The LEGOL 1 Prototype system and language'

R. K. Stamper
LSE Houghton Street, London WC2

Research into the problems of information analysis is being carried out using legislation as experi-
mental material. A body of administrative law may define the tasks of a man/machine information
system and, by attempting to construct a formalism (LEGOL), in which such law may be expressed,
it is possible to study the logical structure of formal systems. A prototype version of the formalism
and of its interpreter system are described. Theoretical problems are raised in the fields of data base
semantics, very high level languages, use of relational data bases, design decision-making and of the’
methodology of research in the field of information analysis.

(Received April 1976)

The problems of developing computer applications will shift
from their present locus, near the machine, as computer hard-
ware falls in price and increases in reliability and as systems
software and high level programming languages increase in
power and efficiency. Increasingly they will be centred upon
the organisation. The improvement of technology will make it
feasible to attempt much larger and more complex applications
than before. Unfortunately, the potential of computers will not
be realised whilst we lack the necessary insight into the ways in
which information is used to run organisations. It is now
relatively easy to program the computer. What we find it
difficult to do, is to decide what data processing must be
performed. This, the information analysis problem, is increasing
in difficulty with the complexity of the organisational tasks to
which the computer is applied.

With the aim of understanding problems in information
analysis, an attempt is being made to create a formalism
(LEGOL) in which complex rules and regulations may be
expressed. A prototype system has been constructed for
interpreting LEGOL 1, a first subset of the formalism. LEGOL
can be used as a very high level language for defining data
processing operations and an interpreter can be used to simulate
the logic of the system.

The project described below was conceived as a way of
approaching problems in information analysis in a scientific
manner. The hallmarks of a good scientific theory are that it is
succinct whilst being of great generality and that it can be
rigorously tested; the general theory must lead to particular
statements about the real world against which they can be
compared. The importance of this scientific approach is clear
when one realises that information analysis is the task of
ensuring that the formal data processing system is accurately
and reliably linked to the real world which the organisation is
supposed to monitor and control. Computer science has been
preoccupied with the formal manipulation of symbolic data
and with the machinery to perform these operations. Computer
science now needs to develop an appropriate theory of the
relationships between data and what they represent. Until it
does so we shall continue to build efficient computer systems
which are not effective organisationally (Land, 1974). The task
which distinguishes the role of the systems analyst from that of
a programmer is to establish these essential links between
symbol and reality. The missing theory is that of systems
analysis.

The LEGOL language and system, described below, might be
seen only as an attempt to produce another high level language
and corresponding interpreter. It is hoped that they are more.
They are intended to show how we might shift the locus of our

attention away from the relatively familiar problems of com-
puter hardware and software into the murkier regions of
formal organisational systems where most computers
supposedly find their economic justification.

1. Data processing and legislation

After examining a number of alternatives, it was decided to use
statute law and statutory instruments as the experimental
material for research. The reasons are discussed in Stamper
(1973). Legislation serves, in fact, to define what should be done
in a formal data processing system. Legislation does not, as a
rule, specify how the data are physically to be processed and
stored, instead, it gives an almost minimal statement of the
logically necessary data processing.

The people who obey the legislation, either to obtain their
rights or to perform their duties, actually process the data.
In doing so, they play their roles in an information system.
In data processing terms such a system may be very complex but
it is not defined by stating how the data should be processed.
It is defined by rules which say what should happen to people,
their possessions and their actions in the real world. Certain,
necessary data processing is implied by these rules. Firstly,
to apply the legislation, we must attach names, numbers or
other symbolic labels to the relevant people, objects or activities.
We must then manipulate these symbols as specified in the
legislation itself. Finally, the results of the decisions must be
communicated to the people who will act upon them, thus
completing the cycle from object system, through information
system, back to object system.

In taxation, social security, licensing and so on, a high pro-
portion of these rules are cut-and-dried and therefore ideally
suited to the computer. Where the rules are not entirely formal
they imply an interaction between a formal system and some
human decisionmaker. This interaction is itself an important
feature of a typical data processing system. Thus by discovering
a formalism in which legislation can be expressed, we shall
learn how to define precisely one important class of data
processing systems.

The aim is to produce a formalism sufficiently general to
encompass any legislation. There is at least a reasonable chance
of being able to produce a good, special formalism, hence there
is a good chance of the research producing results of practical
value. However, scientific discovery depends upon stretching a
hypothesis to its limits to discover where it fails. At the point of
failure discoveries are made.

Generality is of greater value if combined with brevity.
Scientifically, a theory is obviously more informative if it is
both brief and general instead of being either limited or diffuse.

Supported by the Science Research Council with assistance from IBM (UK) Scientific Centre, Peterlee.

