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An n-gram is an n-character subset of a word. Techniques that are already well known use n-grams
for detecting and correcting spelling errors in words. This paper offers three basic contributions to
n-gram technology. First, a method of reducing storage requirements by random superimposed
coding. Second, an n-gram method for finding all dictionary words that differ from a given word
by up to two errors. Third, an n-gram method for correcting up to two substitution, insertion,
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1. Introduction
Human writers and keyboard operators sometimes introduce

substitution errors, in which one character is erroneously
substituted for another,

insertion errors, in which a character is erroneously

inserted,

deletion errors, in which a character is erroneously

omitted, and

reversal errors, in which the positions of adjacent

characters are erroneously interchanged.

Optical character recognition (OCR) machines do not intro-
duce reversal errors, and usually do not introduce insertion and
deletion errors. They do introduce substitution errors and also
reject errors. A reject error is usually represented by a special
symbol which indicates that the OCR machine has been
unable to recognise the corresponding input character
confidently.

Suppose we have a dictionary that lists all correctly spelt
words which ever occur in a given text processing application.
Spelling or recognition errors may change one word in the
dictionary into another word in the dictionary, and we shall
not be able to detect such errors just by using the dictionary.
Very much more commonly, errors will change a word into a
word that is not in the dictionary. To correct such errors it
seems sensible to

(a) find the dictionary word differing from the given word by
fewest errors, and

(b) replace the given word by the dictionary word found in (a).

To carry out step (@) we can use a string matching procedure
for determining the number of errors by which two given words
differ. If more than one word is found in (a), then syntactic or
semantic disambiguation is required.

The literature on spelling correction and string matching is so
big and diffuse that we cannot hope to review it usefully here
in a few paragraphs. Section 8.1 of Ullmann (1973) provides an
elementary introduction, and further references are given by
Riseman and Hanson (1974). The following preliminary
paragraphs are confined to dynamic programming techniques
that provide the most sophisticated of the known techniques of
string matching.

The string matching algorithm of Wagner and Fischer (1974)
is similar to the dynamic programming algorithms of Vintsyuk
(1968), Velichko and Zagoruyko (1970), and Sakoe and Chiba

(1971). To match an m,-character word x;,..., X, ..., Xp,
against an m,-character word xj, ..., X}, ..., X,,,, the algo-
rithm of Wagner and Fisher processes x,, . . x,, ey Xy, in

turn. Corresponding to x; the algorithm computes m, scores

D;;,j=1,...,m,, according to
D;; := min (f, /2, /3) »
where
fi := D;_y,j—, + mismatch score for x; versus x;;

f2 := D;_,,; + penalty score for deleting x;;
f3 := D;,;_, + penalty score for inserting x; .
The overall mismatch score for the two words is taken to be
min {Dp,;} -
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This procedure is superior to that proposed by Ellis (1969) and &
developed by Warren (1972) in that it does not fallaciously cb
assume that if x;_, corresponds to x;_ in an optimal matchmg &
then the most similar of the three pairs (x;_q, X}), (X;, x,_l),U
(;, x;) correspond. Similarly, in the Markovian case, the g
Vlterbl algorithm (Forney, 1973) is superior to the contextual 2
algorithm of Denes (1959) in that it does not fallaciously S K1
assume that x; should be optimally assngned to the riths
recognition class such that P(r;/r;_ ). P(x;/r;) is maximal when g

x;_, has been assigned to the r;_th recognition class. Abend & S
(1968) pointed out theoretlcally, and Hanson ef al. (1974) have S M
confirmed experimentally, that errors tend to propagate when © S
an algorlthm such as that of Denes (1959) is used. The Viterbi N
algorithm is a simple dynamic programming algorithm thatb
does not have this disadvantage, just as the algorithm of S S
Wagner and Fischer does not have the disadvantage of them
algorithm of Ellis (1969). 3

The algorithm of Wagner and Fischer, and Lowrance andc
Wagner’s (1975) extension of it to cope with reversal errors,ﬁ
takes a time proportional to the product m,.m,. This may beS
too slow if the dictionary has many thousands of entries and©
many successive input words have to be processed. The methodn
of Szanser (1973) may reduce the computing time at the expense
of increasing the storage area occupied by the dictionary. §

The correction process may be speeded up by the use of
special purpose hardware. To introduce the main work of the
present paper we now outline a very simple hardware technique
for determining the number of errors by which two given words
differ.

