because
{I,(N)} is finite. (C2) follows from the conditions of the
theorem by Lemma 3.

2. The proof is analogous to 1.

3. Apply 1 and 2 together to show that G is /-bounded. The
conditions of 1 and 2 also give /" (u,) + I (v) >=0>=
I* () + 1% (vy).
Hence I ~(u) = " (u) = I(u)) = 0,and 0 = I~ (v,) = 1*(v,)
= I(v)) = l(upy) by the definition of upper and lower
bounds.

Now Lemma 4 can be rephrased to show that if N = > sy
is g-recursive, ¢ > 0, then one can find a g’-recursive s}, such
thatq’ < g and /(sy) = I(sy). By applying this as many times
as is necessary it follows that for any g-recursive sy there is a
O-recursive s, with the same length. Hence

{I(N)} = {l(N)}
< {I(NV)}
by definition of /o(N). Therefore {{(N)} = {l,(N)}.

7. Determination of the /-boundedness of G

The following computable steps can therefore be used to
determine whether G is I-bounded. (It is only worth doing this
if an application of Theorem 2 has shown G is not /-unique).

1. Inspect the rules of G to see if any N is obviously unbounded
(Theorem 1).

2. If no unbounded N is apparent draw the graph G and find
its elementary circuits. These identify a set of basic cycles C
of G. (An algorithm for finding the elementary circuits of G
is given in Weinblatt (1972).)

3. For each C take one of its chained recursive derivations
N £ > u,Nv, and for each symbol x; in u, find /5(x;) and
I5(x;). Hence determine /5 (C) and /5 (C) and apply Theorem
3. If G is completely bounded then the /(N) are the /,(N), by
Theorem 3.

8. The gross number of items yielded by a nonterminal

The preceding sections have dealt with the effects of depositing
on the stack complete terminal strings derived from non-
terminals. In this section the effect on the stack is considered at
all stages during the deposition of a nonterminal’s string. As an
example let C have the extra concatenate function mentioned
in the introduction and consider the rules S —> CSg,
S — > b, which yield the strings Cba, CCbaa, . . . C"ba", for
all integers n. Then although all of these strings have length
(—n + 1 + n) = 1. they successively combine more and more
of the items already on the stack before depositing more. In
contrast, the rules S — > aSC, S — > b yield strings a"bC", all

having length = 1, but which successively add more and
more items to the stack before matching concatenations take
place.

These effects could be of real concern to the implementor of a
stack handling grammars of this kind, because words of the
language might overempty or overfill the stack. This section
deals with conditions for grammars to be ‘well behaved’ in this
way. However, a more severe effect than overemptying is
discussed under ‘Disturbance measurements’ below.

It is useful to define m~ () to be the ‘gross’ minimum length
(in the generalised sense of the last section) which any terminal
string derived from u can take on the stack at any time during or
after its deposition. Similarly define m*(u) to be the ‘gross’
maximum length of any terminal strmg of u. Since /™ (u) and

1*(u) are the minimum and maximum lengths just after the
deposition of u, m™(u) exists only if /™ (u) exists, and m™*(u)
exists only if /*(u) exists. Also m~ (1) = < I~(u) and m™*(u)
>=1[*(u). In the remainder of this section the relevant
I-bounds are always assumed to exist.

In order to evaluate m~(N) for all N in G, consider any rule
N—->C...C;...C, => sy = 5(C)s(Cy) ...s(C,) an@
consider the process of deposmng sy on the stack It may bg
that s(C,) causes the length of sy to be a minimum, so that cerg
tainly m~(N) = < m~(C,). However it may be s(C,) whic&
causes the minimal length of sy. In this case the whole of s(C,

O%-P

is deposited before s(C,) is begun and so 3
m~(N) =< I7(C,) + m™(Cy) . g

Similarly m~(N) =< l'(Cl) +17(Cy)) + m™~(Cy) , S
Y

m-(N) = <Z‘l(C)+m() §

: :

and m-(N) =< Z I”(Cj) +I17(C))= XY 17(C). °
i=1 j=1 8

However this last inequality can be disregarded sincg
m~(C,) =< I7(C,). Putting these inequalities together 3
m~(N) =< min [Z‘I(Ck)+m()] 3

1<j<p Lk=o0 S

where for convenience / ~(C,) = 0. One of these expressmn&s’

arises for each production rule of N, so that m~(N) is thg
minimum of all these expressions:

m~(N) = min [min <Z I7(Cy) + m (C,,))]

all R(N)L1<j<p \k=0

g Z60L7E/9

The author has an algebraic algorithm for the solution of thm
set of equations, one for each N, together with proof of necesarg
and sufficient conditions for solution. However this approacE
does not give any understanding of what is happening. leem
below is a more illuminating method, based on mapping thg
problem on to the graph Gg.

