A transformation-directed compiling system

R. H. Pierce* and J. Rowell

International Computers Limited, Computer Development Division, Wenlock Way, West Gorton,

Manchester M12 5DR

A translator writing system built into a high level language is described. The system enables a user
to define a context free syntax for a programming language, with automatic production of tables to
drive an LL(1) parser. Semantic processing is provided by means of a powerful transformation
grammar from the language syntax to a standard tree representation. Practical experience with the
system while implementing a complex compiler is also described.

(Received October 1975)

1. Introduction .

It is some ten years since the introduction of the Compiler-
Compiler (Brooker, Morris and Rohl, 1962), but during this
time relatively few languages have incorporated the ideas
introduced there for writing compilers. The Compiler-Compiler
facilities incorporated into Atlas Autocode (Morris and Rohl,
1967) were probably the first attempt to include such compiler
writing facilities into a higher level and more widely used
language. While the Compiler-Compiler enjoyed considerable
success, the corresponding facilities in Atlas Autocode were
used only for the production of a few experimental compilers
for simple languages.

The formal syntactic and semantic facilities offered in these
systems have largely been abandoned in favour of faster analy-
ser algorithms where the compiler designer can compromise
between the speed of the analyser and the complexity of the
semantic routines, usually at the expense of code optimality.

This was certainly the object of the Systems Program
Generator (Morris and Wilson, 1970). However the lack of
semantic formalism in SPG does make the design more prone
to obscure error, as the authors have found during the
implementation of a cross compiler from ICL 1900 series to
ICL 2900 series machines. The language, STAPLE, used
internally in ICL for the production of test programs and
associated system software, is similar in the facilities it offers to
CORAL and RTL/2, and was implemented using a 1900 SPG
compiler. During its development many unplanned facilities
were added which resulted in the compiler becoming slower
and less reliable because the format and contents of the analysis
record produced by SPG was under the total control of the
compiler writer and was consequently designed around the
initial language. At each enhancement stage it became more
and more difficult to add extra facilities.

The opportunity arose to rewrite the 1900 based compiler for
the 2900 machine and at the same time, implement enhance-
ments which approximately doubled the language complexity.
The authors decided, in the light of the SPG experience and the
current state of the art in compiler writing, to go back to the
original design aims of the compiler-compiler and reconsider
the problems. This resulted in extensions to the compiler-
compiler facilities and the invention of a formal semantic
transformation grammar.

This paper describes the translator writing facilities that were
used in the construction of the STAPLE compiler. These
facilities were originally provided during development by a
preprocessing program, but they are now part of the STAPLE
language. The compiler can thus compile itself. The description
of the facilities is given from the point of view of a user who
wishes to use them for compiler construction. Considerations
of space prevent the inclusion of any details of the actual design

of the STAPLE compiler or the way in which the compiler-
compiler facilities were used. It is hoped that these topics and a
description of how the facilities are implemented, will be the
subject of a future paper.

The compiler-compiler facilities fall into two parts.

fFojumoq

1. A notation for defining the grammar of a programmin
language as a set of context free productions. This differg
only in matters of style from other compiler-compilers

3
systems. =

2. A transformational grammar which maps the context free
grammar onto a standard or canonical tree representation ok
the program. This transformation grammar is not context
free, i.e. the tree produced can be made to depend on semans
tic information collected during the parsing of the program_,—g,-
Optimisation and object code production are then performed®
on the standard tree, which, using the transformation grams,
mar, can be generated in a form which makes these task§
relatively straightforward. 8

e/|ulwo:

2. Formal approaches to semantic analysis
The importance of tree structures in compiler construction has
been recognised for many years, particularly with regard to th&
translation and optimisation of arithmetic expressions. It i
well established that the compilation process can be regarded;
at least theoretically, as involving the creation, transformatior?
and flattening of trees (McClure, 1972) representing the seman§
tic structure of programs. Increasing attention is now being
given to formal methods for manipulating semantic trees, by
means of transduction grammars (Lewis and Stearns, 1968}
which map phrase structure grammars on to abstract trees, an@
transformational grammars (De Remer, 1974). The latter terng
is normally applied to devices which map abstract or semantig;
trees into other forms thereof. >
The STAPLE system falls into the former category; in generi
outline, the parser produces a parse tree, which is then traversec%
transformations being applied during traversal to produce the
abstract tree representation of the program. The idea of pro-
ducing a parse tree then traversing it is familiar from the early
translator writing systems such as the Compiler-Compiler and
the PSYCHO system of Irons (1963). However, in the present
system the parse tree is intended as an aid to semantic analysis
and is not a necessary consequence of the parsing method. If
the situation does not warrant the production of a parse tree,
transformation may optionally be performed during parsing.
The justification for using the transformation grammar in the
construction of the STAPLE compiler was twofold.