2. A simple comparator for words
By way of example we shall throughout the remainder of this
paper consider a problem in which

(a) every word in the dictionary has exactly six letters,

(b) if two words differ by exactly one substitution, insertion,
deletion, or reversal error, we shall say that these two words
differ by exactly one error. If two words differ by two
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errors that may be substitution, insertion, or deletion errors,
or any combination of two such errors, then we shall say
that two words differ by exactly two such errors. If two
words differ by a reversal error and also by any other error
whatsoever, then we shall say that the two words differ by
more than two errors (because, in a sense, one reversal error
is equivalent to two substitution errors).

(¢) if two words differ by more than two errors we shall not
determine the number of errors,

(d) each of the letters in a word may be one of the 26 letters of
the alphabet represented for our purposes by a 5-bit
integer in the range 0 through 25. We shall also use numerals
as symbols standing for letters.

In Fig. 1(a), (b), (c), (d), lines show which characters corres-
pond in pairs of words differing by one error. We call the set of
lines in Fig. 1(a) a lineset, and we use the same term for sets of
lines such as those shown in Fig. k), (c), and (d). Fig. 2(a),
(b), (¢) and (d) illustrate linesets for pairs of words differing by
two errors. (A lineset differs from a trace in Wagner and Fischer
(1974) in that no line in a lineset links nonidentical characters,
whereas this is not true of a trace). Let L; be the set of all
possible linesets of not more than one error, and let L, be the
set of all possible linesets of not more than two errors. By
enumeration we find that L, and L, have 25 and 174 members
respectively.

In hardware we propose to enter a six-character dictionary
word into a register that comprises six 5-bit character fields, as
indicated in Fig. 3. An input word to be compared with this
dictionary word is stored in a register that comprises eight
5-bit character fields. We reject any input word of more than
eight or less than four characters because it must contain more
than two errors. Otherwise we position the leftmost character
of the input word in one of the eight fields selected in accor-
dance with the number of characters in the word. The numerals
under the input register fields in Fig. 3 show the word lengths
for which the leftmost character is in the indicated field.
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Adjacent characters are entered into adjacent fields. This
arrangement has been chosen so that if (i,j) belongs to any
one-error or two-error lineset, then i = jori =j + 1.

For eachi = 1, .. ., 6, three separate logic circuits determine
respectively whether x; = x;_,, whether x; = x;, and whether
x} = Xx;4+,. The outputs of these 3 x 6 circuits provide inputs
to two sets, L} and L}, of and gates. The set L contains one and
gate corresponding to each member of L,, and there is a similar
1:1 correspondence between L), and L,. The connections are
such that an and gate in L) is activated iff the input word
differs from the dictionary word by not more than one error;
and an and gate in L, is activated if the input word differs from
the dictionary word by not more than two errors.

To find all dictionary words differing by not more than one or
by not more than two errors from a given input word, we could
apply each dictionary word in turn to the simple hardware
comparator. This procedure might take too long if the
dictionary were large and if many input words were to be
processed successively. The main aim of our exploratory work
is to reduce this time by using binary n-grams instead of a
full dictionary.

papeojumoq

3. Binary n-grams
Suppose that a dlctlonary word is held in the 6-field register in &
Fig. 3. A subset comprising n of these fields is an n-tuple. An g g
n-gram is an assignment of one character to each of the n=
fields that constitute an n-tuple. For instance, 1234, 1356, 1245,
are 4-grams of 123456. (This conforms with Shannon’s (1951) =
usage of the term n-gram, but not with that of Riseman and §
Hanson (1974).)

In n-gram techniques of Thomas and Kassler (1967), Riseman 5
and Hanson (1974), and Balm (1975), a collection of n- tuples =
are preselected Data derived from a dictionary is stored as o g
follows in a storage area that is initially cleared (i.e. set to all 3
0’s). For each dictionary word in turn, the n-grams on the 8
preselected n-tuples are determined. For each of these n-grams=:
in turn a ‘1’ is entered (inclusively ored into) a bit location whose @

olwspes

/I

address can be computed by §
26"+ 26" 1x, + 26" 2x, + ... + X, (1)§

where x,, x,, . . ., X, are 5-bit integers representing respectively =
the n characters of the n-gram. For the value of u there are =
two principal possibilities. One is to set u = O for all n-tuples, §
and Riseman and Hanson (1974) call this the non-positional O
case. The other is to set u = 0 for the first n-tuple, u = 1 for &
the second, u = 2 for the third, and so on, so that a separate €
array of 26" bits of store is associated with each different &
n-tuple. Riseman and Hanson call this the positional case.