Assign to each arc (N, i, j) of G the arc length

j—1

2 17(Cy)

k=0
which is the minimum lefthand length of the trivial chained
derivation N < > ugxv,, whereu, = C;,C;, ... Cij_y,x = Cyj,
vg = Cjjyq...Cip Then (as in the proof of Lemma 3) for
any chained derivation N = > u.xv,, the minimum lefthand
length (=77 (u,)) is the sum of the arc lengths which make up the
corresponding path in Gg. Also assign the arc length m~(¢£)=1(¢)
to each arc #. Now consider again the cause of N having a gross
minimum length m~(N). This minimum is attained by the
deposition of a particular terminal ¢ of a particular terminal
expansion of N, i.e. there exist ug, v,, such that N => ugtv,.
Hence by the argument used before

m-(N)=1"(u) + m~(1) ,

which is the length of an arc from N to E on Gg. Hence m™(N)

¥20¢ Yyoie

The Computer Journal

is the minimum path length from N to E. Berge and Ghouila-
Houri (1965) give the well known result that such a minimum
path exists for every N if and only if there is no circuit with a
negative arc length. This is equivalent to the necessary and
sufficient condition that Ihl~(C) = Ihl5(C) > = 0 for every
cycle C of G. This justifies the following theorem:

Theorem 4
1. m™(N) exists for every N of G if and only if /hl5(C) >=0
and /5(C) > = 0 for all basic cycles C of G.

2. m*(N) exists for every N of G if and only if /hl}(C) =
and /{(C) = < 0 for all basic cycles of G.

Evaluation of the m~™(N) and m™* () is straightforward since
the arc lengths are functions of the /= and /* respectively
which are all known beforehand. For some possible methods
see Berge and Ghouila-Houri, (pp. 180-182) and Iri (1969).
Furthermore, the minimum path length problem has a unique
solution (although more than one path may attain that length).
Hence the original system of equations has a unique solution,
because the grammar, the graph and the equations are in
(1,1)-correspondence. It follows that if a tentative solution, say
[M~(Ny),...M~(N,)...] does satisfy the equations, then
the m™(N) exist and M ~(¥,) = m~(N,) for each h. However
the analogue of Theorem 2, when m~(N,) = m*(N,) for each
h, is not interesting because this equality is true only for a
trivial subset of grammars.

Theorem 5
‘1. For every N, m~(N) =
2. For every N, m*(N) >= —1.

Proof

1.For any rule N —> C,...C, m™(N) =< m™(C,). Thus
as the lefthand branch of a generation tree of N is followed
the m~ value for every subtree encountered cannot decrease.
Finally the last nonterminal N, (say) is encountered where

No —> 1,C,,. .. C; (say).

Thenm™(N) =< m™ (Ny) =< m™(t;) =< max [m~(t)] =
all ¢

max [/()] = 1.

all ¢

2. The argument is analogous to 1.

9. Disturbance measurements
The Pp permutation symbols are now discussed. Consider a
single rule grammar S — > P,ab, where P, is an interchange.
Here I(S) = 2, m~(S) = 1, but before any symbols at all are
deposited on the stack the top two cells are interchanged, thus
interfering with material not deposited by this grammar. Thus
the necessary condition for no underflow is that no previously
deposited material should be disturbed. This is developed as
follows.

