Non-procedural data processing

B. M. Leavenworth

IBM Thomas J. Watson Research Center, PO Box 218, Yorktown Heights, New York 10598, USA

The specification of data processing applications in a nonprocedural manner is characterised in
terms of the following features: elimination of arbitrary sequencing, pattern directed structures,
aggregate operations and associative referencing. The paper defines a simple data processing
problem, then motivates each of the features with respect to different descriptive aspects of the
application. It is shown how these features form the nucleus of a nonprocedural language called the
Business Definition Language to state and solve data processing problems.

(Received May 1975)

Introduction
By nonprocedural data processing we have in mind some of the
following characteristics:

1. The specification of data processing applications in terms of
only those abstractions which are relevant to the problem.

2. The specification of the outcome desired as a function of the
inputs.
3. The suppression of unnecessary detail.

One of the earliest attempts to address the problem of non-
procedural specification in general was the information
algebra (Codasyl, 1962). Although more of a notation than a
language, the information algebra had many of the character-
istics to be discussed here. In Leavenworth and Sammet (1974),
certain features were proposed which were believed to charac-
terise some of the attributes of nonprocedural languages. We
include and discuss here all those features with the exception of
‘nondeterminism and parallelism’ which is subsumed in the
present context by ‘elimination of arbitrary sequencing’. The
features are:

Elimination of arbitrary sequencing

The elimination of any sequencing not dictated by the data
dependencies of the application. A more satisfactory term
might be ‘lack of sequencing constraints’.

Pattern directed structures
The execution of a program based on a pattern or template
rather than an explicit sequence of commands.

Aggregate operations
The application of operators to entire aggregates considered
as single entities.

Associative referencing
The accessing of data based on some intrinsic property of the
data. This facility is usually found in languages that contain
sets as data structures.

The present paper first defines a-simple data processing
problem. It then motivates each of the features with respect to
describing aspects of the problem and shows how they can
form the nucleus of a language called the Business Definition
Language defined by Hammer, Howe, Kruskal and Wladawsky
(1974; 1970) to state and solve data processing problems.

A data processing application

The sales analysis application to be described was given by
McCraken and Garbassi (1971) as representative of a data
processing problem to be programmed in COBOL. The outputs
desired are two reports of products sold by a company on a
regular basis. The reporting period could be over a period of a

month, a week, or some other interval of time. The reports are
the following.

Report-1, summary by product
For each product, list the total sales for that product and the
year to date sales. '

Report-2, summary by district and salesman

For each district, list the salesmen in the district giving the total
sales for each and list the total sales for the district. List the
total sales for all districts.

To produce the reports, the inputs used are the transactions
realised during the reporting period, and a master file. Each
transaction document (called Detail here) contains the product
number, quantity sold, and the salesman and district identi-
fication. Each record in the master file (called Master) contains
the product number, the unit price, and year to date sales.

The formats of the inputs (Master’s, Detail’s), outputs
(Report-1, Report-2), and an intermediate collection of records
called Ext detail’s are shown in Fig. 1. The basic flow of the
required processing is shown in Fig. 2.

Elimination of arbitrary sequencing—data flow

There are two aspects of sequencing to be discussed. One has
to do with the flow of data between the organisational entities
or steps (see below) of an application. The other relates to the
data dependencies with respect to a particular step. We treat
the first aspect in this section and discuss the second later in the
paper.

Arbitrary sequencing is eliminated by representing an
application by a data flow network (Hammer, Howe,
Wladawsky, 1974; and Kruskal, 1970). By decomposing the
application into a set of steps which communicate with one
another only across linking paths, the sequencing is governed
strictly by data dependencies, i.e. one step cannot consume data
until it has been produced by its predecessor steps.

In Fig. 2., the application is represented by a directed graph
where the nodes are called steps and the arcs are called paths
over which collections of documents or records flow. Files may
be connected both to the inputs and outputs of steps. There is
one file called Master’s (the apostrophe followed by ‘s’ is used
to denote a collection or group) in this application. There are
three types of steps represented here: Source steps, Sink steps
and Transformation steps (Tran-1 and Tran-2). Tran-1 has two
inputs: detail records (Detail’s) from the Source step and the
file Master’s. It produces three outputs: Report-1, which is
consumed by Sink-1, Ext detail’s which are input to step
Tran-2, and Master’s. It is convenient to represent steps with
multiple outputs. However, since each output defines a separate
transformation, it is described by a separate program.