Riseman and Hanson assume that any given 6-letter word that
is not in their dictionary is misspelt. Following this assumption,
we could test for spelling errors in a word by looking it up in the
dictionary. Alternatively we can test whether a given word is
not in the dictionary by using the stored n-gram data as
follows. For each preselected n-tuple, obtain the n-gram from
the given input word. For each of these n-grams, use (1) to
address one bit. If any such bit is O then the given input word
cannot possibly be in the dictionary. Riseman and Hanson
(1974) claim that their n-gram methods for correcting detected
substitution errors are faster than dictionary methods.

To cope with deletions and insertions, Hanson et al. (1974)
propose to try deleting each character in turn, to try inserting
characters in various positions, and to apply n-gram techniques
for each such trial separately. This whole process could be
slower than the simple technique outlined in Section 2 of the
present paper.

To gain speed, at least in hardware implementation, Section 7
of this paper introduces a technique in which, loosely speaking,
the method of Section 2 is applied separately to n-tuples that

20z Iudy 6 U0}
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are fitted together so as to cope with whole words. The pos-
sibility of time saving arises when the number of words in the
dictionary is very much greater than the number of distinct
n-grams per n-tuple that occur in dictionary words. The
substantially increased logical complexity is to some extent
offset by the fact that, for example, the number (actually 91)
of l-error and 2-error linesets of a 4-tuple is less than 174,
the number of linesets in L,. Sections 5 and 6 of this paper
introduce preliminary steps towards Section 7, and Section 4
describes a storage economy technique that has made it possible
for us to work experimentally with 4-grams in computer
simulation.

4. Reduction of #n-gram storage requirements by random
superimposed coding
To work with 15 positional 4-tuples using formula (1) we would
have required 15 x 26* = 6,854,640 bits. To reduce this we
have adapted Mooers’ (1951) technique of random super-
imposed coding. The adaptation is similar in principle, but
different in detail, from that described by Ullmann (1971).

Instead of 15 x 26* bits, we use 144 + 876 48-bit words,
where A is an experimentally determined integer less than 877.
We denote the ith of these 48-bit words by S(i). We also use a
further 840 48-bit words and denote the ith of these by Z (7).
Initially each of these 840 words is set to contain b I’s and
48-b 0’s, the 1’s being in randomly chosen positions, except
that no two of the 840 words are identical. We use 48-bit words
because this is the word width of the KDF9 computer used in
our experiments.

The store S is cleared initially, and is then set up as follows for
use in error detection and correction. For each 6-letter word
in the dictionary, for each of the 15 4-tuples do

S(‘ul + 32x1 + X2 + X3 + X4) L=
SA + 32x; + x5 + x3 + x)VvZ(u + 32x5 + x,) . (2)

In this the symbol ‘v’ denotes the inclusive or operation on
48-bit words. For the first, second, . . ., fifteenth n-tuples we set
u=0,1,..., 14 respectively.

Subsequently the computer decides that a given 6-letter word
is in the dictionary iff for every one of the 15 4-grams in the
given word it is found to be true that

Z(w+ 32x3 + x4) =Z(p + 32x3 + x,) &
S(uAd + 32x; + x5 + x5+ x4) (3)

where ‘&’ denotes collation of 48-bit words.

In the S address, x; + x, isadded to ensure that the number of
bits per word is roughly the same for all words inS. If x5 + x4
were-not added and if A > 875 then some words of S would
remain all 0’s because some x;x, digrams never occur in
dictionary words, and because x, is multiplied by 32 instead of
26. In the Z address the addition of u ensures that a different Z
word is used for each n-tuple in which x; and x, are the same
two characters. Experimentally we find that omission of u
slightly worsens the failure rate of the system, and an analogous
result is reported in (Ullmann, 1971). In the S and Z addresses
multiplication by 32 is used instead of multiplication by 26
because it can be implemented by a 5-bit shift. Because of this
use of shift, the computing time for implementing (2) or (3)
may not be much greater than that for (1).