1. The compiler was two-pass and some suitable way of
representing the interface between the two passes was
urgently required. As Currie has remarked the design of a

*Now with Software Sciences Limited, London and Manchester House, Park Street, Macclesfield, Cheshire, SK11 6SR.

Volume 20 Number 2

109



two-pass compiler can be a major intellectual exercise
(Currie, 1971) and any means of reducing the effort is useful.

2. The code generation and optimisation phases could be
cleanly separated from the parsing and validation stages,
leading to a better understanding of each. It is worth noting
here that the abstract tree representation of a program can
also be made highly independent of both the original lan-
guage and the target machine. It is therefore an excellent
candidate for a common compiler target language (Capon
et al, 1972). Section 6 describes the authors’ experience with
the system.

3. The STAPLE Compiler-Compiler system

The overall design model of a compiler produced by the
STAPLE system is shown in Fig. 1, although many individual
variations are possible. In particular, the use of two passes is
by no means essential.

Syntax analysis
The syntax definition facilities are quite conventional. (A BNF
definition of the phrase structure facilities and the transfor-
mation grammar is given in Appendix 1). In principle, any
parsing algorithm that is capable of producing a parse tree
could be used. In fact, the parser chosen is of the LL(1) type,
the input grammar being converted into this form by the
method used in the SID program (Foster, 1968), except that
left recursion is not allowed in the input. The alterations made
to the grammar are invisible to the user. Note also that if the
grammar cannot be made into LL(1) form, a backtracking
parser can be generated. Fig. 3 gives an example of the written
form of the syntax; the notation is in fact based on the Atlas
Autocode system.

Lexical analysis is either performed by user defined procedures,

SOURC]
PROGRAM
INPUT
ROUTINES
USER-WRITTEN
LEXICAL < LEXICAL ANALYSIS
SYMBOL AND ANALYSER XICAL ANAL
ons |77 SYNTAX
DEFINITIONS
o ANALYSER ¢
____________ NAME AND
ANALYSIS RECORD | PROPERTY ‘LIST
AN
TRANSFORMATION| | |  SEMANTIC / \
GRAMMAR >1  ANALYSER
Produced
by
Comp A
INTERMEDIATE User-written
CODE (ONFILE) code
_ | omiving CODE -
TABLES GENERATOR

= DATA FLOW
—<>— PROCEDURE
OBJECT PROGRAM CALLS

—==>»— COMPILER
GENERATED
TABLES & CODE

Fig. 1 Structure of compiler produced by STAPLE facilities

110

> Pointer to next

n-tuple/nil
1 WORD 1 WORD 2 WORDS 2 WORDS
SUCCESSOR
OPERATOR POINTER OPERAND OPERAND cecece
OPERATOR n-tuple
OPERAND OPERAND OPERAND
TYPE VALUE TYPE |
pointer.to

OPERAND set of attributes
FORMAT : a) PRESENT b) PROPOSED

Fig. 2 Intermediate code operator format

FORMAT CLASS EXAMPLE

SYMBOL “:=" =1
SYMBOL "+" = 2
SYrsoL "-" =3
SYMBOL “*" = 4
SYmBoL “/" =5
SYMBOL NAME = 6
SYMBOL WUMBER = 7
SYMBOL “(" = 8
SYMBOL ")" =9

SYMBOL "I4T;” = 10

SYMBOL "PEAL;" = 11

SYMBOL “DEC ;" = 19

FORMAT STATEPENT = ASSIGNMERT/ ....
PHRASE ASSIGNMENT = HAME, ":=", EXPP
PHRASE EXPR = MODEQUALETY, OPERAND, REST/NIL
PHRASE MODEQUALETY = MODEQUAL/HIL

PHRASE MODEQUAL = “INT; “/"REAL;"/"DEC;"
PHRASE OPERAND = HAME/NUMBER/”(",EXPR,")"
PHRASE OPERATOR = "+7/%-# /% /% u
EHDCLASS

Fig. 3 [Example of syntax definitions

or by a terminal symbol recognition procedure provided as
part of the standard run time package, or both. The tables for
the symbol recognition procedure are set up from the spellings
of literal symbols,

e.g. SYMBOL ‘:=" = 29

causes an entry for ‘:=’ to be inserted into the tables, and
given the token value 29. On the other hand,

SYMBOL NAME = 36

declares that ‘NAME’ will be recognised by a user defined
mechanism and that the lexical analyser will return 36 as the
token number. The form SYMBOL (36) in a production may
also be used to represent a terminal symbol.

