Discussion and correspondence
A note on the oscillating sort

B. G. T. Lowden

Computing Centre, University of Essex, Wivenhoe Park, Colchester CO4 3SQ

The oscillating sort has been well described in the literature,
(Sobel, 1962; Martin, 1971; Knuth, 1975; and Flores, 1969),
and differs from most other techniques in that merging and
distribution activities are interspersed.

If the initial number of unit strings is S then the number of
times each string is passed, i.e., the number of merges will be
{logy_, S], where [x] = the smallest integer > x, and the
total volume passed during the sort will be S[logy_, S] where
T is the total number of drives available including input.

Like most other sort merge techniques the value of S is critical
since a small increase over a power of T — 2 necessitates an
additional merge pass.

The upper boundaries of these merge points may, however, be
raised by including an additional string from core at each
successive merge, a modification mentioned in Sobel (1962)
but, to the author’s knowledge, not pursued further.

The result is an increase in the number of strings which may be
sorted with n merges from (T — 2)" to

_(T-2"-1
.T-2)+1= 73 ;

for values of S lying between these limits a complete merge pass
is thus saved, over the standard sort, and volume passed is
reduced by a factor of n/(n + 1). This improvement is shown
diagrammatically in Fig. 1 for the case of T = 5.

Merging performance is, however, not only dependent on
volume passed since block size will also affect the total tape
read/write time.

Consider a standard oscillating merge problem with buffer
size N which utilises T tape drives. Assuming that the block
size of each tape is the same and since T — 1 tapes require
buffer space during a merge, we may allocate a maximum block
size to each tape of N/(T — 1). The modification described
above, however, implies that all T tapes require buffer space
51mu1taneously, leading to a block size of N/T. Clearly this
increases the read/write time by a factor of

_ N+TG
TN+ T -G

(T-2"+(T—-2"1..

where G = interblock gap size

References

SOBEL, S. (1962). Oscillating sort—a new merging technique, JACM.
MARTIN, W. A. (1971). Sorting, Computing Surveys, ACM.
KnuTtH, D. E. (1975).
FLORES, I. (1969). Computer Sorting, Prentice-Hall.

400+ OSCILLATING SORT T=5
STANDARD -
q wr - MODIFIED . -
(7]
<
[-M]
m
=
=)
a
o
>
0 10 20 30 40 50 60 70 80

. NO. OF UNIT STRINGS § —>

Fig. 1

and this must be offset against the reduction in volume passed.
Provided therefore p.n/(n + 1) < 1 the modification leads to
improved performance and is particularly advantageous for
small T and large N, which is a common characteristic of small
single-programmed machines.

An example
Let:
No. of tape drives available T = 5
Allocated buffer space N = 40K bytes
File size S = 3,000 records
Interblock gap size G = 0-75 in.
Packing density P = 800 b.p.i.
Then:
_ % = 1-0001 n/(n + 1) = 7/8 = 0-875

-and sort time is reduced by 12-4 per cent using the modified

technique.

The art of computer programming, Vol. 3, Addison Wesley.

To the Editor
The Computer Journal

Sir

The recent paper by Burkhard (The Computer Journal, Vol. 18,
August, 1975, pp. 227-330) purports to give an algorithm for non-
. recursive tree traversal which uses a fixed amount of storage and
no additional flag bits in the nodes. While this contention is literally
true, Burkhard places a restriction on the field values which is
equivalent to providing a flag bit for each: ‘For every node N in T
with address P = P(N) LPNTR(P) > P and RPNTR(P) > P.” The
algorithm which he states for performing the traversal is identical

to the well-known ‘pointer reversal’ method described by Schorr
and Waite [CACM, Vol. 10, pp. 501-506]. This algorithm is also
discussed by Knuth in one of the references given by Burkhard
(The Art of Computer Programming, Volume 1/Fundamental
Algorithms, pp. 417-419).

