Generic commands—a tool for partial correctness

formalisms

J. Schwarz

Department of Artificial Intelligence, University of Edinburgh, Hope Park Square, Meadow Lane,

Edinburgh EH8 INW

A semantic framework for logical formalisms based on partial correctness assertions of the form
P{S}Q is given. P{S}Q asserts that if P holds before execution of .S then Q holds after. Generic
commands are introduced. The generic command {P = > Q}isina sense the least specified command
with precondition P and postcondition Q. Proof rules and a noneffective semantics are given for
generic commands. A proof rule for recursive procedures is given using generic commands.

(Received October 1975)

1. Introduction

Hoare (1969) introduced the first of a family of proof systems
for partial correctness which are based on the linear represen-
tations of programs. The basic notation of these systems is what
I will call a partial correctness assertion (or assertion for short).
It has the form P{S}Q where P and Q are the precondition
and postcondition respectively, and S is the command of the
assertion. P and Q are expressions in some logical language
which has usually been taken to be the predicate calculus, and
S is a program or a program fragment in some programming
language. Moreover, the programming language and the logical
language must have some common structure, in particular they
normally share the atomic expressions commonly called
‘variables’ in logic or ‘identifiers’ in programming languages.
I will call these identifiers. I use this word to emphasise that
whether these items should be considered as fixed or varying is
a question of context.

One advantage of an approach using partial correctness
assertions over other methods of relating logical conditions to
programs (such as attaching them to nodes in a flowchart) is
that the proof systems have a form similar to that of con-
ventional logics. They consist of axioms, and rules of inference
with a conventional notion of proof as a sequence of lines
(or assertions) each of which follows from earlier ones via some
inference rule.

The first step in the analysis of a logic in this form is often the
development of a semantics for the lines of proofs (in this case
the assertions). That is, a criteria for when these assertions can
be said to hold. Based on such a semantics, we can ask questions
such as ‘Does every provable assertion always hold ?’ or ‘Is
every assertion which always holds provable 7", etc.

A development along these lines is not difficult, and can be
found for example in Igarashi, London and Luckham (1975),
Schwarz (1975) or Oppen and Cook (1975).

Hoare (1971) introduced a set of inference rules for programs
containing call statements. The rules for nonrecursive pro-
cedures fit into the logical framework, but recursive procedures
require the introduction of a new element, namely hypothetical
deduction. One of the hypotheses of the recursive invocation
rule is that a certain assertion is provable from another asser-
tion, which is written A F B. There are other logics (e.g.
Gentzen Sequent calculus) which permit lines of proofs to
contain ‘F’, and it is often possible to give this symbol a
semantic interpretation. However, in the case of recursive
invocation as presented by Hoare, one is forced to read ‘+’ as
‘provable’ and give the syntactic definition indicated above.
This means that the correctness of the rule must be shown by
an induction on the structure of possible proofs of the hypo-
thesis A + B. (Such a proof can be found in Igarashi, Londonand
Luckham (1975)).

This report presents a construction which leads to an inference
rule for recursive procedures which eliminates the need for a

Volume 20 Number 2

hypothetical deduction as an antecedent. The technique
essentially consists of introducing the ‘generic’ command which
can be used as a place holder for some other command when
we do not care about the detailed workings of the latter comy
mand. This is a formal device (similar to the possible 1ntro§
duction of variables standing for commands) for introducin
hypotheses. It does not greatly affect the effort needed to prove;
particular programs, but does simplify the study of the proof:.
systems. It should be understood that it is not the ehmmatlo@
of ‘F’ which creates this smphﬁcatlon but the provision of aE
semantic interpretation for every line in a proof @

In addition to their use in the rules for recursive proceduresy
generic program statements are interesting in their own righ
because they demonstrate a technique for using proof rules t&
determine the semantics of a programming language. That isy
given a programming language and a proof system for it, ong
can determine a semantics for that language which is ‘defined?
by the proof system. This should agree with the (formal o?\
informal) semantics which was in mind when the proof systeng
was designed. This process is dealt with in more detail 1rp_
Schwarz (1975).

