Function minimisation using the Nelder and Mead
simplex Method with limited arithmetic precision: the

self regenerative simplex
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The behaviour of a curve fitting program is described which uses the Nelder-Mead simplex method
to optimise the fit and which works with limited arithmetic precision. Apparent false minima are
shown to be due to the creation of various simplex arrays which are regenerated unchanged by the
logic of the process. A simple procedure is suggested for detecting the formation of such arrays and
initiating restarting the search for the true minimum.

(Received July 1975)

I have recently completed a curve analysis (or spectral analysis)
program for a Nicolet BNC12 minicomputer, which uses the
Nelder and Mead simplex method to minimise the RMS
difference between a real and a synthetic spectrum by varying
the parameters of the latter (Akitt, 1975) (Nelder and Mead,
1965; O’Neil, 1971; Parkinson and Hutchinson, 1972; Box,
Davies and Swan, 1969). To obtain a fast operating program it
was necessary to carry out the calculation using almost entirely
integer arithmetic with the parameters in the simplex limited
to 12 binary bits, single precision (the BNC12 word length is
20 bits). The search for a minimum is thus made over a quite
coarsely spaced lattice of function values rather than over the
near continuum generally regarded as essential for the success-
ful operation of minimisation procedures. This appears to
confer no disadvantage in the early stages of a search and the
function value (RMS difference) falls rapidly and by large
steps. Progress is slow near the minimum and is hampered by
rounding errors made in calculating new simplex parameters
though generally at this stage the curve fit is sufficiently close to
enable the search to be terminated prior to attainment of the
precise true minimum. Using ideal, noise free data the procedure
is capable of going quite quickly to the point with function value
zero. :

However, long before the minimum is reached with either real
or ideal data the procedure commonly encounters apparent
false minima. This was to be expected (O’Neil, 1971) though its
occurrence with ideal data representing a single spectral line—a
three or four parameter fit—was surprising since the existence
of a real false minimum seemed unlikely. Examination of the
behaviour of the simplex at such false minima showed that in
fact a stationary self regenerative state had been reached where
due to the rounding errors of the calculation the simplex cannot
be altered by any of the logical pathways provided. Further
progress can only be made if a new simplex is formed around
the best set of parameters, i.e. by restarting.

An example of a self regenerating simplex
An example is given involving a four parameter fit to an ideal,
noise free Lorenzian line.

The four parameters defining a single line are baseline slope,
linewidth at half height, line intensity and line position, giving
a 4 x 5 simplex array. An exact fit is obtained with the set
0, 1,440, 6,200, 6,200 (all octal numbers) and the search was
started with a manually entered guess consisting of the set,
0, 1,510, 6,200, 6,320 for which RMS = 40,151. The contents
of the simplex for a typical stationary state is shown below
within the box. The ‘RMS store’ which contains the RMS error
for the curve calculated for each parameter set is to the right
and the logical regenerative cycle is shown below the box. This
consists of the following steps
(@) form parameter set P by taking the average of all sets but

that with the highest RMS (marked H) i.e.

P,= (XS, — Hyn .
Stationary state with RMS = 650

Parameter Simplex RMS
Set Store

1 0 1,432 6,206 6,177 724
2(H) 0 1,431 6,206 6,177 1,077

3 0 1,431 6,206 6,200 1,033
4 0 1,432 6,206 6,200 650
5 0 1,431 6,206 6,200 1,033
P 0 1,431 6,206 6,177 —
P* 0 1,431 6,206 6,177 1,077

(b) reflect the values of set H through those of P to give a set

P*(P* = 2P, — H)) and find its RMS (y*¥)
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(c) compare this with the values in the simplex RMS store3
(7:). Where a self regenerative simplex is about to be formed%
the RMS of P* will not be smaller than all numbers in the§
store. The number, x, of RMS store values > the RMS of =
P* is counted. In the example chosen only one value in the S

RMS store > 1,077 so we form set P** from
P** = (P + P¥%)/2, giving
P** 0 1,431 6,206 6,177

which replaces set H without altering the simplex. This
obviously could continue indefinitely.

Calculations made with different degrees of precision indicated
that increased precision would allow exit to be made from a
given self regenerative cycle, but in practice it was found that
this approach markedly slowed down the search, suggesting
that for optimum results the lattice spacing need not be very
much smaller than the expected variance of the real data to be
fitted. Limiting the choices which may be made by the simplex
may also assist in speeding matters along.

Testing for and exit from the self regenerative state
The occurrence of a self regenerative state is easily detected and
within one iterative cycle of the procedure. Two slightly
different tests are needed depending upon the pathway chosen
by the iteration. In all cases but one it is sufficient simply to
check whether the RMS value of the parameter set about to
replace set H is the same as that of set H. If it is, the simplex
has almost certainly become self regenerative, and a restart
should be made immediately. If the pathway chosen however
is to shrink the simplex it is necessary to compare all values in
the RMS store before shrinkage with the values obtained after
shrinkage. If there has been no change then a restart must be
made. Modifications to the Nelder-Mead algorithm are shown
which make these tests.

It should be noted that after a series of restarts has been made
a new restart may lead to the same self regenerative simplex.
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This condition may be avoided by altering the step size used
in forming the new simplex at each restart, remembering that
when integer arithmetic is used the minimum step size allowed
is equal to the number of parameters.

Appendix
Modified Nelder-Mead algorithm including tests for the for-
mation of a self regenerative simplex. P represents a set of
parameters from which function y is calculated. Subscript H
denotes the highest, L the lowest, i any other, values of y.
Note that if the simplex is shrunk then all y; have to be tested
for a change in value. The dashed boxes bracket the additions
made.

The algorithm is otherwise set out in the same way as in
Nelder and Meads original paper.
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