102

The Computer Journal

20z udy 61 U0 188n6 AQ 891 07H/201/2/0Z/31014e/|ufod/W0d"dNo"oIePEDE//:SARY WO.) PAPEO|UMOQ

There are other reasons for seeking these quantities in the
formalism being constructed. If the formalism is used for
systems definition, it will be more valuable if it is general
enough to encompass a wide range of data processing systems,
and its power of exposition will be enhanced by its brevity. One
has only to think of the length and diffuseness of a typical
system definition to realise how valuable a concise problem
statement would be. Hence, the chosen research goals combine
a scientific ambition and an important practical objective.

A fully-fledged, legally orientated language will take many
years to evolve. So far, a rudimentary version of the language
has been defined and an interpreter for it has been constructed.
In doing this, some fundamental problems of information
analysis have been exposed with a clarity which gives us a good
chance of solving them. Currently, a more elaborated version
of the language and prototype system are being developed.
The first prototype version of the language and system are
described below, key theoretical problems encountered and
new directions of work are also discussed.

2. Structure

Structure is the key to economy of expression. To interpret
ordinary statements and commands in prose, a person relies
upon his knowledge of the world or, to be more precise, upon
his knowledge of how the names ascribed to things in the
world are used in relation to these things and to one another.
In ordinary discourse we use language with a richness of
metaphor and allusion which are not employed in legislation.
Legal prose is intended to express ideas which are relatively
" simple from a semantic point of view. Despite its apparent
complexity, legal prose in the hands of skilled draughtsmen is
purged of those logical complexities and ambiguities which
make the rigorous interpretation of ordinary language difficult,
if not impossible. The logical and semantic structures employed
in legal prose being relatively simple ones, it is hoped to expli-
cate them fully and employ them within the LEGOL system for
interpreting statements in the formalism. This is much less
ambitious than attempting to model in a computer the
understanding of ordinary language.

The explicit structure of a body of rules consists of first order
rules which say what should happen in the ‘real world’; these
are put into a sequence (which may be conditional) by second
order rules. These denotative rules are supported by effective
prescriptions telling of the inducements to conform to them.
Implicitly, there is also the semantic structure. Of these four
components, the first prototype language and system handle
only the first order rules and a part of the semantic structure
concerned with the entities spoken about in the first order
rules. These will be described.

The description begins with an account of the semantic
structuring. To use the formalism in practice one would also
begin with the semantic part of the problem. This corresponds
to solving the problem of the data base controller setting down
a conceptual schema for an application (ANSI-SPARC, 1975).
Judging by the work done on LEGOL so far, the problems of
conceptual data definition are in danger of being misunderstood
if one adopts the computer programmer’s frame of reference;
this is not appropriate for information analysis. Programming
is concerned with symbols and their manipulation by the
machine. The data base problem, from this point of view, is
about how to label, store, retrieve and manipulate these data.
Information analysis is quite different as it concerns the people,
things and actions to which the data refer. From this point of
view, the data base problem is one of locating people, things
and actions so that the data processing system can monitor
and influence them. In the LEGOL project the problem of a
conceptual schema has been approached as a problem of
information analysis. We must define what may or may not be
said about the world within the formal system, so that it will

Volume 20 Number 2

always employ data in meaningful and self-consistent ways.
The problems of labelling, storing and retrieving the data are
not examined, That is not to dismiss the programming prob-
lems but to say that they are of a different kind from those of
information analysis and that we simplify the overall problem
by distinguishing two subproblems. By doing this we also
hope to highlight aspects of the conceptual schema ignored by
concentrating on the programming problem.

To illustrate the way in which LEGOL handles the semantic
model or conceptual schema, consider legislation intended
to encourage the construction of factories and other buildings
for industrial use. Some allowance against taxation will
be made to certain companies in relation to the industrial
buildings for which they are responsible. Whatever rules we
devise to obtain the desired economic effect, we shall need to
be able to talk about certain things. The concepts that we shall
employ vary considerably in their semantic standing (Stamper,
1973). Perhaps the simplest concept in this example is that of a
building. A physical object which is large enough to be seen
clearly yet not so large that one cannot discern it on a single
occasion, can be related to the data which name it and describg
it in a fairly simple way. If necessary the object may be defined
ostensibly: we may take someone to see the building. That is 2
reliable way of establishing the relationship between a word and
a thing. The words associated with the building will serve two
major functions. One of these is to identify the building, tl§
other is to report properties of the building. The name of an
object such as a building is a unique label which may be use@?
for identifying it. When we talk about an identifier in the context
of LEGOL, we mean an element of data which may be used by
person to find the real thing, an actual factory for examplQ,
whereas in the programming sense an identifier is an element of
data used to locate other data elements. (It may seem eccentric
to a non-computer specialist to be turning language onto its
feet in this way but, writing for the computer world where
language so frequently stands on its head, one must be explicgt
when turning it the normal way round.) %