In this report I will assume that the reader is familiar w1tl§§—
partial correctness assertions for imperative programmmgg
language features, such as assignment, conditional expresswns,\
etc. and with the following proof rules. I consider an axiom tcv1
be equivalent to a proof rule with zero antecedents.

Assignment: P{t/X){X := t}P

(where P{t/X) is the result of substituting ¢ for free occur
rences of X in P)

P{S}Q
P'{S}0
P{S}0
P{S}0Q’
P{S}QP'{S}Q
PAP'{S}OAQ

P{S}QP{S}O
PvP'{S}QvQ’

@ 0280Y /L

Consequence: (providing P’ > P is a theorem)

(providing Q > Q' is a theorem)

20z Idy 61 uo 3senb A

Conjunction:

Disjunction:

2. Generic commands

To avoid confusion among different kinds of syntactic objects,
I adopt the following convention. A ‘condition’ is a formula of
first order predicate calculus with function symbols and equal-
ity; a ‘command’ is a program or program fragment in some
unspecified programming language; an ‘assertion’ is a partial
correctness assertion with a precondition, a postcondition and
a command. P and Q will denote conditions; S a command;
and P {S}Q the assertion with precondition P, postcondition
0, and command S.

151

In reasoning about programs it is often convenient to make
some assumptions about the behaviour of a part of a program
without specifying either its complete behaviour or giving a
description of its inner workings. By postponing the speci-
fication of details this can be a great aid in the design of
algorithms. One technique for achieving this is the introduction
of nondeterministic features into a programming language, for
example the guarded commands of Dijkstra (1975). Generic
commands can be seen as a direct embodiment of this idea. If
we need a command which satisfies a given pre and post-
condition we simply construct it from those two conditions.
That is, we form a syntactic object from those two conditions
and call it a command. The semantics of this command will be
nondeterministic. Any effect which conforms to the specified
pre and postconditions will be permissible.

For example, suppose we need a command which computes
the square root of an integer. More specifically, if X is a posi-
tive integer before the command is executed then after execution
Y must be its square root. The corresponding generic command
would be written

(X>0=>Y><X<(Y+ 1)?*}.

This is called a generic command because it represents the class
of all possible commands S for which

X>0{S}Y? < X < (Y + 1)?
holds.

Actually this includes too many commands, for example
{X :=0; Y :=0}. A further fact is needed about the com-
mand S, namely that it does not modify X. Therefore in addition
to the pre and postconditions, a generic command must
indicate certain identifiers which are involved actively in the
computation. For the general form of a generic command we
have

{P => Q[4]}

where A is a list of the active identifiers, P is the precondition
and Q is the postcondition. All identifiers other than A4 are
called inactive identifiers of S.

These identifiers will be inactive not only in the sense that
their value is not modified but in the stronger sense that their
value is not examined in the course of the computation.

The square root example might now be written as

S={X=xAX>0=>Y?><x<(Y+ 1[X Y]}
What does this mean ? There are three cases. 1. The value of X
is the same as the value of x and greater than 0. Execution of S
must assign to Y the square root of this value. It may mean-
while arbitrarily (i.e. nondeterministically) assign a value to X.
All other identifiers must remain untouched. 2. The value of X
is not greater than 0. The precondition fails and S may
arbitrarily assign values to X and Y while leaving other
identifiers untouched. 3. The value of X is greater than O but
different from the value of x. In this case since x is inactive .S
cannot detect this inequality and must behave as though they
were in fact equal, i.e. as case 1.

As a further example consider a generic command which
exchanges X and Y

{X=xAY=y=>X=yAY=x[X, Y]} .
In fact a very useful form of the generic command is

X, =x A X, =x,...=>0[X, X;...]}
because Q can relate the values of the active identifiers after
execution to their values before ‘execution (as given by the
inactive variables). :

If Sis {P = > Q[A]}, the following new inference rules are
relevant. If A is a set of identifiers I will write A4 for a list of the
identifiers not in A.