Actions or ‘phrase proceudres’ may be included in the
grammar, so that it would be possible to use the system as a
conventional syntax directed compiler, where the actions were
used to generate code directly. This is not however the intention
of the system. A phrase procedure always has a Boolean result
and if the procedure returns false a syntax error is signalled.

Several other points arise from the definition in Appendix 1.

(a) A FORMAT is equivalent to an ordinary production except
that on recognition of a format an associated processing
procedure is entered. This follows the Atlas Autocode
system. Normally a format procedure will invoke the
transformation system to start semantic processing. At
least one FORMAT must be present to act as the sentence
symbol of the grammar.

(b) The (CR) qualifier on a phrase indicates that no semantic
significance is associated with it and that it may be ignored
during transformation.

(¢) The (TF) qualifier indicates that transformation should take
place immediately recognition of the phrase is complete. If

The Computer Journal

202 udy 61 U0 188n6 AQ Z8Y0¥H/60 1/2/0Z/31014e/|uf0d/W0d"dNo"oIePEDE//:SARY W) PAPEOUMOQ



all phrases are marked (TF) no parse tree is built, all
transformations having taken place during parsing.

Semantic analysis

The semantic analyser consists of two parts—the transfor-
mations themselves, which actually produce intermediate code,
and the set of supporting procedures. These procedures perform
functions that cannot (yet) be expressed formally, such as
adding entries to the property list, and checking the semantic
validity of identifiers. The transformation system is described
in Section 5 and the format of the intermediate code tree is
given in Section 4.

Code generation

Having produced a tree representation of a program or
statement, the rest of the compilation process must still be
coded by conventional means. In the STAPLE compiler itself,
the tree is traversed once to perform register allocation and
some optimisation, then traversed again to produce an abstract
target machine code. This final traversal may be driven by a
table produced from the definition of the operator nodes in the
transformation grammar. Clearly these final stages would
benefit from further formalisation, by means of ‘tree-to-tree’
or ‘tree-to-string’ transformational grammars. Another area
that might repay investigation is how to handle semantic
information in a more systematic fashion during transfor-
mation. The object here is to reduce the amount of ‘hand’
coding needed to deal with this information.

4. The intermediate code format

The structure of the intermediate code (ICODE) is that of a
tree, with certain features intended to aid the code generator in
processing it. Each node in the tree consists of an operator, a
successor pointer (possibly zi/) and zero or more operands.
Each operator has a fixed number of operands. An operand
consists of a type part and a value part, as shown in Fig. 2.

The type part is used to distinguish the various kinds of
operand (e.g. identifiers, constants of various modes, character
strings or pointers to subtrees). The use of the value part
depends on the operand type. For example it would hold a
pointer to the property list entry for an identifier, or the value
of a constant if this would fit into a single word. The ICODE
tree is constructed in an array called QLIST, the root of this
tree and the next free space being referred to by standard names,
QLISTSTART and QPTR. This enables informal access to be
made to the tree area if required.

The use of the successor pointer enables a general driving
procedure to work along a chain of nodes, calling an appro-
priate processing procedure to deal with each operator in turn.
In this way the individual operator handling procedures do not
have to be concerned with their successors. Further, when a
procedure is called to deal with an operator, the general driver
passes to it operands of the operator as parameters (hence the
fixed number of operands for a given operator). Any invocation
of further procedures which will arise if a subtree is present, is
always carried out indirectly by calling a ‘fetch operand’
procedure with the operand pointing to the subtree as its
parameter. This procedure may then call the general driver
again. Each operator handling procedure need thus only be
aware of its own parameters and a relatively small set of global
indicators and service procedures in order to plant efficient
code for each operator. This greatly improves the structure of
the code generator.