Let d(u) be the number of previously deposited cells disturbed
at any stage during the loading of s, where u = > 5. Then for
any derivation N = > sy, the maximum disturbance

ji=1
d*(N=>sy) = max [d*(Cy) — X I7(C)],
El<j<p k=0
by an argument similar to that used in obtaining m~ (). So
the maximum disturbance any derivation of N could make is
d*(N) = max [max {d*(C;) —

ji-1
Z I7(Ca)}] .
all Ry(N) 1<j<p =0

An analogous formula applies for d ~(N), which is the minimum
disturbance which can take place at any stage during the
deposition of any terminal string derived from N. d ~(N) can be
negative.

Now let r), be the maximum number of cells rearranged by

Volume 20 Number 1

any of the P operations of G. The disturbances made by indi-
vidual symbols are zero for normal symbols, 1 or 2 for C and
rg for Pg, where 2 = < rg =< ry,.

Theorem 6

1. The d*(N) all exist if and only if the m~(N) exist. Moreover,
forallN,0 = < d*(N) + m~(N) = < ryyand 0 = < d*(N).

2. The d ~(N) all exist if and only if the m™* (V) exist. Moreover,
forall N,0 =< d (N) + m*(N) =<ryand d"(N) =
rM-

Proof

1. Using the graphical method to solve the d *(N) equations,
solutions exist if and only if the circuits of G have arc lengths
not greater than zero, since maxima are being sought. But
each arc length involved in a circuit has the same magnitude
but opposite sign compared with the arc lengths in the m~(N)
network, where the necessary and sufficient condition was
‘circuit arc length not less than zero’. This proves the
equivalence of the existence conditions.

Call the d*(N) network D. Now consider the network
which differs from D in that the arcs # have lengths —m™(t)};
Then every arc length has the same magnitude but is oppositg
in sign compared with those in the m~(N) network.

The values of d(t) + I(t) = d*(t) + m™(¢) are as followg
for each type of terminal ¢:

pa

t d l d+1 @
8

Normal 0 1 1 a
c 1 -1 0 3
2 -1 1 o

Py Tr 0 Tr S

02

Thus in every case 0 = < d*(f) + m™(f) = < ry,. Now let ¢
be the terminal at which d*(N) is attained, where ¢, ig
reached from N,. Let ¢, be the terminal at which m~(N
attained, where ¢, is reached from N,. (¢,,¢, and N,,
need not be distinct.) Using the maximal property of ¢, i
network D,
d*(N) = path length (NN,) + d*(t,)

> = path length (NN,) + d*(z,)

= [path length (NN,) — m~(¢t,)] +

e

¥€/9G/1/02/01384

664

[d+(t2) + m™(t,)
>= —m (N).

Also using the maximal property of ¢, in network M,
—m~(N) = path length (NN,) — m™(t,)

> = path length (NN,) — m~(¢,)

=d*(N) = [d*(t)) + m™(1,)]

>=d*(N) — ry.
The proof of the relation d*(N) > = 0 is on the lines
Theorem 5.

2. The proof is analogous to 1 above.
As has been seen, evaluation of the d*(N) is analogous to th?
evaluation of the m~(N), and the testing of a tentative solution
[D(N,) ... D(N,)] by substitution is also valid.

20z U8 €1 uo 1s0n6 Aq 2

10. Application to Metcalfe-Reeves translators

In Goodwin (1975) it was shown that sufficient conditions for a
certain translator-inversion algorithm to work were that for
each N the /(N) and d(N) values were unique, that /(N) = 1,
and that d(N) = d*(N) = 0. Proofs have been given in
Theorem 2 and following Theorem 4 that these conditions can
be verified by substitution of the desirable values in the / and d
equations.

11. Application to compile time data stack checking

Only a sketch of the method is given. A high level language
program can be regarded as defining the grammar of a generator

Existence of

m~(S) m*(S) Relation Overflow

YES\ YES m*(S) = Never

NO

YES~ YES m*(S) > L >= m~(S) [Certain or Possible.

YES NO L > = m~(S) \ Which is decidable.

NO YES m*(S)>L Certain or Possible.

NO NO — Decidability
unknown.

Fig. 4 Stack overflow conditions

Existence of

m~=(S) m*(S) Relation Underflow

YES [YES d*(S)=0 Never

NO

YES YES d~(S)>0 Certain

NO

YES YES d*(S) > 0>=d (S) J Certain or Possible.

NO YES 0 > = d~(S) \ Which is decidable.

YES NO d*S)>0 Certain or Possible.