The programs to produce Report-1 and Report-2 (Fig. 4 and

The Computer Journal

20z Iudy 61 U0 1s9nB Aq 02607€/9/1/0Z/2191E/|UlWoo/Woo"dnoolWapese/ SRy WOl PSPEOjUMOQ

Product number
Unit price
Ytd sales

Master

Detail
Product number
Quantity
Salesman
District
Ext detail
Ext price
Salesman
District
Report-1
Product number
Product total
Ytd sales
Report-2
Salesman
Salesman total
District
District total
Month total

Fig. 1

Fig. 5 respectively) are written in the Business Definition
Language, as well as a program to produce an intermediate
result (Fig. 3).

A step with multiple outputs can be considered to be a
multiple-valued function, since the paths can be executed in any
order or simultaneously. The only requirement is that the step
have all its inputs before it can execute.

The advantages of a data flow model is that the execution is
determined only by data dependencies; a step contains no
references to other steps in contrast to conventional
programming protocols.

Pattern directed structures

The execution of a step is driven by a pattern or template which
describes a prototypical element of the group produced by the
step. Fig. 3 shows the specification for the production of Ext
detail’s as a function of Master’s and Detail’s. The complete
meaning of this description will be gradually explained in this
and subsequent sections. An important characteristic of pattern
directed structures is the use of prototypical elements to specify
transformations implicitly rather than explicitly.

Each program or pattern has two parts: a specification and a
definition. There are two columns associated with each part.
For the specification, the first column contains either the name
of a group of documents, or the name of a field in the document
being defined. The second column specifies the value of the
field or the cause of a prototypical member of the group. For
example, the first line of the pattern in Fig. 3 specifies that each
Ext detail is produced from one Detail. In most cases, each
name used in the specification of a line of the document is
local, i.e. has meaning only for that particular line. Also, each
name used in the specification part must be defined in the

definition part. By a line, we mean a logical line which contains

all the information needed to complete a specification or defi-
nition; it may require several physical lines. For example, the
line referring to the specification of District in terms of Old
District includes the corresponding definition of Old District
and Detail; the logical line in this case consists of two physical
lines. A naming rule is introduced here which allows one to use
adjectives (Old in this example) to distinguish between the
field name and the name of its value. Note that the use of level
numbers follows COBOL usage to show the components of a
structure.

Volume 20 Number1

For the definition part, the first column gives the name being
defined while the second column gives the definition of that
name. For example, Detail’s is defined as one of the input
groups to the step being described.

An exception to the locality of reference rule is shown as part
of the definition of Salesman. The name Detail is defined as the
CAUSE OF Ext detail. Detail is global and refers to the
document that is responsible for producing the current Ext
detail. Further clarification on the use of names is given in the
next section.

Itis generally appreciated that a program is a static description
of a dynamic process (the computations that take place at
execution time). For example, a local reference in a recursive
procedure or function successively represents the different
incarnations of the variable at execution time. There is a similar
duality between the declaration of a document as a pattern and
the program which produces instances of that document. One of
the aims of nonprocedural specification is to represent the
dynamic process by a static description which is relatively
simple, functional and deals with the abstractions which are
meaningful to the problem definer.

Source

Detail's

00/ W00 dno-olwspese//:sdny woly papeojdmoq

"—-
-

\ I 4 &
=
@
N
Tran-1 P (<]
// B
SN —_— - 1%
B
o
©
~
o
cq e o
Ex-detail's <
«Q
c
[0
28
o
Report-1 =
o
>
°
Tran-2 S
N
S

Report-2

Fig. 2

1 Ext detail’s ONE PER Detail Detail’s INPUT
2 Ext price Unit price x Quantity Unit price IN Product Master
Product Master Master WITH Master Product
number = Detail Product
number
Master Product number IN Master
Detail Product number IN Detail
Detail CAUSE OF Ext detail
Master’s INPUT
Quantity IN Detail
2 Salesman Old Salesman Old Salesman IN Detail
Detail CAUSE OF Ext detail
2 District Old District Old District IN Detail
v Detail CAUSE OF Ext detail
Fig. 3 A
1 Report-1
2 Ps ONE PER Grouped Detail’s Grouped Detail’s Detail’s WITH COMMON Old

