Scheduling algorithms for concurrent execution

Y. Wallach

Facully of Electrical Engineering, Technion—Israel Institute of Technology, Technion City,

Haifa, Israel 32000

The paper introduces a notation for describing algorithms in a pseudo-mathematical form. It uses
ideas introduced by various higher level programming languages, and by extensions proposed for
concurrent processing. This notation is shown to be suitable to describe both sequential and concurrent
scheduling schemes for numerical quadrature and matrix inversion. Additionally, pseudo-programs
are developed for concurrent calculation of a scalar product of two vectors and of linear recurrence
relations, as needed for a not too well known integration method.

(Received September 1973)

1. Introduction
Real time, online computer control requires speeds above those
normally available on digital computers.

One approach to accelerating the computations would be to
undertake them on a parallel processing system (pps hereafter)
which includes a number of processors working concurrently
on banks of common memory through multiplexers. The associ-
ated operating system keeps pointers on ‘executive points’ of
programs and queues the processors. Whenever a processor is
‘freed’, it enters a queue; whenever a ‘job’ is waiting, the first
processor in the queue is allocated to do it.

The imminent availability of such systems (Lorin, 1972;
Comtre Corporation, 1975) raises the questions:

(a) what language should be used to describe algorithms as
scheduled on a pps?

(b) which algorithms are best suited for execution on a pps and
how should they be scheduled ?

The aim of this paper is to develop a notation suitable for
programming a pps and apply it to the scheduling of two
problems: quadrature and matrix inversion.

2. Notation

Various languages are used to express the programming of an
algorithm. When dealing with concurrent execution of an
algorithm, these languages are supplemented by certain exten-
sions (Anderson, 1965; Dijkstra, 1968; Hansen, 1973). The
same approach was applied by the author to other problems
(Wallach, 1974) for a particular system (Wallach, 1977). The
present paper though will use a different notation because of
the following considerations.

An actual program includes declarations, temporary variables
and (to be efficient) probably a few ‘tricks’. All this obscures the
idea behind the algorithm. On the other hand, the number of
basic, new ideas introduced by higher level (sequential or
concurrent) languages and essential to express numerical
algorithms is limited. We will therefore adhere to the old-
fashioned way of expressing algorithms in a mathematical
notation with its Greek letters, powerful operators and inter-
spersed sentences in English to which we add the following:

(a) The assignment operator is ‘:=" whereas ‘=" will be used
as a (Boolean) relational operator. Vectors are assigned by
positions, e.g. (a, b, ¢) := (x, y, z) is equivalent to a := x,
b:=yandc:= z

(b) A Boolean expression is enclosed in braces.

(¢) A label is the customary identifier, followed by a colon.

(d) A ‘goto’ operator is denoted by the ‘>’ symbol.

(¢) Instructions to be executed sequentially are separated by
semicolons, concurrently by commas and both may be
completed by one of the delimiters to be yet described.

132

Semicolons may be read ‘followed by’, commas as ‘con-
currently with’. In this paper, S will stand for a single
instruction, a block of instructions, or even for a completes
subroutine. g

3

(f) Any block of instructions which is to be treated as a singl&
one is enclosed in a pair of square brackets. In the case of §
concurrent block e.g. [S;, S5, ..., Si] it was pointed oug
(Hansen, 1973) that the instructions S;, i = 1, . . ., n shoul&®

be disjoint or noninteractive. Inside of a block there should

be no mixing of semicolons and commas, since this woul@
require either parenthesisation or setting up of precedences
for the two modes of execution. 3

[]
(g) If a block is preceded by symbol ‘ 4’ and a list of values, it is
to be performed for all of them. The four possibilities: 2

#i:=1;2;...;n[S; Suril (f§
#i:=1,2,...,n[S;S,.:] [
#i:=1;2;.. 5 n[S; Spei] @
#i:= 1,2, ... 0[Sy Sysi] @

correspond to the following execution sequences:

(0]

[S15 Sus13 825 Spazs - - -5 Sui Sa,] (53
[LS15 Spt 1]y [S25 Spaals - - o [Sus S2,1] ©)
[[S1, Sys 115 [S2s Sus2Ts - - -3 [Sw S2,1] (7
[S1, S2s 83 -+ s Sy St « - o> S2] &

respectively. The ‘step’ of the index value i is always implied
by its initial two values; the loop is completed upon i > 1