5. The transformation system

The basic function of the transformation system is to traverse
the parse tree produced by the syntax analyser and apply the
appropriate transformation at each node in this tree. The
result of this process is an ICODE tree. The shape of this

Volume 20 Number 2

ICODE tree may be quite different from that of the parse tree,
considerable reordering being made possible by the fact that
transformations may have parameters and may contain
conditional sequences. The presence of parameters allows
semantic information to be passed around during transfor-
mation, and this feature gives the system considerable power.
Without parameters, transformations would be very limited in
their usefulness.

A simple introduction to the principles of the transformation
system is given below. This does not attempt a rigorous defi-
nition of the system, the aim being to give the general flavour of
the scheme. Appendix 1 gives the syntax of the transformation
grammar.

The TRANSFORM statement
This is the fundamental facility of the system. Each alternative
in the syntax will normally have a TRANSFORM statement
associated with it. The transformations are written separately
from the syntax. This is because transformations tend to be
several lines long and the syntax would become difficult to read
if both were written together.

A transformation statement in general produces a portion og
ICODE tree. The result of a TRANSFORM is always atg
ICODE operand, which normally points to the subtre%
produced by that TRANSFORM. Whenever a productlorP
name appears on the righthand side of a TRANSFORIVg
statement the corresponding TRANSFORM for the productlon:
is invoked and the operand produced is used by the curreng
transform.

As an example consider the definitions:

PHRASE EXPR = TERM, ‘+’, EXPR /

TERM, ‘—', EXPR / TERM
FACTOR, ‘¥, TERMI
FACTOR, ‘" TERM/FACTOR

PHRASE FACTOR = NAME/NUMBER
TRANSFORM EXPR (TERM) INTO TERM

TRANSFORM EXPR (TERM, ‘+’, EXPR) INTO

PLUS (TERM, EXPR)

TRANSFORM EXPR (TERM,

MINUS (TERM, EXPR)
TRANSFORM TERM (FACTOR, ‘+’, TERM) INTO
MULTIPLY (FACTOR, TERM)

PHRASE TERM =

o~~~

—’, EXPR) INTO

120z 1udy 61 uo 1sanB-BSh 118D | /e ot e /RS0 W00 dno-ojwspeoey/:

TRANSFORM TERM (FACTOR, ‘/’, TERM) INTO (
DIVIDE (FACTOR, TERM)
TRANSFORM TERM (FACTOR) INTO FACTOR (
TRANSFORM FACTOR (NAME) INTO NAME (
TRANSFORM FACTOR (NUMBER) INTO NUMBER (
A +B*C-D/6
PLUS| nil :
i
A
MINUS ; nil I
MULTIPLY E nil ' : DIVIDE nil : !
B by
D 6

Fig. 4 Example of simple tree

"1



where PLUS, MINUS, MULTIPLY and DIVIDE are
operators each having two operands. If the input EXPR were

A+BxC—-D/6
then Fig. 4 shows the tree that would result from the
application of the transformations.

Note that transformations (1), (6) and (7) illustrate the case
where the transform of a phrase does not produce any separate
ICODE but merely invokes another transformation directly.

A TRANSFORM statement may also produce a terminal
operand, i.e. one which forms a leaf of the ICODE tree. This
is simply written, e.g.
TRANSFORM (phrase) INTO
OPERANDNAME VALUE (expr)
or
TRANSFORM (phrase) INTO NIL

where NIL represents a null operand with a special meaning
(see below).

The FOLLOWED BY construction
This construction is used to express the fact that nodes in the
ICODE tree may be connected by their successor pointers, as
well as in a hierarchy. List structures can thus be created.
FOLLOWED BY (usually abbreviated to FB) may thus be
regarded as a concatenation operator.

An example of this might be as follows.

PHRASE STATEMENTLIST = STATEMENT, *;',
STATEMENTLIST/STATEMENT

PHRASE STATEMENT = ASSIGN/CALL/. . . -

PHRASE ASSIGN = NAME, *:=’, EXPR

PHRASE CALL = ‘CALL’, NAME, PARAMETERS

PHRASE PARAMETERS = ‘(’, PLIST, ‘)

PHRASE PLIST = EXPR, *,’, PLIST/EXPR

TRANSFORM STATEMENTLIST (STATEMENT, ‘7',

STATEMENTLIST)
INTO STATEMENT FB STATEMENTLIST )
TRANSFORM STATEMENTLIST (STATEMENT) INTO
STATEMENT (10)
TRANSFORM STATEMENT (ASSIGN) INTO ASSIGN (1)
TRANSFORM STATEMENT (CALL) INTO CALL (12)
TRANSFORM ASSIGN (NAME, ‘:=, EXPR) INTO
ASSIGNOP (NAME, EXPR) (13)