The minimum information required by a non-recursive tree
traversal which does not permanently alter the data structure seems
to be three addresses plus one bit per level. Burkhard’s algorithm
does not meet this bound. The restriction is applied to both fields of
every element, thus providing two bits of information per element.
Schorr and Waite use one bit per element less than Burkhard but
still more than the minimum.

The Computer Journal

20z udy 61 U0 1s9n6 Aq €91 L ¥E/26/1/02Z/2101E/UlWOd/Wod dNo"dlWspeoe)/:SAjY WoJj PAPEoUMOQ

Burkhard’s algorithm thus provides us only with an extra trick
for encoding the necessary information. Such tricks are useful, and
should be disseminated, but they should be more carefully placed
in proper context.

Yours faithfully,

W. M. WAITE

Department of Electrical Engineering
University of Colorado
Boulder
Colorado 80309
USA
13 February 1976

To the Editor
The Computer Journal

Sir
Natural programming

In the May 1976 issue of The Computer Journal, J. Inglis appealed
for inclusion of a system boolean end-of-file function in programming
languages, claiming that ‘perhaps the most significant contribution
would be that beginners could write natural well-structured
programs ... Of his paradigm he asserts that ‘It is unfortunate
that this type of program cannot usually be expressed naturally in
current programming languages and that students are compelled,
very early in their learning, to resort to an unnatural approach
which sows the seeds of bad programming style.’

The importance thus given to naturalness in programming is most
laudable, and the importance is for all who program—not just the
beginners. However, Inglis’ examples and his paradigm display an
unnaturalness of much more frequent significance. Phrases such as
while not and if not are usually quite unnatural compared to the
words until and unless respectively, as their substitution in Inglis’
examples will show. Programs using such words would be easier to
produce and understand.

Yours faithfully,
W. N. HOLMES
IBM Australia Limited
80 Northbourne Avenue
Canberra
A.C.T. 2601
Australia

Reference
INGLIS, J. (1976). Structured programming and input statements.
The Computer Journal, Vol. 19, No. 2, pp. 188-189.

To the Editor
The Computer Journal

Sir.

Self-confidence in a computer
The germ of the ideas introduced here arose out of the question
whether a computer could be built which could gradually develop a
doubt whether it was on the right track—this being a feature of
natural intelligence that the present generation of computers does
not show.

After considerable abortive casting around, the first real break-
through came with the realisation that in Triple Modular Redun-
dancy (TMR), where every module is triplicated and the results
passed through a majority vote taker, we have the following situ-
ation, when every module has a chance p of functioning correctly and
q = 1 — p of being in error,

observed
probability result suspicion frequency
All correct P correct No M
One wrong 3p2q correct Yes N(+E)
Two wrong 3pq? incorrect Yes (E)
All wrong q° incorrect No negligible

We have to assume that g is sufficiently small that the last poss-
ibility can be neglected. In this case we have the observed frequencies
M of correct results and N of suspicious ones, from which we can
deduce the expectation E = N2/3M of an actual ‘error getting
through. If E < 1 then we can be qualitatively confident in the
result, but assuming a Poisson distribution we can go further and
state that e~E == 1 — E'is the probability that our results are correct.

Volume 20 Number 1

There would seem to be no reason why a system built in this way
should not invariably attach this figure to any results it prints.

TMR is very expensive. In a multiprocessor environment, two
results that agree need not waste time on a third, but if we exploit
this, then we have E = 3N?2/4M. In a different context, if a check on
memory is kept by an error correcting code rather than by a single
parity bit, and if it is assumed that single bit errors occur at random,
then similar arguments lead to an expectation £ = N2/M.

So long as the probabilities of error computed in any of these
ways from different sources are small, they can be combined by
addition, so that the system overheads need not be high.