(k) A conditional expression uses arrows to denote ‘theré
(McCarthy, 1960) and dots to denote ‘else’, with the ‘elsel
matching the last ‘if>. Hence {p,} —» >I. {p,} - a :%
a + b; means (in ALGOL 60); if p, then goto / else if
then a := a + b. Note, that if p then (if g then S1 else S2%
corresponds to {p} — {g} —» S1.S2; but that if p thed
(if g then S1) else S2 must be written: {p} — [{g} — Sl].Si@

(i) Functions will be defined through a modified lambda
notation (Carnap, 1958), e.g.

Y= (Ax, 3, 2)[c = x* + y*;d:=5;e:=x*d + z — d]

=> (e 9
where the parantheses hold the parameters, function block
and results respectively. Three dots inside the last pair of
parantheses means that all results are required. A function
is ‘called’ by appearing in an expression, e.g. ¥(3, 4, 5) for y
of equation (9).

(j) A locking (Boolean) element b may be associated with a
statement S as in

15;S . (10)

If b is found ‘reset’, it is first ‘set’, then S is executed, and
finally b reset again. If b was found ‘set’, .S cannot be

The Computer Journal

executed at this time. Locking operations on the same
element b must exclude each other in time.

(k) The ‘wait’ operator @ as in
@{B}; S (11)

delays the execution of S until (boolean) condition B is
satisfied.

We note that all eleven operators above have been defined as
machine independent. The sequential operators correspond to
those used on present day computers. Ways to implement
parallel operators (comma, lock and wait) on multiprocessor
configurations have been suggested previously. Locking may be
effected be a ‘test-and-set’ instruction (Lorin, 1972), a modified
interrupt (Carver Hill, 1973), as P and V operations on sema-
phores (Dijkstra, 1968) or through the WAIT, POST, ENQ
and DEC macros (of 0S/360). The same WAIT macro may
serve as a slightly modified wait operator. A parallel block may
require interleaving of data in memory and accessing it
through multiplexers (Wallach, 1974). The lock and wait
operators are useful in system programming (Hansen, 1973),
but seldom for numerical work. All operators connected with
parallelism are tailored for use on a MIMD-type of multi-
processor (Stone, 1973).

This completes the notation; its merits will be made clear by
the algorithms of the following sections.

3. Quadrature methods
In some cases (e.g. online control of a plant modelled as a
linear, time invariant system), evaluation of an integral

y= [60 ax (12)
takes too long on present day computers. Due to the complexity
of ¢(x), even methods which use a minimum number of function
evaluations (Wallach, 1969) would be too slow. Hence, the need
for a concurrent solution on a pps.

A method (Adams, 1970) specifically designed for parallel
evaluation of y used special graphs to describe the algorithm.
In the notation of Section 2, it can be defined succinctly and
clearly by the use of just three functions.

p sums two areas (s, 5,) to yield s5 and checks convergence

p = (Asy, 52, S, €)
[s5:= 8, + 5330 := {Is — s3] > e*s3} (13)
1=> (53, b);
v computes a midpoint o, the function f, at o and the areas on
- its two sides:

v:=(Aa, [2, 1)
[[o:= a + 0-5%|z — a|, r := 0-25*|z — a|];

fo = ¢(x = 0);
[sg := r*(fa + f), 55 := r*(f, + f))]
]=> (o’f;n S4s SS); (14)

7 is a recursive function (i.e. it calls itself) which yields the
integral in the form of the area computed by p if convergence
was obtained, but calls itself twice if it was not obtained. It is
in this last case that the algorithm ‘forks’ into parallel paths.
T:=(Aa, fo 2, [, S, €)

[(O’f;n S45 SS) = v(a’fm Zafz);

(S3, b) = p(S4, §s, S, 8);

{6} —»