TRANSFORM CALL (‘CALL’, NAME, PARAMETERS) INTO

TRANSFORM PLIST (EXPR, *,’, PLIST) INTO
PARAMOP (EXPR) FB PLIST (16)
TRANSFORM PLIST (EXPR) INTO PARAMOP (EXPR)  (17)

The result of these transformations as applied to the statements

A:=B+ 6;CALLPB,Y +1);Y:=B
is given in Fig. 5. In transformation (9) STATEMENTLIST
will in general yield a list of statement nodes, this list being
concatenated on to the end of that produced by previous parts
of the TRANSFORM. In this case STATEMENT only
produces one node, but in general each item in a FOLLOWED
BY list can produce a chain.

As mentioned above, all TRANSFORMSs produce an ICODE
operand. This may be the null operand NIL and this is
regarded as being an empty list for the purpose of the
FOLLOWED BY operator. The use of this feature is described
below.

Adding parameters to transformations

As mentioned above, much of the usefulness of the system
springs from the ability to pass parameters between trans-
formations. In many ways the parameters are similar to
affixes in Koster’s CDL system (Koster, 1971a, b). However,
in the present system the parameters are used at transformation
time and do not affect the parse in any way. Transformations
may also have local variables, so that each transform may be
thought of as a procedure in a special notation. All trans-
formations of a given phrase name must have the same number
and type of parameters. A transformation with parameters is
written

TRANSFORM (phrase) WITH ({value parameters))
RETURNING ({reference parameters})
USING (<local variables))
WITH parameters are called by value in the ALGOL 60 sense
while RETURNING (or RT) parameters are called by refer-
ence. All parameters and variables take the form of ICODE
operands, although they may be used as ordinary integer
quantities when required.

Since they are operands, however, it is possible to generate a
piece of ICODE tree in one transformation and pass it to
another via the parameter mechanism. This provides a method
of generating a tree substantially different in structure from the

CALLOP (NAME, PARAMETERS) (14)  parse tree. ) )
TRANSFORM PARAMETERS (‘(‘, PLIST, ’)’) INTO A simple use of parameters for semantic information passing
PLIST (15)  is the following. Suppose (as is often the case) the mode of
ASSIGNOP : , CALLOP ASIGNOP : nit |, ],
A Vol
PLUS E it ], PARAM ' PARAM ' nil
I : ‘
Pod &
A= B+6; CALL P(B,Y+1); Y.=B PLUS  joil | o ]
Py
Y 1

Fig. 5 Example of chained nodes

112

The Computer Journal

202 udy 61 U0 188n6 AQ Z8Y0¥H/60 1/2/0Z/31014e/|uf0d/W0d"dNo"oIePEDE//:SARY W) PAPEOUMOQ



evaluation of an expression is that of the LHS of an assignment. .

Then transformation (13) above could be modified to read

TRANSFORM ASSIGN (LHS, ‘:=’, EXPR) USING (MODE)
INTO ASSIGNOP (LHS RT (MODE),
EXPR WITH (MODE)) (18)
The transform of ‘LHS’ returns the mode in MODE and this
is subsequently passed to EXPR, the transforms of which
would now appear as
TRANSFORM EXPR (TERM, ‘+’, EXPR) WITH (MODE)
INTO PLUS (TERM WITH (MODE),
EXPR WITH (MODE)) 19
etc.

Note that all transform statements are executed strictly from
left to right.

Procedures, assignments and conditionals

In the preceding section it was noted that the LHS of an
assignment could return its MODE to be passed on to sub-
sequent transforms. However the MODE must initially be
derived from somewhere (normally the property list entry for
an identifier). This is achieved by means of ‘operator pro-
cedures’ which are entirely analogous to actions in parsing.
They provide an escape to informally coded parts of the
compiler, and serve two purposes

(@) to interface to the compiler’s internal tables and perform
complex semantic checks

(b) to generate ICODE that cannot be expressed easily by
TRANSFORMs alone.

Operator procedures have the same parameter specifications as
transform statements and they can produce ICODE by the
same means. The statement

YIELD <result clause)

produces an operand and passes it back to the caller just as in a
TRANSFORM statement.

To keep the number of operator prooedures to a minimum
certain other faClllthS are introduced. An assignment statement,
e.g.