These estimates of the absence of error relate to hardware faults.
The common principle behind them is that by employing an error
correcting system and keeping a record of both error-free and error-
corrected applications, an estimate can be obtained of the chance of
an error slipping through the correction system. The exact formula
depends on the technique used in the process of correction. Recently
(James and Partridge, 1976), error correcting techniques have been
applied to spelling mistakes and syntax errors, and, since doubt
about the final reliability of a result can come from any level from
hardware right up to the logic of a program, one wonders whether
the principle can be extended to cover these levels.

Several difficulties have already become apparent, and there is no 5
automatic route to an estimate-formula. Consistent mis-spelling of 2
one reserved word is very different in its relation to doubt from 2
general carelessness, for example. The ratio of initial to return 2
entries to a loop can be monitored but only the programmer can &
tell, at present, what the reasonable limits of this ratio are in a given 5
case. 3

Ironically, small changes in hardware design would be necessary =
to provide automatic provision of hardware reliability estimates, but &
software experiments need no such precondition. The advantages of &
free format languages are now generally realised, but this would not g
prevent use of format evidence in checking correctness. We look ©
forward to the day when a computer will accept and execute any &
syntactically and logically correct program, but will express con- 2
siderably less confidence in the result if it is submitted in a slovenly
layout!

Yours faithfully,
M. ALAUDDIN and B. HIGMAN
Department of Computer Studies
University of Lancaster
Bailrigg
Lancaster

Reference
JaMEs and PARTRIDGE (1976). The Computer Journal, Vol. 19,
No. 3, pp. 207-212, and references given there.

To the Editor
The Computer Journal

01s8nb Aq €91 L¥€/26/1/0Z/191e/|ulwoo/wo

Sir
I notice that The Computer Journal does not impose a uniform style =
for references given at the end of articles: sometimes only the first ©
page number is given, sometimes first and last. Might I suggest thatS
the ‘first and last’ style be made obligatory. Its main advantage is,
of course, that it allows one to specify precisely the pages to be D
Xeroxed when writing to libraries holding bound copies of the ©
journal in question. Also, as you would probably agree, it is often
useful to know whether a given title refers to a one-page note or to a
major twenty-page paper.

Incidentally—and unrelatedly—minimal editorial courage would
quietly replace ‘re-cap’ by ‘recapitulate’ on page 192 of the last issue.
One must draw the line somewhere.

Yours faithfully,
G. A. ERSKINE
Data Handling Division
CERN
1211 Geneva 23
Switzerland

24 June 1976
Editor’s note:

It is the deliberate policy of the Journal not to restrict unreasonably
the freedom of an author to choose his own style; in any case it is

93

not practicable for the amateur staff of the Journal to undertake the
workload involved in extensive editing. Nevertheless the suggestion
of Dr. Erskine regarding references clearly is valuable. Would
authors please take note.

To the Editor
The Computer Journal

Sir
Structured programming and input statements

Inglis’s Paper (this Journal, Vol. 19, No. 2, May 1976) leaves some
major difficulties unanswered, and I think they must be introduced
into the discussion. The difficulty is not, as I think he is suggesting,
simply that the input statements don’t tell the program that end-of-
input is coming next—they don’t tell it what is coming next at all.
If the program is designed with a structure which separates out the
various parts of the processing, then how do we arrange for the
machine to be in the correct part of the program if we don’t know
what data is coming next. I am, of course, assuming that, in the
context of this discussion, the reader understands clearly that what
processing has to be performed next depends on what data is
delivered by the input statements. In the example given by Inglis,
if end-of-file turns up then the “finish’ process has to be performed
next.

The general difficulty is that there are different types of records,
and/or groups of records, which are recognised by values within the
records themselves, rather than by values preceding the records.
To be consistent, the Inglis approach would have to attach all these
values to the preceding record. Consider the development of the
following example (using Inglis’s informal ALGOL-like notation).

Imagine a program which processes a file containing two records,
a Type 1 followed by a Type 2, identified by values within the
records themselves. Imagine, further, that no errors are possible,
so the file really is two records, a Type 1 followed by a Type 2, and
nothing else. The program will look like this:

Initialise;

do [read(file); Process.typell;
do [read(file); Process.type2];
finish;

Observe that the program knows what is coming next. It has no
need to test the record type, or guard against end-of-file, given the
specification above.