[[u = t(a’f;’ oaf;v S4, 8),

v:= 1(0,f, 2, [2» 555 €)1}
w:i=u+ v].
w = S3

Volﬁme 20 Number2

1=>Ww); (15)
Very effective, automatic quadrature methods are based on
shifting the integration interval (a:z) to (—1:1) with a sub-
sequent integration of the polynomial which interpolates ¢(x)
at the (Chebyshev) points
tji=j*nn,j=0,1,2,...,n. (16)
The basic procedure (Clenshaw and Curtis, 1960) approximates
the integrand ¢(x) by a series of Chebyshev polynomials
3 ¢, T(x) and produces the value of the definite integral from
F=2(d, +d;+ds+...) where the coefficients d; result
from integrating the first polynomial to get > d, T, (x).
The algorithm is well known and documented, so that a
similar but much less known method (Filippi, 1964; Davis and
Rabinowitz, 1967) will be discussed. It approximates

1
F= j_ $(x) dx a7

and not ¢(x) as a Chebyshev series at the interpolation points
1.
Since no algorithm for this method has been published yet, t}§
schedule for its concurrent execution will be commented
extensively and exemplified throughout. 2

The number of subdivisions #n should be chosen so that not all
values of the sines and cosines will have to be recomputed. This
is best done by choosing a value ‘max’ (e.g. max = 4) a
starting the program through

k=21 pn .= 5%k, m := 4;
(eg. k=8, n=40; m=4). The initial values

cn; = cos (jn/n), sn; = sin(jn/n) and g; = sn;*¢(cn;) a
computed in the block:

#j:=k,2k,...,n+2
[i :=n —j;cn; := cos(jn/n); cn; := —cn

goe//:sdmau

gge

o]}

s
snj = sn; i= (1 — cn?); g; 1= sn*¢(cn));
8 i=sn*¢(cn)]; (
(e.g. [cng = cos 36°; cns,; Sng; sny,; g5 832] concurrently wim'

[cni6; cnaas snies SNa4s 8165 8241)-
Next, three values d,, d,_; and d,_, are computed:

b:1:=1,2,3
{e.:=2%cn,_u; Cc_4

P

BiMeguliod/woo-dno:

i=¢, 1= 0;
#h:=1;2;...;mlc:=e*c, — c_{ + gu_pu;

6 Aq 8290%¥/2€112/0Z/

C_y 1= CyC, = C];

dyry-1 1= @*sn,_q*)((m + D*(m + 1 = 1))}; (19)

In the above, the c¢’s are computed from a marching recurreng'e

relation. Since every ¢, depends on c,_, and ¢,_,, and since k

loops from 1 to m, it seems as if there is only one way {0

calculate the c¢’s: sequentially. However, it is shown in tRe

Appendix that even such ‘inherently sequential’ calculatioggs

may be successfully parallelised. N

If all three d’s are small, the value of the integral is
approximately

jz G(x)-dx~(z—a)*d, +dy +...+d) (20)

a

with r < n. Otherwise, the m and k values are changed
according to

m:=2*m+ l;k .=k + 2; 21

and the new cn, sn, g are calculated not from equation (18) but
through:

cny = J[(1 + cny)/2]; e :=n — k;cn, := —cny;
s 1= sn, 1= (L — end); g, := sn*(en,);
#ji=m—-—1m-2,...,2

[{jrem2 # 0} -

133

[:=j*k; cny i= (cmpay + cnyy)/(2*eng);
{l < nf2} > sn; := sny,/(2*cn,).
sy = (1 - C”f)? g 1= sn*¢(cny)
15
Form = 9, k = 4, e = 36 this computes first
[cny; cnsg; sny; snse; €361
and then, concurrently [cn,g; shyg; 8251 With [cnyg; SHa0; 8201

with [cn,,; sny,; g12]. Finally g.(e.g. g,) is computed and the
program returns to label /b:

g i = sm*P(eny); > Ib; (23)

The program exhibits so much parallelism that it should
compare favourably with the previously mentioned concurrent
method. This is especially true if the recurrent calculation of c,
is not done per equation (19) but in the way shown in the
Appendix.

A final remark concerns the evaluation of the integral
equation (12) using the Romberg method. Both in the general
case (Bauer et al, 1963; Krasun and Prager, 1965) and in the
particular case of a ‘state model’ (Wallach, 1969), the notation
of Section 2 lead easily to models for parallel execution.