Generic Axiom: P{S}Q
Stability Axiom: P'{S}P’ (providing all free identifiers of P’

152

‘command is then {P; => Q,;..

are in A)

P{S}0O
@P{S}A)Q’
(providing x € A) .

P{S}Q’
(V)P {S}(Vx)Q’
(providing x € 4) .

Existential Generalisation:

Universal Generalisation:

A precise definition of the semantics of generic commands will
be given below. For now the reader can note that the generic
axiom is the essential characterisation of the command; the
stability axiom is a consequence of the fact that S does not
modify the values of inactive identifiers; and the two generalis-
ation rules are consequences of the aloofness imposed on
inactive identifiers.

Application of the rules of stability and generalisation need
not be restricted to generic commands. Indeed if S is a more
conventional command (such as an assignment) they hold if
we take as the active identifiers the set of identifiers occuring
in S. In general associated with a statement S there is a
set of identifiers ¥ for which stability and generalisation are
given or can be derived. I will say the identifiers in V are active
in S, and that all others are inactive in S.

The point of the generic and stability axioms is clear. To see
the need for the generalisation rules consider the square root
example,

S={x=X=>Y><x<(Y+ 1)>’Ax=X[X, Y]} .
We want to prove true {S}Y? < X < (Y + 1)%. The generic
axiom gives x = X{S}Y? < x < (Y + 1)’Ax = X, and an
application of existential generalisation gives

@) = D{SIANY? < x < (Y + 1)’Ax = X) .
The desired conclusion will now follow by applications of the
consequence rule of inference, since the pre and postconditions
are logically equivalent to the desired ones.

The pattern of the above proof is quite common in working
with generic commands. First remove inactive identifiers from
the postcondition using consequence, and then from the
precondition using existential generalisation and consequence.

It is possible to extend the results of this paper to generic
commands with multiple condition pairs. The form of the
5P, => Q,[V]}, and the
generic axiom becomes:

P{P,=>Q;..;P,=> Q,[V]}Q;(for 1 <i < n).
This extension is carried out in Schwarz (1975).

3. Recursive procedures

The previous section introduced generic commands and stated
some inference rules for them. In this section I will present a
rule of inference for recursive procedures which utilises
generic commands. Without giving the details I assume that
there is a nonrecursive call command of the form {call f(A)}
where A4 is a list of actual arguments and f is a procedure.
f can either be a procedure identifier declared separately or (a
theoretically more tractable alternative) a lambda expression.
Further, I assume there are rules of inference which handle the
argument passing and other aspects of these calls, and will give
inference rules for recursive procedures which can be used to
reduce reasoning about recursive procedures to applications of
rules for nonrecursive procedures.

Suppose we have the recursive declaration, F = [f(X) = S1;
where f is a procedure identifier which can occur inside S and
X is a list of identifiers (the formal arguments). Consider a call
command {call F(A)}. To make the meaning of a call command
selfcontained and not dependent on external declarations I am
assuming that the actual declaration occurs in the command,
but of course various abbreviations are conceivable.

The Computer Journal

202 udy 61 U0 188n6 Aq 0Z80YH/1S L/2/0Z/31014e/|ufod/W0d"dno"oIePED.//:SARY W) PAPEo|UMOQ

Hoare’s rule for recursive invocation is:
F P{call f(X)}QFP{S}O .
P{call f(X)}Q
Note that the validity of this rule depends on the identity of the
actual and formal arguments. This rule represents an induction
on the depth of nesting of recursive calls, or alternatively on the
length of the computation. In this form it is difficult to give a
meaning to the antecedents of this rule. In particular, F is not
an assertion. If F is not made an antecedent but attached by a
proviso it is not clear how to handle the case of P {call F(X)}Q
failing to hold. A slightly modified version of the rule would be

P{call f(X)}QFP{S}Q
P{call F(X)}Q '

It is now possible to give a meaning to the antecedent of this
rule which involves variation of ‘f” over all possible procedures
(as is done in Donahue (1975)), but I will not pursue that
approach. Instead I present an alternative version of recursive
invocation which uses generic commands.