Imagine, now, that we specify any number of Type 1’s, followed
by any number of Type 2’s, and that ‘any number’ includes zero.
Again excluding errors, the program will now be

initialise;

read(file);

while zypel and not end.of. file

do [process.typel; read(file)];

while type2 and not end.of . file

do [process.type2; read(file)];

finish;
where the read has the traditional definition of setting end. of. file to
true after the first unsuccessful read. '

Changing the read to the form suggested by Inglis (the system
boolean function end.of.file becoming true in concert with the
appearance of the last record) we would have

initialise;

while #ypel and not end.of . file
do [read(file); process.typel];
while type2 and not end.of . file
do [read(file); process.type2];
finish;

The problem now is that although the system is kind enough to tell
the program that the next read will produce a record (or not), its
benevolence does not extend to telling the program which type it is
going to be. Suppose there are zero Type 1 records?

We could, of course, change the program structure to

initialise;
while not end. of . file
do [read(file); process.record];
finish;
process .record: if typel

then process. typel ;
else process.type2;

(remember that we excluded errors, so if it’s not a type 1, it must be a

type 2). Now we have two problems:
there may be no records at all on the file. This is not difficult to
surmount: we merely require to treat the absence of a first record
as a special case, with end.of.file being capable of yielding true
before any reads have been performed.
the program is now processing a file which is an iteration of records
each of which can be either a type 1 or a type 2. This is much more
serious. Not to put too fine a point on it, the structure of the
program is now WRONG.

This second problem comes to the heart of the matter: it is almost
invariably wrong to see a file as a simple iteration of records.
Usually they are grouped together in some way which is either
‘natural’, or necessary, to the problem being processed. The user
asking for a modification which he considers to be quite simple, but
which proves very difficult to implement is a common symptom of
failing to see these groupings.

Consider the following request for a modification:

‘the program is a big success, and now has far more users than we
ever expected. What we now want is to run through any number
of record groups each of which consists of a whole lot of type 1’s,
followed by a whole lot of type 2’s. The user will be identified on a
type 3 record at the start of each record group. Since the operators
will be inserting the type 3 records, it is possible, regrettably, thab
they might occasionally be missing. If there is no type 3 present at
the start of a group, identify that user by the date and time o
day.’

How are we going to implement this?

We will have to change the program to

Initialise . first.group;
while not end.of . file
do [read(file); process.record];
finish.last.group;
process.record: if typel
then process . typel ;
else if rype2
then process.type2;
else [finish.group; start.group];

This is the cheap solution—if the type 3 is omitted, its group is3
concatenated with the previous one (unless it’s the first one!).g
Additionally, the first group is always initialised, and the last oneé.
always finished, even when there are no groups at all. We will have<
to solve these problems either by appealing to the user, pointing out_.
how unlikely they are to occur, or by setting and testing swrtches—g
they are the on]y answers now.

The sad thing is that what we are trying to cure are all self-mﬂlcted*
wounds—the file is not a simple iteration of records. Unless Inghslg
proposes that there be system functions which allow the program to%
interrogate all recognition values of the following record, then the—\
programmer will be invited to fall into this awful trap &

Inglis states that it is difficult to find more than ‘passing referencesZ
to input statements in the literature of structured programming?e
Jackson (1976) deals in some detail with a method which is con-&
sistent. If we obey the following simple rules, the program will be2
able to see all the necessary values of the next record:
1. Read a record at the very beginning of the part of the program>

which processes the whole file (i.e. immediately following theZ.

OPEN).

. Always view the tests as testing the ‘next’ record.

. Always view the process.record level as processing a ‘current’

record.

4. Always read, to replace the ‘next’ record, immediately at the end
of processing the ‘current’ record, thus ensuring that, except when
actually processing a record, the next one is always available for
inspection.