A BECOMES OPERATOR (OP1, OP2)
causes the assignment of an operand pointing to OPERATOR
to the parameter or variable A. BECOMES can be used in
either a TRANSFORM or an operator procedure; it always
has the value NIL so that it functions as an empty list in
FOLLOWED BY constructions.
Conditions of the form

IF {conditions) THEN (result clause) ELSE
(result clause) FI

and case statements
CASE (integer expression) IN . ., ..,... ESAC
provide a most useful means of controlling the action of a

transformation. The condition is usually a test on a parameter
in a TRANSFORM.

Specifications
Operator and operand specifications are required, so that the
compiler can perform compile time checks on the cohsistency
of TRANSFORM statements. The possibility of run time
checks is also present.

An OPSPEC statement declares

1. The operator name
2. The number and class of its operands

3. The type of operand that will point to it (up to now it has
been assumed that all operands pointing to trees have the
same implicit operand type, but the type must in fact be
declared)

Volume 20 Number 2

4. The name of a procedure that will be called to process it
during code generation (used to set up the driving table)

5. The value that will be placed in the operator field in the node.
The last two items are optional. An example of an operator
definition might be
OPDEF ASSIGNOP (NAMEOP, EXPRESSION)
YIELDS SEMANTIC TYPE VALUE 29 PROCESSED BY
APPROC

where NAMEOP, EXPRESSION and SEMANTICTYPE are
operand types.

AN OPDEF statement has two functions:

1. To declare a terminal operand type, e.g.
OPDEF NAMEOP (INT VALUE)
This introduces an operand type and declares its attributes.
At present the only attribute allowed is VALUE but an
extension of the system provides for a number of attributes
of various modes. This will enable more detailed semantic
information to be represented directly in the ICODE tree.

2. To declare an operand class to be a union of other operancE
types and classes.

] pPBpPEO|UM

Error handling
The ERROR statement is used to signal a transformation time
error. If an ON part is present a special error handling pro§
cedure is called with the parameters in the ON list, otherwisé€;
the transformations are abandoned and control returns to the-
procedure which first invoked the transformation system.

olWwapeoe

Miscellaneous
Certain details have been omitted from the outline of the systenp
given above. While these details are important to a user of thé;
system it would be tedious to describe them all in this paperB
Some points are worth mentioning however.

(a) An actual parameter in a WITH part may be a (resulé
clause) (see the syntax in Appendix 1), i.e. it looks like the_gL
RHS of a TRANSFORM. In this case the result clause is
executed and the value yielded is passed. Similarly USING%
variables may be initialised on first entry to the TRANSN
FORM. In the WITH case if the parameter is a phrase namQS‘
it is not transformed but the untransformed parse tree nodq;
is passed, thus allowing transformation to be deferred. To:
force transformation, an empty WITH list is appended tcf@
the phrase name <

(b) The transformation of a phrase procedure (action) name;;>
has the effect of extracting an operand from the parse tree>
the procedure having left it there originally. This is usefuﬁ
for extracting, e.g. values of constants from the parse treeo

(c) The error handling system is more elaborate than tha&
indicated above

(d) The CHAIN statement specifies which operators may be‘>
chained by their successor pointers to form a list. Operators
not in a CHAIN statement may only appear in tree structure

(e) The YIELDS statement in a TRANSFORM has the dual
function of assigning a value to its lefthand side and
yielding the same value as the result of the TRANSFORM.
This is useful on occasions.

coc |

6. Experience with the transformation grammar

The authors and their colleagues have used the compiler-
compiler facilities described above in the implementation of
the STAPLE compiler. The facilities were provided by a pre-
processing program which translated the syntax and trans-
formations into a set of initialised data areas and procedures.
These were then compiled and linked into the rest of the com-
piler. The great benefit of the system lay in the fact that the

13



designer of the first pass could specify its output formally; this
avoided the need to have programmers to translate his (usually
ill expressed) requirements into a conventional program. The
only coding required was for the syntax analyser, the phrase
procedures, the operator procedures and the name and
property list handler, a much less formidable task. The
definition of the syntax, transformations and operator pro-
cedures took three months for one of the authors (J. Rowell).
The implementation of the preprocessor required four man-
months but the implementor did not have to be an expert in the
language or the compiler. Skilled design effort is thus employed
in the most effective manner.

Some statistics for the total number of source lines in the first
pass will be of interest.