As above let F = [f(X) = S] and also let
F* = [MX)XP => Q0[V]] .
And assume that ¥ includes all active identifiers of S. My
version of recursive invocation is

Py{call FX(A4)}Q, P{SCF*/f>}Q
Py{call F(4)}Q,

where S(F*[f is the result of replacing free occurrences of the
procedure identifier f (i.e. not bound by declarations of recur-
sive functions) by F* in S, and P;, Q are any conditions. The
rule is another form of induction on the depth of nesting of
recursive calls. The actual manipulations in the proof of
P{S(F*/f>}Q will be essentially the same as those in the
hypothetical deduction of P{S}Q from P {call f(X)}Q. Some
steps may be simpler in my version because P and Q are
directly pre and postconditions of the body of F* and not of a
call command. This could simplify arguments relating to
parameter passing. My treatment also eliminates the need for
Hoare’s rule of adaptation which was required to take into
account the fact that certain identifiers do not change values
during the calls to f which occur inside S. Because F* will
actually be used in S(F*/f) the role of adaptation can be
played by the rules (such as stability) which are applicable to
nonrecursive procedures. ,
As an example of the recursion rule, consider factorial

Let § = {if X = 0then Y := 1 else call fact(X — 1, Y);
Y:=Xx Y fi}

F = [fact(X) = 5]

G ={X=x=>Y=x'AX=x[X Y]}

F* =[AX, Y)G] .
(Note that the form of G names X as an active identifier in
addition to Y because although during execution of S, X’s
value does not change, execution of S does require examining
X).
13 relevant instance of recursive invocation is
true{call F*(4, Y)}Y = A!
X=x{ifX=0then Y := lelsecall F¥(X — 1, Y);

Y =Xx Yfi})Y=xIAX=x
true{call F(A, Y)}Y = A!

4. Semantic framework

This section presents a version of relational semantics as a
general mechanism for dealing with partial correctness
assertions. (The reader is referred to Hitchcock and Park (1973)
for a more detailed treatment of similar semantics). ¥ assume
that the vocabulary (i.e. identifier, function, predicate and

Volume 20 Number 2

constant symbols) but not its interpretation has been selected
and fixed for the remainder of this paper. A structure M con-
sists of a set |M| and interpretations for function, predicate
and constant symbols as functions from |M| to |M]|, relations
over |M| and elements of |M| respectively. An environment e
(for M) is a list of elements of |M| corresponding in some
fixed order to the identifiers. For a condition P (i.e. a formula of
predicate calculus) there is a standard notion of P holding in
M for an environment e. I will write [P], for the set of environ-
ments in which P holds. For M the meaning of a command §
will be a relation [S], between environments (i.e. a set of
pairs of environments). In general if R is a relation I will write
eRe' for (e, ¢'> € R. The intuitive content of [S], is that
e[S]y € precisely when e’ is a possible result of having
executed S starting in the environment e. If for some e there
is no ¢’ such that e [S], €' then S does not terminate; if there
is a unique ¢’ then S is determinate; in the general case where
there is more than one e’ we are dealing with nondeterminism.
It will be convenient to have some notation for dealing with
environments. If ¥ is a list of variables I will write ¥ for the list
variables not in ¥ and e|V (e restricted to V) for the sublist of
which corresponds to the members of V. If in addition m is &
list of elements of |M| I will write e{m/V) for the uniqug
environment ¢’ such that e'|V = m and ¢'|V = e|V. 1 define th&
relation =, to be {(e, e'>:e|V = €'|V}. It is convenient to-
assume that the active identifiers of all commands are selected
from a fixed set 4, and the inactive ones from 4. Then anothe&
convenient notation is that e-e’ denotes the unique d such thaE_
d=,¢ and d= ; ¢. (A useful mnemonic is that ‘activel
lexicographically precedes ‘inactive’). Note that