3 Product number

3 Product total

Old Product number

0Old Product number
Detail’s
Old Product number

Grouped Detail’s

Unit price x SUM (Quantity’s) Unit price

Old Ytd sales + Product total

Product Master

Input Product number
Master’s

Quantity

Grouped Detail’s

Product number

IN Detail

INPUT

COMMON IN Grouped
Detail’s

CAUSE OF P

IN Product Master

Master WITH Input Product
number = Product number

IN Master

INPUT

IN Grouped Detail

CAUSE OF P

3 Ytd sales Old Ytd sales IN Product Master
Product Master Master WITH Input Product
number = Product number
Input Product number IN Master
Master’s INPUT
Fig. 4
1 Report-2
2 D’s ONE PER Input Detail’s Input Detail’s Ext detail’s WITH COMMON
Old District
Old District IN Ext detail
Ext detail’s INPUT
3 District Old District Old District COMMON IN Input Detail’s

3 District total

3S’s

4 Salesman

4 Salesman total
2 Month total

Fig. §

SUM (Ext price’s)

ONE PER Grouped Detail’s

Old Salesman

SUM (Ext price’s)

SUM (Ext price’s)

Input Detail’s
Ext price

Input Detail’s
Grouped Detail’s

Old Salesman
Input Detail’s
Old Salesman

Grouped Detail’s
Ext price
Grouped Detail’s
Ext price

Ext detail’s

CAUSE OF D

IN Input Detail

CAUSE OF D

Input Detail’s WITH
COMMON O0Ild Salesman

IN Input Detail

CAUSE OF D

COMMON IN Grouped
Detail’s

CAUSE OF S

IN Grouped Detail

CAUSE OF S

IN Ext detail

INPUT

Aggregate operations

In data processing we typically deal with aggregates such as
sets or groups of entities. We will use the example application
to illustrate five types of aggregate operations. In Fig. 4, a
prototypical element of the group named P’s is defined to be a
function of a prototypical group called Grouped Detail’s.
The mapping is a transformation from groups to documents and

is indicated by the syntax ONE PER Grouped Detail’s, where
the group named Grouped Detail’s is called the causing element.

The second type of aggregate operation is shown in the
definition of Grouped Detail’s. Grouped Detail’s is defined to
be Detail’s WITH COMMON Old Product number. This
operation, which was inspired by the ‘Glump’ in the information
algebra, groups together all Detail’s with the same product

The Computer Journal

20z Iudy 61 U0 1s9nB Aq 02607€/9/1/0Z/2191E/|UlWoo/Woo"dnoolWapese/ SRy WOl PSPEOjUMOQ

number, and forms a partition of the input group Detail’s.
This mapping is from groups to aggregates of groups, where the
member of the range group is an element of the partition. The
adjective Grouped is used here to distinguish between the
result .of the WITH COMMON operation and one of its
arguments.

The next example is an aggregate function SUM shown in the
specification of Product total. This function adds up the
elements of a group of scalars. The mapping which is a
transformation from groups to scalars is applied to the group
called Quantity’s which is defined in the corresponding logical
line. See the discussion on the definition of this group below.
Another example of a mapping from groups to scalars is the
definition of Old Product number as COMMON IN Grouped
Detail’s. This operation selects the Product number field in an
arbitrary (since the value of this field is the same in each
element of the group) member of Grouped Detail’s and returns
the scalar value.

The final example of an aggregate operation is given in the
definition of Quantity as IN Grouped Detail. Although the IN
operator normally acts like a simple selection function (see, for
example, the definition of Unit price as IN Product Master),
here it acts like an aggregate operation because of context. This
transformation selects the value of the Quantity field in each
document of Grouped Detail’s and aggregates the scalar values
to form a new group called Quantity’s. The IN operator
therefore acts like a projection function in this case.

The foregoing examples do not exhaust the range of
possibilities for aggregate operations.

Associative referencing

Associative referencing involves searching an aggregate for
members satisfying a given condition, but the search is the
operational result of specifying the data access implicitly.
Associative referencing is a commonplace feature of most data
retrieval languages. The definition of Product Master as Master
WITH Master Product number = Detail Product number in
Fig. 3 shows how the boolean condition is stated and illustrates
the use of adjectives to distinguish between the same field names
in two different records. The use of singular names (Product
Master and Master) indicates that a match is expected on a
unique record. If more than one record satisfies the condition,
an error indication will be raised. If the expectation is that
multiple records will satisfy the condition, the plural syntax (’s)
is used.