Not all concepts that are semantically treated as objects will
correspond to physical objects like the factory. For example,
the owner of the factory may be a person whose hand y&'ﬁ
might shake and whose name you might be taught by ostensiye
definition, but the owner is more likely to be a company andz
company is a legal fiction. A company will have a name and it
will be treated conceptually as though it were a person. Physic§l
objects such as buildings, and by analogy objects such &
companies, will be identified by unique names. g

In the taxation example, it is necessary to identify moge
complex entities such as concrete and abstract relationships,
e.g. use and ownership. Each of these links a building with&
company. One may observe the relationship use, whereas the
relationship ownership is a legal fiction, an abstraction, which
effectively sums up the consequences of a body of law. Fo
identify a relationship, we must supply the names of the objec%
which are related and the name of the manner in which théy
are related, but these identifiers will not suffice. Time plays an
important role in the identifying of certain relationships. Most
of the entities which are the subject matter of the law will
exist for a definite period. In the case of an object, the name in
the LEGOL system will be unique for all time. Hence it is
superfluous to know the period of existence of the object, if
we are given its unique name. For a relationship, however, it is
conceivable that a company might use a building for the same
purpose for two quite separate periods. We may wish to give
tax relief for each of these periods but not for the intervening
time. To identify the relationship use, we must therefore specify
the start and end times for the existence of the relationship.

Given that we have succeeded in identifying an entity, whether
object, relationship or some other type, we can discover some
of its properties by subjecting it to operational procedures.

103

e-type (system) RELATIONSHIP
e-categories ACTUAL LEGAL
(data-controller)
IN REM IN PERSONEM
Basic entities USE, U OWNERSHIP, Z ALLOWANCE, 4
(analyst)
~
Domains Name Name Name
User . Owner Source
Recipient Entity
Asset Asset Asset identifiers
identifiers Period
Start Start Start Temporal
End End End identifiers
= Acquisition Original
properties cost entitlement
Disposal value Final payment

Fig. 1 A hierarchy of entity structures

Some properties change with time but these are semantically
more complicated than those which are invariant. For a given
entity the properties that are relevant will vary from application
to application. At the most general level of analysis however,
we are able to distinguish what we call entity types. Examples are
object and relationship. Each of these e-types defines a particular
pattern of identifying information associated with an invariant
set of properties. The LEGOL formalism compels the data
base controller to define every entity using one of the built-
in patterns called entity types.

The data controller is permitted to define subclasses of any
entity type which are relevant to the application with which he
is dealing. These subclasses are called entity categories. Within
the framework of entity categories, the application analyst
may define his own basic entities. An example is shown in
Fig. 1. The hierarchy of categories fills out the bare framework
of an entity type until basic entities may be defined at the
terminal nodes.

In relational data base terms (Codd, 1970), each basic entity
may be regarded as a relation. The property domain structure
for a relation representing a basic entity results from the
analyst’s choice of e-category, whilst the identifier structure is
ultimately supplied by the e-type chosen by the data controller.
The definitions of e-categories and basic entities apply only
within some prescribed context, such as an area of law, whereas
the e-types impose their patterns upon all entities. Thus the
objects to which the data processing system may refer are
constrained by the more general structure evolved by the data
controller. This structure can then be employed by the formal
system to interpret expressions involving the entities referred
to by the analyst.

The entity structure is one part of the semantic information
which is included in the first, prototype, LEGOL system. This
early system employs a set of entity types which is now known
to be inadequate. Nonetheless, the method of building this
structure appears to be valid. A major objective in the
continuing research is to discover an adequate set of entity

types.

3. First order rules
Using a set of definitions provided by the data controller, the
application analyst can translate legal rules into the LEGOL
formalism, or express himself directly in the LEGOL formalism.
The law consists of a series of Statements saying what should
happen in certain well-defined conditions. As an artificial
example consider the following:
‘Capital Depreciation Act 1984 c. 11, Sub-Section 23.—(1):
Where a company owns an entitling interest as mentioned in
Paragraph (3) below in a building which is occupied for an
industrial use as specified in Paragraph (4) below by that

104

company or by another company, there shall be made to the
company owning the entitling interest, for the chargeable
period mentioned in Paragraph (5) below, an allowance (to
be known as ‘a capital allowance’)’.
The rule itself has been italicised but it starts with a reference
which may be treated as a label for a particular context and it
includes references to other rules indicating the sequence in
which they should be applied.
The LEGOL expressions used to translate the example above
are:

Z'(x,b) & U'(y,b) > A(g, x, b, 1)
A < = ‘Capital Allowance’ .

Where Z' is a relation containing details of property interests
which attract the allowance, A4, for the periods of recognised
industrial use, U’.