5. Form the read process such that it treats the end. of . file condition
in a way consistent with the other recognition values. This in
practice means a simple 2-valued flag—‘on’ for end.of.file, ‘off’
for not end.of . file.

The program then has the structure

initialise;
read(file);
while not end.of . file
process.group;
finish;
Dprocess.group: initialise.group;
if type3

/oo dno-oiwspeose)/:sdny woly papesdfuiio

6l

¥20¢

w N

The Computer Journal

then do [process.type3; read(file)];
else process .date .and.time;
while typel and not end.of. file
do [process.typel; read(file)];
while type2 and not end.of . file
do [process.type2; read(file)];
finish.group;
which is much more ‘natural’.
Yours faithfully,
M. V. SLAVIN
Michael Jackson Systems Limited
101 Hamilton Terrace
London NW8 9QX
9 July 1976

Reference
JAcksoN, M. A. (1976). Principles of Program|Design. Academic
Press.

To the Editor
The Computer Journal

Sir
The May 1976 issue of The Computer Journal included a short paper
by J. Inglis, discussing structured programming and input statements.
To write goto-free programs with input statements without the
proposed end.of.file system function, one could define the input
statement like:
reading.ok (x): ‘a boolean function: if end of file x has been
reached then return false; otherwise, make the next record from
file x available to the program and return true’.
A program using this function could look like:
initialise;
while reading.ok (x) do
process.record;
finish;
Yours faithfully,
T. S. MONSEN
A/S Computas
Veritasveien 1
Oslo
Norway
28 July 1976

Mr. Inglis replies:

Mr. Monsen proposes the use of a boolean procedure with a side-
effect in order to achieve a goto-free program for the class of problem
I discussed. This proposal is of course applicable only to program-
ming languages which allow such a procedure to be defined; more-
over, the use of such a procedure leads to program opacity and to
errors, and I would hesitate to introduce an example to beginners.
Quite apart from these considerations, I retain my belief that it
should be possible to test for end-of-file without attempting to read a
record, just as it is possible to test for a zero divisor without attempt-
ing to divide. A similar view was expressed as long ago as 1961 by a
working committee of BCS Group 5 (see Willey ez al. (1961)).

Mr. Slavin is perhaps right in widening the scope of the discussion
to include other classes of problem; such matters certainly require
an airing in an academic community which claims to be concerned
with the structure of programs. But his view of my favoured end-of-
file function as ‘telling the program that end-of-input is coming
next’ is a consequence of his acceptance of the limitations of the
currently popular languages. The end-of-input condition already
exists as soon as the last record of the file has been delivered to the
program; it is often quite wrong structurally to detect it by the
failure of a further read statement. This is not to say that current
facilities should be abolished, but simply that they are limited.

However, let us take Mr. Slavin’s view that we are considering two
alternatives and that, for a sequentially accessed file, a programming
language may provide only one of the following end-of-input
functions. The function end.of.input(x) may be defined:

1. (Inglis) It yields the value true whenever no further records exist in.

file x; otherwise, it yields the value false.

2. (Slavin) It yields the value true at any time after a read statement
for file x has been executed when no further records exist in file x;
otherwise, it yields the value false.

Volume 20 Number 1

Now consider two classes of program:
A, in which the file is seen as a simple iteration of records;
B, which requires a record look-ahead capability, as in Mr.
Slavin’s example.