2

4. Matrix inversion

One of the older algorithms for inverting a matrix 4 (Shipley
and Coleman, 1959) is based on the theory of ‘diakoptics’
(Kron, 1939). It consists of choosing pivots 4;; and substituting
all elements A, not on the pivoting row or column by

Ajk = Ajk - Aij*Aki/Aii . (249

The element A4;; is replaced by ¢ = —1/A4;; and the remaining
(2n — 2) elements of row i and column i are multiplied by c.
The pseudo-program of this algorithm is thus:

#i:=1;2;...;n
[c:= —1/4;;
#j:=1,2,...,n
[#k:=1,2,...,n
[{j#itA{k #i} >
Ajy = Aj,k + c*4; *4,.,:1; 1
#j:=12,.
- [4; .-cA A

i,jo - C*Aj,i];
Ai,l =
5 (25)

This substitution requires two multiplicative operations for
each of the (n2 — 2n + 1) elements. The remaining (2n — 2)
elements are multiplied by a constant c. Hence, the total number
of multiplications is:
p=nQ2m* —2n+1)+2n—2)=2n*(n— 1) ~2n* (26)
This is twice the number required in Crout’s algorithm (Kunz,
1957), which probably explains why this algorithm was seldom
used outside the field of the electrical power industry. It is
similar to the elimination method of Gauss, and the main
reason why we prefer it is essentially the following. Equation
(24) may be performed in any order, which means that processor
scheduling and data storage will not be a problem (as it certainly
is in other methods, e.g. those suggested for ILLIAC-IV).
It was noted (Pease, 1967) that: ‘With parallel processing, the
total number of operations is not significant. What matters is
the number of sets of operations, where each set involves those
being done in parallel’. Since the entire inner loop (of j and k)
may be performed concurrently, this set equals:
2n®
o~
> 27

where p is the number of processors. Hence, ¢ would be only

134

..... xxx.... XXXX . ..
xxx X X XX

- |X X X - |xxxx .
X X XX

I S
Fig. 1 Elements which change at iterations i = 1, 2, 3

2n for a system of p = n? processors. The second advantage is
the small o.

As a fringe benefit, note that the use of a minus on the pivoted
term causes a symmetric matrix to remain symmetrical
throughout the entire process.

Another advantage claimed for Kron’s algorithm is that it is
useful in inverting sparse matrices. We will apply it to the
best-known case, namely to a tridiagonal matrix which is basic
to the numerical solution of elliptic, partial differential equ-
ations (Fox, 1962). We could adapt equation (25) to this case
by modifying the Boolean condition for which the i inner loop
(of k and]) is performed. Since this point is traversed n* times
(or by n? processors, once) and since, anyway, we have to
assume the number of processors to be smaller than n?, it is
precisely checking of this Boolean condition that we would
like to avoid. Fig. 1 and the following pseudo-program show
how this can be done.

#i:=1;2;...;n

[c:==1/A;;l:=i—1;m:=i+1;
#j:=12,...,n
[#k:=1,2,...,n[4dj := Aj + c*4;;*4,]
1 Apm 2= Apm + *Aim* A i
#j:=1,2,...,1
{j=i}-
[Ajm := c*Ajpm, Apj = c*4,,;].
{j#i} >

[Ajm := Aj + c*A;jA i, Amj

1 #j:=12,...,1
[4;j:=c¢c A, i Aji
Ay 1= c]; (28)
For its implementation, one row and one column of zeros
should be added to the original matrix. The number of sets ¢
will be larger than that for an adapted equation (25), but there
is enough parallelism left in equation (25) to keep all processors
busy most of the time. The number of operations on elements

is:

t= Ay + C*Aid;i]

= C*Aji];

-1+ T k=

k=1

2 4+32+42+...+n= -1+

nn+ D2n+1) n?
—% =37 @
This is a large number, but, for large n, most of the operations
will be in the 2*n multiplications of the inner loop (for j and k),
which corresponds to equation (24).

Concurrency may also be used for inverting a reordered
tridiagonal matrix or for solving lower and upper bidiagonal,
as well as blockwise tridiagonal matrices (Even and Wallach,
1970).