Each of these expressions contains an arrow sign. The arrow
means ‘if . . . then do . . .’. In the first expression, the condition
is that the relevant ownership should coincide with a recognised
use for the building. The expression looks like a conjunction of
two statements in predicate algebra but it is more complicated
as it must take account of the times when the ownership and the
use exist. The action to be taken when these conditions are
satisfied is to create the allowance, 4, to which the prescriptive
arrow points. What happens is that we give values to instances
of the abstract entity type called an allowance. The allowance
involves all the domains listed in Fig. 1. In the second expression
the allowance, 4, is referred to in a different sense ; here we are
only concerned with the name of the allowance which we give
the literal value ‘capital allowance’. This is an example of one
of the many ways in which symbols in LEGOL expressions
may be used with more than one meaning, the correct one being
resolved by the context.

As a further example, consider the rule which establishes when
a building is used industrially. The rule is subsection (4) which
might read as follows: '

‘For the purpose of this law ‘a building occupied for indus-

‘trial use’ means a building occupied for the purposes of one

or more of the trades listed in Schedule D.’

Schedule D reads:
‘Subject to amendment by the Secretary of State under the
provisions of section 30 of this Act the trades regarded as
“industrial” for the purposes of this Act are

Baking
Milling

The LEGOL expression for subsection (4) will be:
Ux,b)e{I} - U'(x,b) .

‘I’ denotes a set of industrial uses which are listed in Schedule
D. In this expression it appears that U is not a predicate
formula but represents something which is the member of the
set {}. In fact, the context indicates that we are talking about
the name of the type of use and the formula says that if this
name is a member of the set of names of approved uses, {I},
then we are to call the use U’, an industrial use.

These methods of exploiting context are not unlike those
evolved in natural language. By using context to resolve
ambiguity, the formalism can be made more compact and, by
imitating natural language, it should be easier to translate from
natural language into formalism.

4. Local or temporary entities

Every entity category or basic entity must be defined within
some specified context. A context may be a branch of law, it
may be a certain Act or Statutory Instrument but it may be
only a Section of an Act. Within the context for which it is
defined, an entity must be employed with its limited meaning

The Computer Journal

202 udy 61 U0 188n6 AQ 891 07H/20 1/2/0Z/31014e/|uf00/WL0d"dNo"oISPEDE//:SARY W) PAPEO|UMOQ

and one of the objects behind the system is to ensure that this
is so.

Normally first order rules are written in terms of basic
entities but this would be a severe limitation. One may wish to
refer to some more general entity. This can be done by using
an entity category to form a temporary entity for use as a
working variable. In the example we are considering, subsection
(5) defines a period for which the allowance is to be made and
specifies with what company, what building and what set of
accounts this period shall be associated. The resulting
prescription:

{expression) — p(x, b, t)

combines a number of entities in a complicated structure
called {expression) from which some part is abstracted and
called a period, p, where the entity category period is employed
in the context of this section. Another subsection explains how
the amount of the allowance is to be computed according to the
duration of this period, p. The variable p may be used to trans-
fer a meaningful structure from one rule to another but,
because it is a temporary entity, it has no meaning outside the
immediate context specified by the analyst. The label ‘p’ is
supplied by the analyst.

A similar kind of local entity is illustrated by the formula:

Ux,b)e {I} - U'(x, b)
in which U’ is defined in terms of U. The semantic structure of
this local variable is taken from a basic entity. Its symbolic
label is obtained merely by attaching a superscript to the label
for the basic entity. Once again, this kind of entity has no
meaning outside a narrow context.

Superficially, this may look just like the handling of temporary
variables in a program, but it is much more elaborate.
Remember that the symbols in the formalism do not refer to
data inside a computer but refer to actual things in the world.
Temporary entities are components of the world of physical
objects or legal fictions which we do not wish to distinguish by
permanent labels, yet they exhibit semantic structures assigned
to permanent entities in our universe of discourse.

5. Limitations upon the first prototype

The first prototype version of the LEGOL formalism and its
associated system is intended to answer certain questions of
feasibility. The major features incorporated are those described
above: the entity structuring and the writing of first order rules.
These features of the formalism correspond, on the systems
side, to the structuring of a data base and to the data manipu-
lation implied by the legal prescriptions. Other features of the
formalism and system have been left for the second prototype.
The most important of these concern the semantic structures
for domains and the treatment of second order rules, both of
which were only mentioned above.

Whilst the first prototype system handles the semantics of
identifiers, it does not include any means of specifying the
semantics of properties. Once one has located the entity, object
or relation in the real world, one assigns words or numbers to
describe the entity. The formalism and the system should
control the meanings of these property domains. This part of
the semantic structuring will eventually handle such things as
scales, units, operational definitions used in different contexts,
ranges, accuracy and so on. This semantic information plays a
less direct role in the problem of interpreting LEGOL
expressions, hence its omission from the first prototype system.