Elimination of arbitrary sequencing—data dependencies

There seems to be a close correspondence between procedural
programming, side effects and explicit sequencing. If a program
satisfies the ‘single assignment’ property (Tesler and Enea, 1968)
(if no variable is assigned values by more than one statement),
then the order of statements is irrelevant and the correct
sequence can be determined by dependency analysis. Our model
satisfies this property where the statements referred to above

correspond to the logical lines ot the pattern. In Fig. 4, the
field Product total is specified before its use on the following
logical line. The program is therefore in the conventional form
with specification occurring before usage. However, the lines
specifying Product total and Ytd sales can be interchanged
without affecting the result. This outcome is guaranteed by the
absence of side effects and the functional character of the step.
The use of Product total without a corresponding definition
indicates that its value is to be taken from the field of the same
name on the document being produced.

The ability to define the lines of a pattern in any order greatly
enhances the problem solving process. It should be noted that,
regardless of the order of lines in a particular program, the order
of lines for the purpose of output can be defined by a special
pattern or template declaration associated with the document.
Incidentally, the programs in Fig. 4 and Fig. 5 define the outputs
to be singleton groups (they have no causing elements) although
each contains a group as a substructure.

Conclusions
We have tried to show how the use of certain language feature,
can help in the description of data processing problems. Thg
most important of these are the use of operations on datg
aggregates, the elimination of arbitrary sequencing, both as tg
dependencies of data transformations and flow properties o‘i
the application, associative referencing, and the use of patterns
to represent computations on prototypical elements
aggregates. The followmg statement nicely expresses the prnﬁ
ciple of lack of sequencing contraints: ‘dependencies that ar&
not present in the application itself should not appear in thg
program representing the application’ (Goldberg, 1975). &

The purpose of this paper has been to present behaviourg-
characteristics of a language rather than exhibiting a precisg
description of syntax and semantics. However, the programs fﬁ
Figs. 3, 4, and 5 do exhibit a particular concrete syntax. Ag
experimental prototype of a language possessing the attributes
discussed and called the Business Definition Languagci
(Hammer, Howe and Wladawsky, 1974) has been implementeds
Since such a language reflects the entities and abstractions that
are relevant to business applications it does not cater, at least a&
the language level, to considerations of execution eﬁimencﬁ
In fact, the principle of locality of reference whereby names am
known only locally practically ensures the frequent appearancg
of common subexpressions; the treatment of such redundancxé&
lies in the domain of an optimising compiler.

The sum and substance of the approach described here is te
make data processmg applications easier to specify, modify an§
verify by raising the level of application description.

V 61 UO}

Acknowledgements

The current tabular format and naming features of the langua&
are due in large part to the ideas of V. J. Kruskal. W. G. Howg
and I. Wladawsky read an early version of the paper and mad¥
valuable suggestions.

*The language actually consists of three components: the Form Definition component, Document Flow component, and Document

Transformation component; the prototype only implements the latter.

References

CopasyL Language Structure Group (1962).
GOLDBERG, PaTRICIA C. (1975).
HAMMER, M. M., Howg, W. G. and WLADAWSKY, 1. (1974).

An Information Algebra Phase I Report, CACM, Vol. 5, No. 4, pp. 190-204.
Automatic Programming, in Lecture Notes in Computer Science, Vol. 23, Springer-Verlag, New York.
An Interactive Business Definition System, Proceedings of a Symposium on

Very High Level Languages, SIGPLAN Notices, Vol. 9, No. 4, pp. 25-33.
HaMMER, M. M., Howg, W. G., KRUSKAL, V. J. and WLADAWSKY, 1. (1970). A Very High Level Programming Language for Data

Processing Applications, to be published.
LEAVENWORTH, B. M. and SAMMET, JEAN E. (1974).

Level Languages, SIGPLAN Notices, Vol. 9, No. 4, pp. 1-12.
MCcCRACKEN, D. D. and Garsassi, U. (1971).
TESLER, L. G. and ENEa, H. J. (1968).

Volume 20 Number1

An Overview of Nonprocedural Languages, Proceedings of a Symposium on Very High

A Guide to Cobol Programming, John Wiley & Sons, New York.
A Language Design for Concurrent Processes, Proceedings SJCC, Vol. 32, pp. 403-408.