The notation introduced in Section 2 may also be used to
describe Gaussian elimination or the ‘bordering’ method on
specially designed, parallel computer systems (Pease, 1967).
For the ‘bordering’ method, and generally for linear algebraic
problems, the ability to compute concurrently the scalar
product of two vectors g and b is important. It should be noted
that one method which should not be applied, is:

The Computer Journal

202 udy 61 U0 188n6 AQ 8/90%/Z€ L/2/0Z/31014e/|uf0d/W0d"dNo"oILSPEDE//:SARY W) PAPEO|UMOQ

s:=0; #i=1,2,...,n[s := s + a;*b;]; (30) U=pU' +qU” (A-5)
The results of performing equation (30) for more than one V=pV'+qV" (A-6)
index concurrently would depend on the timing of the com- W =pW +qW" +r (A-T)
puters and make the computation indeterminate. To restore QED
determinacy, s may be accessed only after it is locked, by 4, e.g.) . :)
Hii=1,2 n[Ld;s:=s + a*b]; 31) Let us split the n relations (A-1) into m contiguous blocks as
. oy P P depicted in the figure below. Block j starts with a ¢, whose
Since this would slow down the process considerably, the jpdexisa = I; and ends with a ¢, whose index is b = ;,, — 1.

following method is to be preferred for calculating the scalar By a shift of origin, and by virtue of the lemma, for this block:
product of a x b:

#i:=1,2,...nc; := a*b]]; (2m2 a1 Ca Fn=2 fn-t
.-— 9 Ly o o0y i “%i il O I | O l | O o O O O | I o
#j:=0;1;...;(ogyn — 1) _
[2 I, =1 I, . Cn
m:.:=n M ”
' ’ Cb_z = U . Ca_ 1 + V'-’ca_z + W” (A'8)
#i:=1,2,...,m2[c;:=c; + Cpi1-il , ; 7
1 /2L *1 32) o1 = UjCacy + Vicamy + W; (A-9)

In equation (32), the initial dimension n of the two vectors gllj_(::f)t hatforb = i, a = 1 these equations reduce to (A-3) and

1
should be a power of 2, i.e. n = 2/, but if it is not such, then we As is seen, the last two elements of a block are linear forms in

may set all the last two elements of the preceding block.
a,:=b,:=0forh=2"—n. (33) The algorithm for computing n concurrently is as follows: forY
Equation (32) halves successively the size of vector ¢ and leaves €ach blOCk I, assume arbitrarily three pairs of initial valuess
the result in c;. (ci_y,cl_y),i = 1,2, 3. Foreach pair a processor (concurrently‘:>
with and independently of the other processors) apphesg
Appendix equation (A-1) until the values ¢;_,, ¢/_, are computed. As a5
The recurrence relation used in equation (19) has the general result three linear equations (A-8) in the unknowns U/, V, W"3
form: are obtained and another threein U,, V}, W;. A Jud1c1ous chmceg
Chi=pPChy +qch_s +rh=12,..,n (A-1) would be the following three pairs: (1, O), o, 1), (0,0) whlch:
where c_,, c, are known initial values and p, g, r, are known yield: §>
constants. Element c, is to be computed—if possible, in a 1 01 U, Chyi=2 2
parallel way. 01 1] *| V| = c,zkﬂ_z] (A-10p
0 01 wy . -2 5
Lemma: e . From these, the solution is 8
For any positive integer A, ¢, can be written as Ur = ol o3 A 11§

k= “her1=2 7 “heer-2 -

¢, = Uc, + Vc_.l + ‘W . (A-2) Vi=C,,2—C, s (A—lZ%
th.xere U, V, W are constants, i.e. ¢, is a linear form in c_, and Wy = clsk i (A-13E
° and similarly for Uy, V;, W;. %

Proof (by induction): Inserting the (known) values c,, c_ into equations (A-8, A-9)
For h = 1, the constants U, V, W are p, q and r; respectively. yields ¢;,_, and ¢,,_;. Proceeding sequentially in Fig. A-
For h = 2, they are found (by insertion) to be (p*> + ¢), (pq) yields c, in (m — 1) steps. It should be noted that the thre&
and (pr, + r,) respectively. Assume next that equation (A-2) sweeps in each block may proceed concurrently, which increases»

4>

holds for some 2 < i < n. Then parallelism even more. g
¢y =Uc,+ Vi, + W (A-3 -

- . . ! .) Acknowledgements ?D

iz =U"¢c,+ Ve, + W". (A-4) The author wishes to thank Mr. V. Conrad, Dr. D. W. Martilﬁ*

Inserting these two into equation (A-1) yields for A =i and Professor M. Yoeli for their help in preparing and revising’
equation (A-2) with the manuscript. ©
©

References 3
~

ANDERSON, J. P. (1965). Program Structures for Parallel Processmg, CACM, Vol. 8, pp. 786-788.