Second order rules, which determine the sequence in which
first order rules are applied, will be an important problem when
handling a large number of first order rules. It was quite
unrealistic to construct a first prototype system to handle
anything but fairly small numbers of first order rules because
of the complexity of the interpreter. Hence the omission of
second order rules.

Volume 20 Number 2

Ultimately, it will be important to make the formalism and the
system easy to use. These objectives have however been given
low priority in the design of the first prototype. The formalism
will strike the reader as esoteric. It was felt that by concentrating
initially upon the logical structure required by the formalism
and leaving its appearance until later, priorities would be in
the right order. Similarly, the system has been designed to be
easy to evolve and modify rather than easy to operate. It has
been implemented using a powerful macroprocessor system
(Mandil, 1974) and a relational data base system (Todd, 1976).
The interface with the user is not in a unified LEGOL formalism
because it also exploits features of both the underlying systems.
By accepting these limitations, the available resources have been
used to demonstrate the feasibility of constructing, for the
first crude version of the LEGOL formalism, an interpreter
which is capable of being readily extended to handle the
anticipated refinements in the formalism.

6. The relational model for data
Although the LEGOL formalism refers to things in the real
world, it also implies how the data for identifying and des-U
cribing these things should be organised and manipulated. It i$
the task of the LEGOL system to give effect to these implig
cations. The strategy for achieving this is now described. 8
The relational model of data is the natural foundation for &
part of the system dealing with entities. When one refers to aE
entity in natural language to tell someone about it or ask the@
to perform some action in relation to it, one refers to the wholg
entity not merely to its name; the formalism was therefor%
conceived on the assumption that a symbolic label for an entity,
would designate the entity as a whole. The implication of thi§
approach for data processing is that within the LEGO_@-
system, an entity label should stand for all the data relevant t@
that entity, encompassing all the relevant domains. Similarly;,
in the context of legislation, one lays down rules which must beg
applied to all buildings, say, or all companies, not to isolated
instances of them. For the system, this implies that the rclatioé.
label should refer, not to an individual entity but to all ther
entities of a given type, to all buildings or to all companiess
It was therefore envisaged that in the data processing systemg
the surrogate for an entity should be a relational structur§
encompassing all the relevant domains, containing a tuples
corresponding to each individual entity. The relational model
for the data is never abandoned even when we wish to refer t¢
particular properties. As in ordinary speech, when we refer to §
particular property, such as a cost, the LEGOL formalism
carries with it the implication that it is a cost pertaining to some
entity and that entity has various other relevant properties}
This is accomplished in the system by retaining all data within
the relational structure and simply pointing to those aspects;
which are of immediate relevance in the expression currently-
being interpreted. =
From a data processing point of view, this approach ma%
seem very wasteful, but the object of the LEGOL formalisnt
and system is not to be able to process data efficiently. It is to
specify real-world activities which imply that certain data
processing should be carried out. The LEGOL definition of the
problem is only the starting point for the design of a data
processing system. The LEGOL system will be adequate if it is
capable of simulating the behaviour of the required data
processing system.

=,

7. The semantic data base

An information analyst who is defining a data processing
system, is more concerned with information about the data than
with data themselves. The LEGOL system might be used to
assist him by storing this information. Some would be held in
the hierarchical structure extending from the few entity types,
becoming increasingly specific through the entity categories,

105

name-part
s - N
Name USE USER USED START| END
Symbolic label U X b W Ut
Domain role
Pointers
Range
Accuracy
et L I
| | | |
[I | !
MILLING | JONES| FACTORY| 2.3.56 | 10.5.59
data-part MILLING | SMITH| FACTORY | 11.5.59 | 4.8.60
BAKING | SMITH| FACTORY | 1.12.60| —

Fig. 2 The two-part relation, U(x, b) in the semantic data base

terminating with the basic entities which may be associated
directly with relational structures containing data. Then, at the
level of basic entities, more information will be organised as
another relation. This is shown in Fig. 2.

Each domain of the d-part of this two-partrelation is matched
by a tuple of the n-part containing names, labels and other
semantic information. One of the functions of the more general
part of the semantic structure is to constrain the entries which
the analyst may insert into the n-part associated with the basic
entity. This can be illustrated in terms of the symbolic labels.
The system restricts the user to one suitable entity type called
a relationship which is identified by a name for the character of
the relationship plus a list of names of the entities related plus
the start and end times for the duration of the relationship. This
may be indicated by the ‘template’:

e-type (*, nentities, L*, *1) Relationship

where the asterisk corresponds to the name of the relationship
and the asterisks accompanied by the dagger symbols stands
for the two time identifiers. The data controller, in the context
of this law, divides relationships into two categories actual and
legal and indicates that legal relationships have two properties
associated with them being sums of money associated with the
start and the end of the relationships, whereas actual relation-
ships have no properties relevant to the context of application.
These would be represented in the entity category hierarchy by
‘templates’ such as:

e-categories (*, nentities, |*, *}, £1*, £*#1) Legal Relationship
(*, nentities, L*, *1) Actual Relationship

Finally, the application analyst will define a basic entity called

‘USE’ as an actual relationship involving two object identifiers.