NO NO — Decidability
Unknown.

Fig. 5 Stack underflow conditions

mechanism which at run time outputs a string of operands or
terminals which are loaded on an arithmetic stack. (This is the
POP2 kind of stack or (say) a KDF9 nesting store, to be
distinguished from an ALGOL-type data storage stack which is
not intended.) Arithmetic operators are also issued and are
treated as special terminals, e.g. ‘+’ and ‘—’ are special cases
of C. The method applies most directly to languages in which
function definitions can be separate entities such as
in FORTRAN or POP2. Then function names identify
nonterminals of the grammar, as do the statements of each
function, e.g. F —> S§;S,...S;...S, might be a function
consisting of assignment statements S;. Or an S; might be a
function call, or of the form IF E; THEN S;; ELSE S;,. This
would give rise to the alternative rules:

1LF—>8,5;...5-E;
2.F—> Sl"'Sj—
S

1Sj1Sj+1 o o 0 Sp
3.F—>5,.. S;,S

.S

P

References

BERGE, C. and GHOUILA-HOURI, A. (1965). Programming, Games and Transportation Networks, London: Methuen.
GoopwiN, D. T. (1975). An Algorithm for Inverting Certain Translators of Context-Free Languages, The Computer Journal, Vol. 18,

pp. 349-354.

GRIFATHS, L. W. (1947). Introduction to the Theory of Equations, p. 209, New York: Wiley.
Ir1, M. (1969). Network Flow, Transporation and Scheduling, pp. 178-188, New York: Academic Press.
METCALFE, H. H. (1964). A Parameterised Compiler based on Mechamcal Linguistics. Annual Review in Automatic Programming, Vol. 4,

pp. 125-165 (R. Goodman, Editor) Pergamon Press
REEVES, C. M. (1967).

Each assignment statement would correspond to one rule of the
grammar and would there be expressed in Reverse Polish form,
ending with a store operator which is another special case of
C. Again function calls could be included. The treatment of
the I, m and d quantities above is sufficient to allow functions
which take from the stack an arbitrary fixed number of para-
meters and place on it any fixed number of results. So-called
variadic functions in which the number of results or parameters
varies at run time could not be allowed.

Loops as defined by backward GOTO statements or DO-type
statements are allowed so long as their stack length is zero.
This is always true in FORTRAN since the elementary stack
altering operation is the assignment statement whose length is
zero. Forward GOTO statements, if part of a condition, lead
to the function in which they occur having more than one rule
in the grammar.

Let the finite allowable stack length be L. Then analysis of
this derived grammar at compile time could answer the over-
flow questions according to the table in Figs. 4 and 5.

The ‘Certain or possible’ cases in Fig. 4 need explanation.
The maximum gross length m™*(S) may be attained during the o
deposition of all strings s, of the language, in which case the s
corresponding program is bound to fail; on the other hand o
strings may exist whose individual gross length is always far 3 8
short of m*(S), i.e. depending on its data the execution of the =
program may well not demand the use of the whole physical S
stack. These two different types of grammars can be distin- =
guished by an algorithm when the number of relevant net and 3]
gross lengths which strings sy can take is finite. Conditions are m
given when this is true, but for brevity here the proof is & g
deferred to a later article. When these conditions do not hold, S 3
it is not known whether an algorithm exists, although the &
author conjectures that it does. A similar discussion applies to £ s
Fig. 5.

These overflow and underflow results could be used simply to
reject or accept the program at compile time. Alternatively they 3
might be used to set the value of L, or as an automatic method =
of determining when to insert coding to check for stack over-
flow or underflow. Of course, these basic ideas are well known,
and originality is only claimed for the systematic treatment
above.

Acknowledgement
The author is indebted to Professor C. M. Reeves for reading a
draft of this article and making valuable constructive criticisms.

VZOZ yoley €L uo jsenb /(q ZGOLV€/99/L/OZ/9I3!U?/

Description of a Syntax-directed Compiler, The Computer Journal, Vol. 10, pp. 244-255.

WEINBLATT, H. (1972). A New Search Algorithm for Finding the Simple Cycles of a Finite Directed Graph. JACM, Vol. 19, pp. 43-56.

The Computer Journal