Function 1 permits the natural expression of class A programs, as
shown in my paper. It also permits the natural expression of class B
programs (and this is the point Mr. Slavin has missed). Whatever
objections a purist might have to the boolean expressions in Mr.
Slavin’s final program, it can be regarded as a well-structured
program of class B. In that program, the variable end. of . file may be
taken as user-defined, like typel, type2 and type3 (and, like them,
requiring initialisation at the time of opening the file), and the user’s
procedure read(file) may be defined as:

if end . of .input(file) then end.of.file := true
else read(file);

Function 2 permits the natural expression of class B programs—
simply substitute end . of . input(file) for each occurrence of end. of . file
in Mr. Slavin’s final program—but, as I showed, it does not permit
the natural expression of class A programs. The practical hints
quoted from Jackson’s book (which, incidentally, was published
after my paper was in the hands of the Editor) are an example of
what one should not have to do when, for example, one simply
wants to count the number of records in a file. Despite Mr. Slavin’s

assertion to the contrary, programs of class A are not so uncommon,d
especially among casual computer users. Mr. Slavin is in the curiousg
position of favouring a language feature which is suitable for morea
complex programs, but which makes the natural expression of many§
simple programs impossible. Q

To state the situation more concisely, function 1 may be used tos
provide function 2, but function 2 cannot be used to provide functioni
1. Both functions are desirable. Function 1 should therefore be thes

choice of the language designer.

Reference

@

peoe//

Witey, E. L. et al. (1961). A critical discussion of COBOLS
Annual Review in Automatic Programming, Vol. 2, Pergamon®

Press, pp. 293-304, at p. 298.

To the Editor
The Computer Journal

Sir

Je/|ulwoo/woo dn

Mr. H. A. Marriott has written in the May 1974 issue of yourg
Journal that he has some apprehensions about the spelling of%
ALGORITHM and he has further cited the Oxford DictionaryS
which quotes ALGORISM instead, which is derived from the names
of an Arab Mathematician and further states that the -ITHMS
ending is a mis-spelling. Ay
In this connection we would like to state that the words,
ALGORITHM has a peculiar linguistic background. The said wordéi

consists of the two words viz. ‘Al’ and ‘Gorithm’.

‘Al’ means the set of all alphabates (consonants and vowels) in‘%
Gram->

Panini’s (Sanskrit) linguistics. Panini, the ancient Indian

marian has divided this set of alphabates into 14 primary subsetsS

with end points.

©
These primary subsets and their definitions in BNF notations runZ

1

as follows.

1. ATU () (Any:=A|I|U g
2. RL () Rky:=R|L
3. EO (%) CEny:=E|O
4. AL AU () (Al ¢) := AT | AU
5. HY VR (V) (Hty:=H|Y|V|R
6. L (n) {(Lny:=L
7. NM N NN () (Nm):=N|M|N|N|N
8. JH BH (%) QJH) := JH | BH
9. GH DH DH (s) (GH's) := GH | DH | DH
10. JBGDD () {Jsy:=J|B|G|D|D
1. KHPHCHTHTH () (KHv) := KH|PH|CH|TH|TH
12.CTTKP®) Cy>:=C|T|T|K|P
13. SSS @ Sry:=§|s|s
14. H() HI:=H
95

The contiguous primary subsets can be added together to form

the hyper subsets.
CAcy:=(An) <Rk |[<En)|(AI¢)

‘Ac’ (Pronunciation ‘Ach’) means union of the first four primary

subsets (1, 2, 3 and 4). In other words it is union of the primary
subsets from a set (1) whose first symbol is ‘A’ through a set @)
whose end point is c‘A (’:’ means a set of all vowels of the sanskrit

language. ‘HI’ means union of primary subsets from (5) through
(14) and it means the set of all consonants in the sanskrit. Finally
‘AT’ is the union of all the 14 primary subsets and means the set of
all vowels and consonants in the sanskrit.

By the passage of time, ‘Al’ was used in the sense of All dropping
the sense of consonants and vowels. Even the linguistic similarity
between the words ‘A’ and All is remarkable.

‘Gorithm’ the second part, is derived from the Sanskrit stem root
‘Granth’ meaning ‘to string together, to compose, to fasten, to put
together’. The linguistic variations from GRANTH to GORITH
are easily understandable. The connotation of the word ALGOR-
ITHM also substantiates perfectly its scientific linguistic basis.

On this background, the explanation offered by the Oxford
. Dictionary sounds far from convincing.