Symbol definitions 300
Syntax 181
Operator definitions 85
Operand definitions 11
Transforms 526
Operator procedures and format procedures 1,177

The figure of about 1,700 lines for the transformations and
operator procedures compares very favourably with an estimate
of about 10,000 lines for the semantic analysis and intermediate
code generation phase of the compiler written in a conventional
manner. The reduction in the size of the source text of the first
pass leads to a corresponding reduction in coding errors, while
the fact that the semantics are largely expressed in a formal
notation has several advantages:

1. Readability

2. Directness of expression, i.e. logical errors are less liable to be
introduced than in a conventional scheme where the designer’s
ideas must be converted to a program

3. Ease of modification and enhancement (many new language
features rejected as too complex were made possible by the
transformation system)

4. Extensive selfchecking facilities are provided by the trans-
formation grammar, so that the majority of errors are
detected at compile time.

In addition, a useful debugging tool was generated auto-
matically from the transformation grammar. This would
analyse the ICODE trees produced and print them in structured
form with operator and operand names attached.

The overall result was that the first pass was largely correct
within a few weeks of the start of testing. The vast majority of
faults were in the more complex operator procedures and other
informally coded parts, and these were quickly located and
corrected.

Although the preprocessor introduces certain inefficiencies,
the size of the first pass is not more than 409/ greater than if it
had been hand coded and when the transformations are
compiled the resulting code will be smaller than the hand
coded version.

The success of the formal methods used in the first pass leads
to the desire to formalise the optimisation and code generation
phases of the compiler. The effort expended on the second pass
was 75% of the compiler, that on the first pass 25%,, but each
pass was comparable in complexity. At present code generation
is carried out by ordinary STAPLE procedures, although the
structure of the intermediate code makes the code generator
well structured and reliable.

It is hoped that this paper may encourage other groups to
adopt similar formal approaches to compiler construction. The
theory is being developed, but the practical use of such methods
is scarce, particularly in industry, where many manufacturers
persist in building compilers by archaic methods. Only by
trying out new approaches in ‘real life’ situations can the
technology of language processors advance.

114

Acknowledgements

The authors wish to thank all their colleagues on the compiler
project for their unstinting efforts. Particular thanks are due to
our managers, for enabling the developments described in this
paper to proceed and to Mr. A. Reiblein for implementing the
preprocessors and helping generally with the transformation
system.

Appendix 1

Syntax of phrase definitions

{syntax defn) ::= {phrase defn)|{format defn)|
{symbol defn)

(format defn) ::= FORMAT {production)

{phrase defn) ::= PHRASE (options){production)

{symbol defn) ::= SYMBOL (literal symbol) = {number}|
SYMBOL <{name) = {number)

{production) ::= {(NAME) = (alternative list)

(alternative list) ::= (alternative){rest of alt list)

(rest of alt list) ::= /{alternative){rest of alt list)|<nil)

{alternative) ::= {element){rest of alt)
(rest of alt) ::= ,{element){rest of alt)|{(nil)
{element) ::= (phrase name)|(format name)|

{phrase procedure name)|NIL|
(literal symbol)|{symbol value)
{phrase name) ::= (name)
{format name) ::= (name)
{phrase procedure name) ::= (name)
(literal symbol) ::= ‘(character string)’
{symbol value) ::= SYMBOL ({number))
{options) ::= {option){option)|{option)|{nil>
{option) ::= (CR)/(TF)

Syntax of transformation grammar
(tg statement) ::= {opspec)|<opdef)|{chaind|{transform}|
(yields)|<yield»|{becomes)|
{operator procedure)
:= OPSPEC <{name)<operand option) YIELDS
{name ){processy{opval)
{operand option) ::= ({operand class list))|<nil)
{operand class list) ::= {operand class){restofolist)

{opspec) :

(restofolist) ::= ,{operand class){restofolist)|{nil)

{operand class) ::= (name)|UNION({operand class list))

{process) ::= PROCESSED BY {(name)|<{nil)»

{value) ::= VALUE <{expr)|<{nil)

{operator procedure) ::= OPPROC {(name){parameter sets)
(typeety)<{nl){staple program)
ENDOP

(typeety) ::= YIELDS {name)|<{nil)

{opdef) ::= OPDEF {name){attributes > OPDEF (name)

UNION ({operand class list))
attributes) ::= ((attribute list))|{nil)

{attribute list) ::= (attribute)(rest of attribute list)
(rest of attribute list) ::= ,{attribute){rest of attribute list)|

<nil)