To evaluate this technique we used the 2,755-word dictionary
of Riseman and Hanson (1974) to set up S using (2). We then
generated six test-words from each of the 2,755 words as
follows. The first of the six test-words was generated by re-
placing the first character by a character randomly chosen
except that it was different to the original first character, and
the rest of the word was unchanged. The other five test-words
were generated by doing the same thing with the remaining five
characters in the dictionary words. Since six test-words were
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generated from each of the 2,755 dictionary words, the total
number of test-words was 2,755 x 6 = 16,530. Of these, 113
were found to be identical to words in the dictionary.

For each of the remaining 16,530 — 113 = 16,417 words, we
tested condition (3) for all 4-grams. Let e be the number of
words in this set for which (3) was true for all 4-grams. The
system erroneously decided that these e words were in the
dictionary. Fig. 4(a) plots e versus A for b = 3, 5, and 7 bits
per word in Z; and Fig. 4(b) plots e versus b for A = 308 and
4 = 884. For the 20 positional 3-grams, Riseman and Hanson
used 20 x 26 = 351,520 bits, which is more than the
48 x (14 x 308 + 875 + 840) bits that our system uses when
A = 308, and in this case our error detection rate when b = 3 is

100 x (113 + 7)
16,530
c.f. Table IV in Riseman and Hanson (1974). In our system the

tradeoff between error detection and storage area can be quite
finely controlled by the choice of 1, as Fig. 4(a) shows.

100 — = 99-2%

5. Assembling words from confusion sets
Let C; = {xi;,..., X, ..., xilc,|} be a set of |C)| alternative
characters for the ith character-position of a 6-letter word.
C; is called a confusion set (Ehrich and Koehler, 1975; Balm,
1975). For later reference we now consider the problem of
using minimal computing time in determining the set
W(Cy,...,C..., Cg) of all 6-letter words that belong to a
given dictionary and whose first letter is in C,, second letter is
in C,, and so on for all six letters. There are |C,|.|C,|.|C;|.
|C4l.1Cs].|C¢] ways of choosing one character from each of
Cy, Cs, ..., Cg (the order of C,, C,, ..., Cy s fixed). Instead
of looking up each such combination in the dictionary, we use
n-grams to ensure that many of the combinations not in
“W(Cy, ..., Cg) are not actually generated (c.f. Cherry and
Vaswani, 1961).

Let N; be the set of n-tuples that include the ith character
field. Let us say that the character fields constituting an n-tuple
in N; are indexed i, k,, ks, . .., k,. On an n-tuple in N, let
W(xj;, G, . . ., C,) be the set of all n-grams that

ij’
(a) have occurred in at least one dictionary word. (The method
of Section 4, using (3), can be used to determine whether

any given n-gram has occurred in at least one dictionary
word). And

(b) have x| ; as one character, the other n — 1 characters being
in Cy,, . . ., C, respectively.

Let X’ be any word in W(C,, . . ., C¢) that contains x; ;- From
our construction it readily follows that the n-gram in X’ on an
n-tuple in N; belongs to W(x; i» Cips - - -» Cy,) for that n-tuple.
Therefore x;; belongs to at least one word in W(Cjy, . . ., Cg)
only if:

W(xij Ciys - - ., Cy,) is non-empty for every n-tuple in N; . (4)
If x;; does not satisfy this condition, then there is no advantage
in our considering combinations of letters of Cy, . . ., Cq that
include x; ;- Instead we can remove x; ; from C;, thus reducing
the number of combinations that need be processed subse-
quently in the search for the members of W(C,, .. ., Cy).

The refinement procedure is a subroutine that applies (4) to
every characterineach of C, . . ., C4and removes any character
for which (4) is false. An Appendix, below, gives implemen-
tational details. If removal of characters leaves any of
Ci, ..., Cs empty, then the refinement procedure takes its
FAIL exit, and otherwise it takes its SUCCEED exit. Fig. 5is a
flowchart for an algorithm that uses the refinement procedure
in the determination of W(C,,..., Cs) for given initial
confusion sets C, . . ., Cs. When characters are removed from
C; we still use the symbol C; to denote the remaining set of
characters.