Thus he fixes the actual size of the relation by creating the

‘template’:

basic entity with (*, 1, 2, |*, *f) USE

generic labels
which is a list of what are called ‘generic labels’ which are,
roughly, role indicators for the domains. The analyst also

supplies a symbolic label for the relationship, in this case, U.
This creates the symbolic labels in the n-part thus:

106

basic entity with (U, 1, 2, LU, Ut) Use, U
specific labels

which takes the relation label as the symbol of the name
domain without alteration and, suitably modified, to create
symbolic labels for the time identifiers. Notice that the labels
for the entity identifiers are not entered when the basic relation-
ship is defined. This happens later when it is used in some
expression. It might be used as U(x, b) and generates specific
labels:
U, x,b, LU, UT) U(x,b)

but we could have written U(COMPANY, BUILDING).

Of course, the sequence of the identifiers is significant, the
first being the user and the second the thing used. Semantic
information of this kind will be available in the n-part of the
relation of the second prototype where its significance will be
supplied by tables of domain semantics analogous to those for
entities in the first prototype. This deficiency in the first
prototype is supplied by giving clear language names to the
domains such as ‘User’, ‘Used’, the implications of which are
clear enough to a person.

As well as the identifier labels, another item of semantic
information which has only local significance is the pointer.
Although in LEGOL when we use a relation label we are
referring, by implication, to the whole relation we can select
specific domains for attention. Thus in the expression

A <= ‘CAPITAL ALLOWANCF’

the arrow indicates that we are referring to a domain and, in
this context, the ‘4’ would be interpreted as the label for the
name domain of the allowance rather than the entity, 4, as a
whole. The system would represent this by inserting a pointer
‘1’ in the n-part tuple of the name domain.

8. The interpretation of LEGOL expressions
The above section has shown that much of the semantic infor-
mation held by the system is embodied in a carefully structured
system of names for the data. This section explains how the
names given to the data items are used to control the inter-
pretation of LEGOL expressions. The problem is to translate a
LEGOL expression into a series of operations upon relational
data structures. As these operations proceed, it becomes more
difficult to associate meaningful names with the resulting
relations and their domains. Therefore, there is always the
important final step of endowing the resulting expression with
clear meaning. Until this is done, the result cannot be stored
within the highly structured semantic data base.

As an example of how the labels and pointers are used to
control an operation, consider the expression:

Z'(x,b) & U'(y,b) > A(g, x, b, 1) .

The operation ‘&’ is called a ‘time intersect’. It generates tuples
for all those periods during which x owned the interest in the
building, b, which carries an entitlement to the allowance and
also during which b was used for some approved industrial
purpose. The relations Z’ and U’ are subsets of all ownerships,
Z, and uses, U; they are set up by the system as temporary
relations during the interpretation of the relevant Section 25.
Suppose we have the following data for dealing with a case:

Entitling interests Z'

z x b \Zz Zt £lZ £Z%)
FREEHOLD JONES F 1 12 20 25

- FREEHOLD SMITH F 12 18 25 26
FREEHOLD JONES F 18 24 26 30
FREEHOLD JONES N 19 30 15 30
Industrial usage U’
w y b iU UD)
MILLING JONES F 2 5

The Computer Journal

202 udy 61 U0 188n6 AQ 89107H/201/2/0Z/31014e/|uf00/W0d"dNo"oILEPEDE//:SARY W) PAPEO|UMOQ

Industrial usage U’

w y b WU Ut
MILLING SMITH F 7 8
BAKING SMITH F 8 24

Then the expression
Z'(x,b) & U'(y, b)

will yield the data about all those periods during which some
entitling interest overlaps a period of industrial use of the same
building. It will not matter if the owner, x is the same as or
different from the user, y. Thus we obtain, in this case, the
result:

Z U X b
FREEHOLD MILLING JONES F
FREEHOLD MILLING JONES F
FREEHOLD BAKING JONES F
FREEHOLD BAKING SMITH F
FREEHOLD BAKING JONES F

y i* M £LZEZY)
JONES 2 5 20 25
SMITH 7 8 20 25
SMITH 8 12 20 25
SMITH 12 18 25 26
SMITH 18 24 26 30

Note that we have a problem of naming the time domains which
may be derived from |Z, Zt, LU or Ut; we therefore reintro-
duce the asterisk and symbolise the start time as | * and the end
time as *}. From these data we are only interested in knowing
the circumstances which give rise to some entitlement of a
capital allowance. This is symbolised by:

~ A(g, x, b, 1)

which, by referring to x and b, says that we are looking for
occasions when x and b are identifiers. All the other data are
thrown away and the prescription results in:

Allowance, A

(4, g, x, b, 1, LA, At, £14, £4T)
JONES F
SMITH F

which says that JONES and SMITH are each entitled to an
allowance with respect to the building 4. The times during
which these entitlements are valid and the sums of money
involved are blank, or unknown, as yet, nor do we know the
precise tax account, g, and tax period ¢. The second rule:

A < = ‘Capital Allowance’

at first attaches a pointer to the name domain of 4

‘ (4, g, x, b,t, LA, A, £14, £147)
(1)
JONES F
SMITH F
So that it can then transfer the literal to this selected domain:
(4, g X, b, t, LA, AT, £14, £At)

CAPITAL ALLOWANCE JONES F
CAPITAL ALLOWANCE SMITH F

The remaining blank domains would be filled in by the
application of other legal rules.

These examples indicate how the symbolic labels given to
domains, among other things, control the transfer of infor-
mation from an evaluated expression into the entity which
appears at the head of a prescriptive arrow. Earlier, two kinds
of temporary entities were introduced. They were exemplified
by a period defined using an entity category and the sub
category of industrial uses defined in terms of the basic entity
USE. The first kind of temporary entity enables one to select
data representing something more abstract. The other tem-
porary entity is used to define another at the same semantic
level as the entity in the original expression. Thus, in the case
of the rule:

{expression) — p(x, b, t)

Volume 20 Number 2

although the expression on the left might contain indefinitely
labelled domains, the semantics of p will indicate to the
system that it should use generic labels where they result in no
ambiguity. The other kind of temporary entity, which is named
by adding a superscript to the name of a basic entity, (e.g. U’
obtained from U) enables one to select only those facets of a
complex expression which carry the same specific domain
labels as those for the domains in the original, basic entity.
These domains may be both identifiers and properties.

From the above account of some of the principles underlying
the system, the problems of constructing a suitable interpreter
may be apbreciated. Implementation would have been difficult
had it not been for the opportunity to use some new, powerful
software systems.

9. The development of the system
The system has been implemented, first on a 360/44 and now a
370/145 at the IBM(UK) Scientific Centre, Peterlee. It has been
possible to use two experimental systems developed at the
Scientific Centre. One of these, PRTV, is a relational data base
system with an extensible data manipulation language based
on a relational algebra (Todd, 1976). The other system, MP/35
is a powerful macroprocessor which is used to build a flexiblg
top-end to the relational data base system. (Mandil, 1973 an@
1974). =
The macroprocessor is first used to translate the LEGOL
formalism into an intermediate language which takes account
of the context of each expression. The intermediate languag§
employs a repertoire of operators which have, as their operandsy
relations in two parts, data in one, semantics in the other. Thg
macroprocessor is used to interpret these operators, eﬁ"ectivelg_
transforming the relational data base into a semantic data basé;
At the present only the d-part relation is being handled in thé
relational data base. The n-part relation, containing semanti€
information, is handled in the global variable storage of thi
macroprocessor. It is intended to overcome this restriction in g
more developed version of the prototype. =
More detailed accounts of the formalism and the system arg
given in two other reports available from IBM(UK)SG;
Neville Road, Peterlee, Co. Durham and the London School of
Economics and Political Science. It is hoped that the secon&
prototype will be an approximation to a system with practica}
usefulness for drafting and testing of bodies of complex
regulations. =

[

u

6 Aq g9t

10. Theoretical problems 2
By way of a summary, it may be useful to indicate again somg
of the theoretical problems encountered in this research. These
problems are severe ones which account for the long termg
nature of the project. It is not expected to produce a general
purpose system of practical value in less than several year%
nevertheless, systems of limited scope may be produced morg
quickly. This is a realistic rather than a pessimistic projection of
the progress of the work ; the problems encountered, although
difficult, do not appear to be insuperable. More immediate
research results of a theoretical character are available. They
relate to problems in information analysis, the systems work
which leads up to the definition of the data processing system.
If it is only possible to characterise this branch of computer
science with more clarity and exactitude, then the LEGOL
project will be worth pursuing.

The first task is to establish a methodology of research in
information analysis. From the point of view of scientific
method, the project may be viewed as an attempt to formulate a
series of hypotheses about the description of a formal infor-
mation system and to subject these hypotheses to destructive
testing.