(attribute) ::= (data type){attribute name)

{chain) ::= CHAIN <{operand class list)

(transform) ::= TRANSFORM (phrase part) INTO
{result clause)

(yield) = YIELD <{result clause)

(yields) ::= <{name) YIELDS (result clause)

{becomes) ::= (name) BECOMES (result clause)

{phrase part) ::= {(name)({alternative)){parameter sets)

{parameter sets) ::= (parameter set){parameter sets>|<{nil>

{parameter set) ::= (parameter type)>({namelist))]USING
(Klist of result clauses))

{parameter type) ::= WITH|RETURNING|RT

(result clause) ::= {option){chained items)

{chained items) ::= FOLLOWED BY (result clause)|FB
(result clause)|<{nil)

The Computer Journal

20z 11dy 61 UO 158nB AQ 2810 /601/2/0Z/2101HE/UWoo/Woo"dno-olwepeak/:Sdpy Woly pepeojumoq



{option) ::= {operatory{operand part)| {parameters) ::= {parameter){rest)
{rest) ::= {parameter)y{rest)|{nil)

hrasename){a \ .
gpemor pr;fedf:f;g'name> {on part) = ON (namelis)|ON ( )|<nil
{app)|{name> YIELDS (result clause| {terminal operand) ::= {name){values)

{name> BECOMES (result clausey[ERROR-  Svalues) ::= (valueh(values)|¢nil)

{value) ::= (attribute name)({expression)

fg?ﬁ?fe?ngfnr;lp 3Lte>ran a {outpart) ::= OUT{result clause}](nil)

IF {conditions) THEN <{result clause) ELSE ggvjtrﬁ‘g‘;‘ggi %ﬁ‘lﬁr}{’;&%%;{%ﬁg clauses))

(result clause) . e

FI|CASE <(expression) IN (list of result Cattribute name) ::= (name)

clauses)<outpart)ESAC 2522?::02apmrgZe;;e<$:$:)> ::= (name)
{operand part) ::= ((list of result clauses})|<nil}) {staple program) ::= any piece of correct STAPLE code
(list of result clauses) ::= {result clause){rest of res list) {nl) ::= newline symbol
(rest of res list) ::= ,{result clause){rest of res list)|{nil) The syntax of {condition) and {expression) are part of the
{app) ::= (parameters)|<{nil) STAPLE language and are not described here.

References

BROOKER, R. A., MORRIS, D., MACCALLUM, L., and RoHL, J. S. (1962). The Compiler-Compiler. Annual Review in Automatic Programming,
Vol. 3, London: Pergamon.

BROOKER, R. A., MoRRIs, D., and RoHL, J. S. (1967). Compiler-Compiler Facilities in Atlas Autocode, The Computer Journal, Vol. 9, p. 3505

CAPON, P. C., Morris, D., RoHL, J. S., and WiLsoN, I. R. (1972). The MUS compiler target language and autocode, The Computer Journalz
Vol. 15, p. 109.

Currig, 1. F. (1971). Algol 68-R in Algol 68 Implementation, Peck, J. E. L. (Ed), Amsterdam: North-Holland.

FOSTER, J. M. (1968). A Syntax Improving Program, The Computer Journal, Vol. 11, p. 31.

IrONS, E. A. (1963). Annual Review in Automatic Programming, Vol. 3, p. 209.

KoOsTER, C. H. A. (1971a). Affix Grammars, in Algol 68 Implementation, Peck, J. E. L. (Ed), Amsterdam: North-Holland.

KosTER, C. H. A. (1971b). A Compiler-Compiler, MR127, Matematisch Centrum, Amsterdam.

Lewis, P. M., and STEARNS, R. E. (1968). Syntax-Directed Transduction, JACM, Vol. 15, p. 465.

McCLURE, R. M. (1972). An appraisal of compiler technology Proc. Spring JCC, 1972, Vol. 40, p. 1.

Morris, D., WiLsoN, I. R., and CapPoN, P. C. (1970). A System Program Generator, The Computer Journal, Vol. 13, p. 248.

DE REMER, F. L. (1974). Transformational Grammars, in Compiler-Construction: An Advanced Course, Bauer, F. L. et al. (Ed), Springer
Verlag.

IWapeoe//:sdny woJj papeo)

202 1udy 61 U0 }sanb Aq z8¥01¥/601/2/0z/3191HE/|uliod/woo dnoo

Volume 20 Number 2 115