14

OUTPUT C
£/ =

Fig. 5 Backtrack algorithm for finding words

L

The Fig. 5 algorithm starts by applying the refinement
procedure to the initial C,, . . ., Cg. Then it eliminates all but
the first character in C,, applies the refinement procedure to
remove further characters, then eliminates all but the first
remaining character in C,, applies the refinement procedure,
and so on until possibly Cj, . . ., Cg each contain one character.
In this case, if the refinement procedure is applied and reaches
its SUCCEED exit, then the six characters in Cy,..., Cq
constitute one of the words that we are seeking, and this word
should be output. On the other hand, if the FAIL exit of the
refinement procedure is reached at some stage, then the
algorithm eliminates all but a different one of the members of
the most recently processed C;; except that if all members of
this C; have already been tried in this way, then the algorithm
backtracks to C;_,, as can be seen in Fig. 5.

In Fig. 5, ji, .. .. J» - - -, j are integer pointers that point to
characters in Cy, .. ., C,, ..., Cq respectively. The assignment
C; := x;;, means ‘eliminate from C; all characters except x;;,’.
Atany time, Cis theset {C, ..., C¢}. Theassignment T; := C
means ‘store C in a storage area T;’; and altogether the algor-
ithm uses six such areas T, . . ., T§.

In the non-iterative refinement procedure, condition (4) is
applied once to each character in each of Cy, ..., Cs. When a
character is eliminated, this may cause (4) to be falsified for
further characters. Therefore further characters may be
eliminated if we apply (4) to all surviving characters a second
time. In the iterative version of the refinement procedure,
condition (4) is applied successively to all surviving characters
in turn over and over again until no more are eliminated. The
iterative refinement procedure takes more time but may
eliminate more characters than the non-iterative version, and
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therefore be executed fewer times in the course of the Fig. 5

algorithm. (In fact we must insist that the non-iterative version -

does two iterations in the special case where i = 6 and all
confusion sets contain exactly one character.)

To find whether the iterative or the non-iterative version gave
the fastest overall timing, we applied the Fig. 5 algorithm to
randomly generated confusion sets Cy, . . ., Cg, using n-gram
data obtained from the 2,755-word dictionary of Riseman and
Hanson (1974). We applied the Fig. 5 algorithm for fifty
different choices of Cy, ..., C¢ with |C;)| =5 for all i =1,
..., 6. The iterative version (c.f. Ullmann, 1976) took 88
seconds on the KDF9 and the non-iterative version (c.f.
Ehrich and Koehler, 1975) took 85 seconds. In a further
experiment we applied the Fig. 5 algorithm for five different
choices of C,, ..., C¢ with |C;] = 10 foralli = 1,...,6. The
iterative version took 512 seconds, and the non-iterative version
took 311 seconds.

(This result prompted us to test a non-iterative version of a
similar algorithm that determines graph isomorphism
(Ullmann, 1976). For 20-point isomorphic random graphs with
average edge density 0-5, the non-iterative version was about
7% faster than the iterative version.)

The iterative and non-iterative methods erroneously output
some words not in the dictionary, owing to the use of n-grams
instead of straightforward dictionary look-up, and due to the
use of random superimposed coding. An experimental error
rate is quantitatively reported in the following section where we
are concerned with confusion sets that are more realistic than
the pseudorandom confusion sets used in the present section.
Such errors can be remedied by checking each output word for
membership in the dictionary.

6. Using n-grams to find all dictionary words differing by not
more than two substitution errors from a given input word

The methods of Riseman and Hanson (1974) only correct
errors that have been detected by the use of n-grams. To guard
against errors that change one dictionary word into another,
we may wish to find all dictionary words that differ by not
more than some given number of errors from a given input
word. To select just one of these words, we suggest that
syntactic and semantic techniques should subsequently be used,
but we shall not pursue this suggestion in the present paper,
which is concerned only with the use of a dictionary or n-gram
data derived from it.