A key part of each of these hypotheses is the model within

107

which semantic information must be structured by the infor-
mation analyst. There are many subproblems here, some of
them very complicated. There are problems of understanding
identifiers (for example, compare Stamper, 1977 with Grindley,
1974). Other problems include those of finding an adequate set
of entity types, discovering more about the use of names and
building a suitable generic specific structure of entity categories.
The semantics of individual domains presents as many prob-
lems as semantics of entities. These problems are equivalent to
those data dictionaries and conceptual schema for data bases
(Mason, 1975).

Finding a way of expressing legal prescriptions amounts to a
search for an economical repertoire of very high level operators.
These operators correspond to fairly simple seeming forms of
expression in natural language but in data processing terms
they are very complicated. The research suggests that such
operators may usefully be defined if they can exploit an exten-
sive semantic structure. The semantic structuring limits severely
the number of things one might meaningfully do with data.
This should enable us to overcome one of the worst deficiencies
of programming languages. These permit one to perform a host
of operations on logical variables, numbers and character
strings, that make mathematical sense but are not necessarily
sensible in terms of entities with which they are associated in
the real world.

There are problems of how to represent semantic structures
within a computer system so that they may be augmented,
modified and used by the information analyst. More general

References

subproblems are those of checking the logical consistency of a
problem definition and of simulating the functioning of a
system constructed according to that logical definition (compare
Grindley, 1974; Teichrow and Sibley, 1972; Langefors, 1970).
A problem for the designer of data base software is to construct
systems which will represent and handle semantic information.
An important theoretical question here is how to distinguish
between semantic and purely syntactic features in the system.

Finally, there is the problem of how the designer of a computer
system should exploit the semantic information assembled by
the information analyst. He must obviously ensure that data
are manipulated within the semantic constraints or the results
will be meaningless but in the data processing system the
semantic constraints are not made explicit, they are implicit in
the actual programming structures which are chosen on grounds
of efficiency. This brings us to the theoretical root of a major
fault in many data processing systems: their inflexibility. The
system when first created probably processes data in a meaning-
ful way but, because the underlying semantics are not explicit,
changes or extensions are likely to introduce inconsistencies or
result in outputs that are misleading.

Acknowledgements

For their willingness to discuss critically aspects of this
research, I should like to thank my colleagues at the LSE—
Susan Jones and Peter Mason, and those at the IBM Scientific
Centre, Peterlee, in particular Salah Mandil (now at the WHO,
Geneva), Terry Rogers and Stephen Todd.

ANSI-SPARC (1975). Interim Report of DBMS Study Group, February 1975, American National Standards Institute, Washington DC.
Copp, E. F. (1970). A relational model of data for large, shared data banks, CACM, Vol. 13, pp. 377-387.
GRINDLEY, C. B. (1974). Systematics, McGraw Hill, London, New York.

LanD, F. F. (1974).
Informatics, Mainz 1974, 1BI-ICC, Rome, pp. 116-127.

Criteria for the Evaluation and Design of Effective Systems, Proceedings, International Symposium on Economics of

LANGEFORS, B. (1970). Papers in Systemering 70, (Bubenko et al.—eds.), Studentliteratur, Lund.
MANDLL, S. (1973). A Macro-Processor as a Generalised Top-End to Computing Applications, SOFTWARE 73 University of Loughborough,

Leicestershire.
ManDIL, S. (1974).

The MP/3 Macro-Processor, Proceedings of European Computing Congress, Brunel University, 1974.

Mason, P. J. (1975). The Legol Semantic Model, Discussion paper for BCS Data Dictionaries Working Group.
STAMPER, R. K. (1973). Information, Batsford, London: John Wiley, New York.
STAMPER, R. K. (1973). The Legol Project and Language, Proceedings Datafair Conference, Nottingham 1973, British Computer Society,

pp. 269-276.

A more detailed account of the LEGOL Project is available from IBM (UK) Scientific Centre, Neville Road, Peterlee, Co. Durham:

STAMPER, R. K. (1976).

The LEGOL Project: A Survey UKSC 0081.

STAMPER, R. K. (1977) Identifiers of Physical Objects, Proc. IFIP TC2 Workshop on Data bases, Nice, Jan. 1977.
TeicHrROW and SIBLEY, (1972). PSL, a Problem Statement Language for Information Systems Deisgn, ISDOS Working Paper, University

of Michigan, Ann Arbor.

Topp, S. J. P. (1976). The Peterlee Relational Test Vehicle—a system overview, IBM Systems Journal, Vol. 15, No. 4, pp. 285-308.

108

The Computer Journal

202 udy 61 U0 188n6 AQ 89107H/201/2/0Z/31014e/|uf00/W0d"dNo"oILEPEDE//:SARY WO.) PAPEOUMOQ