Yours faithfully,
S. N. BaLporta and V. K. KSHIRSAGAR*
Electronic Data Processing Centre
University of Bombay
Bombay 400 020
India

*Elphinstone College
Bombay 400 032
India

26 August 1976

To the Editor
The Computer Journal

Sir

Fast input/output of variable-length arrays in FORTRAN IV
In the Journal of August 1976, R. Taylor describes a valuable
method of increasing the efficiency of FORTRAN programs
produced by some compilers.

It is unfortunate that he suggests that this method ‘ought to work
with any FORTRAN compiler’. At least one compiler rejects such
statements in accordance with section 7.2.1.1.2 of the FORTRAN
Standard (ISO, 1972) which states ‘The values of the actual argu-
ments that represent array dimensions in the argument list of the
reference must be defined prior to calling the subprogram and may
not be redefined or undefined during execution of the subprogram.’

There are still good reasons for using non-standard FORTRAN in
some situations, but any publication which does not conform to the
Standard should state this explicitly.

Yours faithfully,
D. HiTCHIN

Research Support Unit
School of Social Sciences
The University of Sussex
Falmer

Brighton BN1 9QN

2 September 1976

Reference
International Organisation for Standardisation (1972). ISO Recom-
mendation R1539, ‘Programming Language FORTRAN".

Dr. Taylor replies;

Mr. Hitchin is right. However my suggestion at least concentrates
the non-standard code. If the data were suitably written, one could
observe standards by reading N in the calling, and the partial array
in the called, routines. The important point is to try always to
transfer continuous blocks of data and avoid looping through
subscripted elements.

To the Editor
The Computer Journal

Sir
Symposium on the use of computers in shipboard automation

May I draw your readers’ attention to one or two errors of fact and
interpretation in the review of the above symposium published in
the August 1976 issue of your Journal? Firstly, the purpose of the
study on which the symposium was based was to explore the
potential for ship automation systems based on onboard computing
facilities and not to survey the progress of ship automation generally,
as stated by your reviewer. Secondly, the statement that there was
little contribution from equipment manufacturers is incorrect in
that U.K. manufacturers were involved in the direction of the work
and in fact were joint sponsors. During the course of the study
discussions were held with all major U.K. and ScandinavianS
equipment manufacturers. S

The economic case for bridge automation systems derived mainly$
from predicted reductions in fuel consumption and voyage time@
rather than enhanced safety. Safety benefits, although important,g
were assessed conservatively in view of the uncertainties in the datag
and were credited with a relatively small contribution. Your reviewer’s—
comment on the use of digital techniques for machinery controlS
overlooks the conclusions drawn on potential cost/reliability bene--
fits, and omits mention of operational benefits (difficult to quantify
economically at this stage) in the important areas of machinery3
surveillance and condition monitoring. g

Finally, it is fair to point out that in compressing the large amounto
of material in the original study report into a series of papers ofs
reasonable length, much detailed information had to be omitted,3
which may account for your reviewer’s final comment. Nevertheless%
it was considered that in summarising the results of what was§
essentially a feasibility study emphasis should be given to discussion=
of the many factors influencing viability and future trends, and®
that an authoritative statement of these matters would be helpful &
to many whose experience has been only in one or other of the%
three industries concerned. It is interesting to note that while no<
U.K. national project has yet been undertaken to promote develop- &
ment in this field, commercial developments since the study wasg
completed in 1973 have generally been following the broad pattern§

10 September 1976

envisaged in the report. 9
Yours faithfully, o

H. C. WILKINSONG

British Ship Research Association §
Wallsend Research Station S
Wallsend 2
Tyne and Wear ©
NE28 6UY g
N

N

~

Erratum

Formula (3) of the paper ‘Hit ratios’ by S. J. Waters (this Journal,
Volume 19, No. 1, February 1976) should read:
~n-BCH 3

BHR =1 —
~Crx

Similarly in Appendix 3.

The Computer Journal