Deletion, insertion and reversal errors will be dealt with in
Section 7. As a preliminary step, in the present section we only
find dictionary words that differ from an input word by up to
two substitution errors. We use the Fig. 5 algorithm with
C,, ..., Cq each initially containing all of the 26 letters of the
alphabet, and with condition (4) replaced by condition (5).
Condition (5) is a necessary condition for x;; to belong to a
dictionary word that differs from a given input word by not
more than two substitution errors.

To derive condition (5), let X’ be any word in W(Cy, . . ., C¢)
that contains x}; and differs from a given input word X by not
more than two substitution errors. On any given n-tuple, the
n-grams in X and X’ necessarily match in at least n-2 characters.
For instance 14B4, A2B4, 1234 match the 4-gram 1234 in at
least two characters, but 14BC does not. From the definition
of W(xij, Gy - - C,,) it follows that the n-gram in X " on an
n-tuple in N; belongs to the respective W(x{;, Cy,, - - -, C,,) and
matches the n-gram in X in at least n-2 characters. Therefore
x;; belongs to at least one word in W(C,, ..., Cg) that differs
from X by not more than n-2 substitution errors only if:
For every n-tuple in N;, W(x;;, G, - - -, C;,) contains at least
one n-gram that matches X in at least n-2 characters. 5)

Although, using (5), the Fig. 5 algorithm necessarily finds and
outputs all the required words, it also outputs a few further
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words incorrectly, owing to the use of n-grams instead of a
dictionary. To assess this failure (i.e. false output) rate quanti-
tatively we applied the algorithm to 100 different input words
(which were actually the 1st, 20th, 40th, 60th, . . . words in the
dictionary). To the same words we also applied the straight-
forward dictionary method that does not produce any false
output. For the 100 input words, the dictionary method out-
putted a total of 853 words, all of which were also outputted by
the Fig. 5 method. The total number of words outputted by the
45 x 100 _ < 40
253 5-3%.
This result was obtained using A = 524, b =3, and the
2,755-word dictionary of Riseman and Hanson (1974).

Fig. 5 method was 898, so the failure rate was

7. Finding all dictionary words that differ by not more than
two errors from a given input word
We now extend the technique of the previous section so as to
cope with insertion, deletion, and reversal, as well as sub-
stitution errors. By way of example we consider the problem of
finding words that differ by not more than two errors. To find
words differing by not more than one error the same technique§
can be used, but with L, instead of L,. 3
In a lineset we denote any line (i, i — 1) by a, any line (i, ig
by B, and any line (i, i + 1) by y. For example the linesets g
Fig. | are respectively B-BBBS, BBByyy, BBBB-o, yupBBB, where
'." indicates a field touched by no line. The linesets in Fig. 2§
are ‘B-BBp-, -aafBP, y-pB-o, yy-B-B, and the set L, can novg
be regarded as a list (or dictionary) of six-character strings®
such as these. S
Instead of using the term n-gram for an n-character subset of &
lineset, we use the term n-line, in the hope of avoiding confusionz.
For instance, y B -a is a 4-line of y-pp-a. We say that two words
match in a given lineset iff all the lines in this lineset link pairs 0
identical characters. For instance TOLVES matches STOVE
in the lineset -xaBBp, Fig. 2(b), and ROCKEN matches
BROKEN in this same lineset. We say that an input word X
matches an n-gram in a given n-line (on the same n-tuple as th%
n-gram) iff all the lines in this n-line link pairs of identical:
characters. For instance, WARENT matches A R AN i%
the 4-line y f -a. <
For use in the following work we record positionally, foE
each n-tuple, which n-lines occur in at least one lineset in Ly
and we call such n-lines stored n-lines. The set L, is used onlg
for determining the stored n-lines, and it is then discarded. §
In Section 2 we used linesets to determine whether any given-
pair of words differ by not more than two errors. Asa furth&é
preliminary step, we shall now use n-lines, instead of linesetsy
for this purpose. The input word is X = {x,... Xm}s ang
the dictionary word is X' = {x}, ..., X¢}. Corresponding to
the six dictionary word characters, let us initially construcg
subsets Ey, . .., Ei, . . ., E¢ of a, B, y as follows:

a€E;iff x; =
peE;iff x; = x; ,
yeE;iff xj = x4, .