Apams, D. A. (1970). A Model for Parallel Computations, in Hobbs, L. C. et al (Eds.), Parallel Processor Systems—Technologies and
Applications, New York: Spartan-Books, Inc.

BAUER, F. L., RUTISHAUSER, H., and STiereL, E. (1963). New Aspects in Numerical Quadrature, Proc. Symp. in Appl. Math., Vol. 15, pp.
199-218, pubhshed by Amertcan Mathematical Society, Providence, RI.

CARNAP, R. (1958). Introduction to Symbolic Logic and its Applications, New York: Dover Publications, Inc., pp. 129-136.

CARVER-HILL, J. (1973). Synchronizing Processors with Memory-Content-Generated Interrupts, CACM, Vol. 16, pp. 350-351.

CLensHAW, C. W., and CurTis, A. R. (1960). A Method for Numerical Integration on an Automatic Computer, Num. Math., Vol. 2,
pp. 197-205.

CoMTRE Corp. (Ed. Ph. Enslow Jr.) (1974). Multiprocessors and Parallel Processing, New York: J. Wiley, Inc.

Dauvis, P. J. and RaBiNowitz, P. (1967). Numerical Integration, London: Blaisdel Co.

DUKSTRA, E. W. (1968). Co-operating Sequential Processes, in Genuys, F. (Ed.), Programming Languages, New York: Academic Press.

Even, R. K. and WALLACH, Y. (1970). On the Direct Solution of Dirichlet’s Problem in Two Dimensions, Computing, Vol. 5, pp. 45-65.

FiLepy, S. (1964). Angendherte Tschebyscheff-Aproximation einer Stammfunktion—eine Modifikation des Verfahrens von Clenshaw und
Curtis, Num. Math., Vol. 6, pp. 320-328.

Fox, L. (1962). Numerical Solution of Ordinary and Partial Differential Equations, New York: Addison-Wesley Co.

HANSEN, P. B. (1973). Operating System Principles, Englewood Cliffs: Prentice Hall Inc.

KRASUN, A. M. and PRAGER, W. (1965). Remark on Romberg Quadrature, CACM, Vol. 8, pp. 236-237.

Volume 20 Number 2 135

KRroN, G. (1939).
Kunz, K. S. (1957).

Tensor Analysis of Networks, New York: J. Wiley, Inc., (Chapter 10).
Numerical Analysis, New York: McGraw-Hill Co.

LoriN, H. (1972). Parallelism in Hardware and Software—Real and Apparent Concurrency, Englewood-Cliffs: Prentice-Hall Inc.

McCARTHY (1960).
Peasg, M. C. (1967).
SHIPLEY, R. B. and CoLEMAN, D. (1959).
568-572.
STONE, H. S. (1973).
Academic Press, New York, 1973.
WALLACH, Y. (1969).
WALLACH, Y. (1974).
WALLACH, Y., and CONRAD, V. (1977).
IEEE, Transactions on Computers.

Recursive Functions of Symbolic Expressions and their Computation by Machine, CACM, Vol. 3, pp. 184-187.
Matrix Inversion Using Parallel Processing, JACM, Vol. 14, pp. 757-764.
A New Direct Matrix Inversion Method, Trans. AIEE (Comm. and Electronics), Vol. 78, pp.

Problems of Parallel Computations, pp. 1-16 of Traub, J. F.: Complexity of Sequential and Parallel Numerical Algorithms,
On the Numerical Solution of State Equations, Trans. IEEE, Vol. AC-14, pp. 408-409.

Parallel-Processor Systems in Power Dispatch. Summer Power Meeting of the 1EEE, paper C743349.
Iterative Solutions of Linear Equations on a parallel processing system, accepted for publication in

Book reviews

Mathematical Foundations of Computer Science, edited by J. Becvar,
1975; 476 pages. (Springer-Verlag, US $16.80)

From 1 to 5 September 1975, the 4th annual symposium on the
Mathematical Foundations of Computer Science (MFCS) took place
in Marianské Lazne, Czechoslovakia; its proceedings, edited by
J. Becvar appeared as Lecture Notes in Computer Science nr. 32,
Springer-Verlag. This meeting emphasised complexity theory.