1

¥20e |

Xi-1 >

Thus {E,, ..., E¢} is essentially the same as Alberga’s (1967)
coincidence matrix. Let L,(E;, . . ., Eg) be the set of all linesets
in which X matches X', such that the ith line (if any) of any
lineset in Ly(E4, . . ., E¢) belongs to E;, i = I,...6.
Corresponding to any n-tuple in N;, let {E;, E, - - -» Ex,} b€
the n-member subset of {Ej, . . ., E¢}. Let Ly(yijs Eiys - - - E.)
be the set of all stored n-lines that have y;; as one line, their
other n — 1 lines being in E,,, . . ., E,, respectively. If a lin_e
yij € E; belongs fo a lineset in L,(E,,..., Ee), then in this
lineset the n-line on any n-tuple in N; belongs to the set
Ly(yij» Exy - - Ev) which corresponds to this n-tgple.
Therefore y;; belongs to a lineset in L,(E;, . .., E¢) only if:
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Corresponding to each n-tuple in N;, L,(y; s Eigs - +» Ey,)

is non-empty. (6)

We remove from E; any line y;; that does not satisfy this con-
dition. We process all lines in E;, . . ., Eq in this way in turn
iteratively, until there is a pass through E,, ..., E, when no
further lines are removed. Experimentally we always find that
if E,, ..., Es are non-empty when this procedure converges
(terminates) then X matches X’ by a lineset in L,; and the
Fig. 5 backtrack algorithm need not be used. Our procedure
only works correctly when space characters are placed each side
of the input word and the dictionary word, and we process all
of the 70 possible 4-tuples of the eight fields. Intuitively, the
idea is that if two words differ by three or more errors, then at
least one 4-tuple will, so to speak, span three errors, so that the
stored 2-error n-lines required by (6) will not all be found.
This is why we have used 4-tuples and not 3-tuples. The space
characters deal with insertions and omissions of characters at
beginnings and ends of words.

One might perhaps think that the simpler procedure:

decide that X differs from X’ by not more than two errors
iff for every n-tuple L,(E,,, E,,, . . ., E, ) is non-empty

would be adequate, but it is not. For instance this procedure
erroneously decides that X differs from X’ by not more than
two errors when X' is 123456 and X is the three-error word
122445A6. Our iterative procedure does not make this
mistake.

We now finally turn to the problem of using n-grams to find
all dictionary words that differ from a given input word by up
to two errors. We use the Fig. 5 algorithm, starting with
E; = {a, B, v}, and C; comprising the 26 letters of the alphabet,
foreachi = 1,..., 6. We redefine L,(E,, . . ., E4) to be the set
of all linesets in L, in which the input word {x,,..., x,}
matches at least one word in W(C,, . . ., C¢), such that the ith
isin E, foralli=1,...,6

It is easy to see that y,; belongs to a lineset in L,(Ej, . .
only if:

* EG)

for each n-tuple in N, there is an n-gram in W(C,, Cips o v s
C,) such that x,, . . ., x,, matches this n-gram in an n-line
n LZ(y:j’ Ek;s ey Ek,,) (7)

Furthermore, let X’ be a word in W(C,, .
xij, such that X = x,,..., xs matches X’ in a lineset in
Ly(E,, ..., Eg). X matches the n-gram in X’ on an n-tuple in
N; in a lineset that belongs to L,(E;, E,,, ..., E, ) for that

n-tuple. Therefore x;; belongs to a word X only if:

for each n-tuple in N;, X matches an n-gram in W(x;

i’ Ck )
ij 2
.+ C)in an n-line in Ly(E, E,,, . . ., E,) . ®)

In the Fig. 5 algorithm we now use a version of the refinement
procedure in which each line in E;, . . ., Eq is removed unless it
satisfies condition (7), and each character in C,,..., Cy4 is
removed unless it satisfies condition (8). Our programming
technique is outlined below in the Appendix.

To implement conditions (7) and (8) in hardware it would be
possible to process sets of #-grams on all n-tuples in parallel,
and this might be faster than scanning through a dictionary as
in Section 2. In the course of the Fig. 5 algorithm it may be
necessary to execute the refinement procedure many times,
whereas the method of Section (2) scans through the dictionary
just once. Our method is unlikely to have any advantage over
the dictionary method except possibly when the dictionary is
very large and contains millions of words of different lengths.
Our method can easily be extended to cope with dictionary
words of varying length by employing special symbols to
represent spaces, and treating these simply as characters.
Although in the large dictionary case our algorithm may be
advantageous from the point of view of speed, this is certainly

. ., C¢) that contains
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not true of its software implementation on KDF9, and it was
not practical to assess the failure rate as in Section 6.

8. Conclusion

To make the automatic correction of substitution, insertion,
deletion, and reversal errors fast enough for practical purposes
it may be necessary to employ special purpose hardware instead
of relying purely on a general purpose computer. Finding the
principles of operation of this hardware is still a basic research
problem.

The present paper has worked towards a method of processing
a set of n-tuples in parallel, in order to attain speed in the realis-
tic case where the dictionary contains millions of words and
names. The main original contribution of this paper is a method
of applying n-gram techniques to linesets in order to capitalise
the fact that the number of distinct n-grams on a given n-tuple
that occur in at least one dictionary word is less than the
number of words in the dictionary if n is quite small (e.g.
n = 4). This paper does not disclose a new technique that has
already undergone a process of commercial development.
Instead it contributes to the pool of basic ideas from which
commercially useful systems will eventually be developed.
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Appendix

In the refinement procedure in Section 5 it is not necessary to
apply condition (4) separately to each character in each of
Cy, ..., Cgin turn. Instead we gain speed by implementing the
refinement procedure as follows. We process each n-tuple in
turn, and by way of example let us now consider the 4-tuple
that consists of the second, fourth, fifth and sixth character
fields. We define four sets C;, C;, C; and C} to be empty
initially. We generate in turn every possible 4-gram whose first
character is in C,, second in C, third in C5 and fourth in Cg.
Using the method of Section 4 we test whether each such
4-gram has occurred in at least one dictionary word. For each
n-gram that passes this test, the first character is entered into
C;, the second into Cj, third into Cj and fourth into Cj.
Repetitions of the same characters are removed from C;, C;,
C., C{. When every 4-gram for this 4-tuple has been processed,
C, is replaced by C,, C, by C/, Cs by C/ and C¢ by C;. After
all 4-tuples have been processed in this way, any character x; j
that remains in C; necessarily satisfies condition (4). To see why
this is the case, note for example that a character x,; in C,
necessarily belongs to at least one n-gramin W(x;;, C,, Cs, Cg).

In Section 6 we have used a similar technique to implement
(5). It is never necessary to scan through 26* possible 4-grams
on a given 4-tuple. Consider for instance the 4-tuple that
consists of the first four character fields. If x, is in C, and x,
is in C,, then we process in turn all 4-grams that consist of
X1, X, one character from C; and one from C,, applying the
method that we have just introduced above in the previous
paragraph. If x; is in C; and x; is in C5, then we do the same
thing with all 4-grams taken from x,C,x;C,. We process
x1C,C3x4, Cyx,C3x4, C;Cyx3x4, and Cyx,x5C, similarly, and
then replace C; by C1, C, by C;, C; by C;, and C, by C,. At
most we process at total of 6 x 262 4-grams, not 26*, for a
4-tuple.

In our programming implementation of the Section 7
technique, each n-tuple is processed in turn, and let us for
example consider again the 4-tuple that consists of the first
four character fields. Initially, C{, C;, C;, C; and four further
sets E{, E;, E5 and E, are empty. For each of the stored 4-lines
on this 4-tuple, the programme executes a procedure that is
best explained in terms of examples. If the first 4-line is BBBB
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then x,x,x;x, is tested as in Section 4 and entered into Cj,
C;, C3, C; if (3) is satisfied. If (3) is satisfied then B is entered
into E{, E;, E;, E;. If the next 4-line is B--B, then all 4-grams
that can be constructed from x,C,C5x, are tested as in Section
4 and entered into C{, C;, C;, C; if (3) is satisfied. If (3) is
indeed satisfied for any such 4-gram, then f is entered into E;
and Ej. If the next 4-line is BBy, then x,x,x,x; is tested as in
Section 4 and entered into C;, C,, C3, C, if (3) is satisfied. If
(3) is satisfied for this 4-gram, then B, B, y, a are respectively
entered into E;, E;, E; and E,. As a final example, if the next
4-line is y-By then all 4-grams that can be constructed from
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