The annual MCFS symposia are organised alternatively in Czecho-
slovakia and in Poland by the computation centres of the Academies
of Science of these countries. The invited lectures and communi-
cations covered respectively constitute recent results in automata
theory, complexity theory, Lindemayer systems, logic of computation
and mathematical linguistics, on the one hand and the theory of data
bases, methods for program proving, Petrinets and semantics of
programming languages, on the other.

The Invited lectures were given by J. M. Barzdin, J. J. Bicevskis and
A. A. Kalninsh, ‘Construction of complete sample system for
correctness testing’; P. van Emde Boas, ‘Ten years of speedup’;
P. Hajek, ‘On logics of discovery’; M. A. Harrison, ‘On models of
protection in operating systems’; J. Kral and J. Demner, ‘Parsing as
a subtask of compiling’; A. Mazurkiewicz, ‘Parallel recursive
program schemes’; M. Novotny, ‘On some problems concerning
Pawlak’s machines’; A. Salomaa, ‘Formal power series and growth
functions of Lindenmayer systems’; P. H. Starke, ‘On the represent-
ability of relations by deterministic and non-deterministic multi-tape
automata’; B. A. Trakhtenbrot, ‘On problems solvable by successive
trials’; V. Trnkova, ‘Automata and categories’; I. D. Zaslavskii,
‘On some models of computability of Boolean functions’.

The proceedings contain a considerable number of communications.
Being a ‘correctness prover’ myself, I restrict myself mainly to the
subject implied: Mazurkiewicz presentation is related to work done
earlier by H. Bekic. R. V. Freivald contributed: Minimal Godel
numbers and their identification in the limit—recursive function
theory. I. M. Havel: Nondeterministically recognisable sets of
languages—solid work. M. Karpinski: Decision algorithm for
Havel’s branching automata—if correct, then interesting. W. P.
de Roever: First-order reduction of call-by-name to call-by-value—
explains why call-by-name leads to a theory of termination which is
exponentially more complicated than call-by-value. M. B.
Trakhtenbrot: On representation of sequential] and parallel

136

ojumoq

functions—provides a glimpse of Russian work on a subject 3
introduced mainly by Vuillemin. F. Kréger: Formalisation of &
algorithmic reasoning—already known, but in jthe right direction, 5
as turned out later. 3
These symposia constitute to my knowledge the only regular =
meeting place between theoretical computer scientists of Easternz
Europe and the Western world, and are therefore of vital importance &
to our East European colleagues.

WILLEM P. DE ROEVER, (Belfast and Amsterdam)

Computing Systems Hardware, by M. Wells, 1976; 245 pages.
(Cambridge Computer Science Texts, 6, £4-00)

Wwoo/woo dno olweped

This paperback is one of the new breed of books about computer =
techniques which attempt to short-circuit much of the conventional &
analysis in order to give an overall picture of a complex subject in a =
manageable book. When one reads this book the first impression is ©
of astonishment that the different subjects could have been fastened
so closely together and be contained in just over 200 pages. The text ™
is intended for second year undergraduates (third year in Scotland), &3
studying computer science or computer engineering, and there is no E
doubt that it will be very useful for general reading in this area. S

However it is easy for someone who has struggled through the 33
concepts of computer technology the hard way to consider the book &
an excellent summary. The danger is of course that like Pitman’s<Q
shorthand it may be too condensed for the inexperienced reader, and
it is fair to say that certain parts of the text are superficial in the o
sense that if the student went straight from the text to practical 2
equipment he would be somewhat lost. A clear example is the brief g
way that TTL circuits are described, without reference to books like S
the Texas Instruments classic.

Having said this, there is a great deal to enjoy in the book, and it
does approach its subject from the standpoint of information science.
There are many different ways of looking at standard things, and
some enjoyable prose. All in all a good book for use by anyone in
conjunction with the services of a good lecturer. In the absence of a
guide, then the reader would be prepared to buy a good dictionary
of computing terms, because sometimes the specialist words come
thick and fast.

N
o
N
=

F. G. HeaTH (Edinburgh)

The Computer Journa