(e-e)-e* =e-e* =e-(e"€e*) .
If P and Q are conditions let

[P— Qlu = {Ke,e>:e¢ [Pluore’ €[Q]u} -
A vpartial correctness statement P{S}Q holds in M ig
[STy = [P — Qlu- An equivalent characterisation of
P{S}Qholdingisthatife [S]y ¢ and e € [P] thene' ¢ [Q]pz
An important property of the meanings of commands is th%
fashion in which inactive identifiers are handled. I define twe
properties of relations between environments which will hol®
for all meanings. Let R be a relation o~
stability: if eRe’ then e = 7 €.
aloofness: if eRe’ then for all e*, (e-e*) R(e'-e*) .
Informally stability is the requirement that ‘inactive’ identifiers
are not modified by commands and aloofness is the requirement
that inactive identifiers are not examined. e
At this point I assume an arbitrary structure has been chosen}
and that all definitions and proofs are assumed to refer to this
structure. Therefore the structure will in general be omitted
from the above notations.

09°dno-olwape

80v¥/LGL/

20T |udy

5. Semantics of generic commands N
Within the framework of the previous section I will give a
definition of the meaning of generic commands. Since there is a
fixed set A of active identifiers I will drop the indication of
active identifiers from generic commands. Let G be the generic
command {P = > Q}. One might think that [P — Q] could
serve as the meaning of G. However it does not in general
satisfy either stability or aloofness. Consider for example
{x = X=>x= X} where Xe 4 and x € A. Suppose e is an
environment such that e¢[x = X]. Then e[x =X —
x = X] ¢ for any ¢, and clearly this violates stability. Let R be
[x = X—> x = X] n =; Then R satisfies stability, but it
still does not satisfy aloofness. To see this, suppose e ¢ [x = X]
then eR(e{m/X)) for any m. Let m* = e|X, and choose
m # m*. If R satisfied aloofness we would have (e(m*/x))
R(e{m| X Y{m*/x)). But e{m*/xye[x = X] and (e{m/X)
{m*/X) ¢ [x = X] which contradicts

153

Rc[x='X9x=X]].

A definition which does work is
[P=>0] =n {Ke, €' e): (e-e*) [P—Q]e’ and &' = ze*}

To see how this works consider {x = X = > x = X} where
Xed and xe 4. I will show that [x = X => x = X] =
{Ke,d):e|]X = d|X and e =;d}. Suppose e|X = d|X and
e =;d. For any e* let ¢ = d-e* then (e'e¥)[x = X —
x=X]e, ¢ = z¢* and e'-e = (d-e*)-e =d-e =d. Thus
ef[x=X=>x=X]d On the other hand suppose
e[X = x => X = x]d. That e = ;d is immediate. To see that
e|X = d|Xletm = e|X, and e* = e{m/x). There must be an e’
such that e-e*[P— QJe', ¢'|x = e*|x and €'-e = d. Since
e-e* e [X = x] thisimpliese’ € [X = x]andsod|X = ¢'|X =
elx = e*|x =m = e|X.

I now show that the rules of inference of Section 2 are valid
for generic commands.

Theorem 1:
Any instance of the generic rule holds.

Proof:

An instance of the rule is P{P = > Q}Q.

Letting e* = e in the definition gives

[P— Q] = {Ke,e'-e>: (ere)[P — QJe’ and e’'|4 = (e-e) |4}
Since e-e = e this implies [P = > Q] = [P — Q] which is
the desired conclusion.

Theorem 2:
The meaning of a generic command satisfies stability and
aloofness.

Proof:

Stability is immediate. To see that it satisfies aloofness replace e
in the definition by e-d (which has the same range of variation).
Then

[P=>0]

A {(e-d, ¢ -(e-d): (e-d)-e*[P — QJe’’

and ¢ =;e*}
=n {Ke-d,e'-d): e-e*[P — > Q]e and €' = z¢*}

Thus e[P = > Q]Je’-e implies e-d[P = > Q]e’-d.

Theorem 3:
If S satisfies stability and aloofness then the rules of stability
and generalisation are valid for S.

Proof:

(a) Stability. Recall that this rule allows inferring P{S}P
provided all free variables of P are in A. Then if e[S]e’, e
and ¢ agree on the free variables of P by the stability
condition. So e € [P] implies e’ € [P].

(b) Existential generalisation. This says that if x € 4 we can
infer 3x)P {S }(3x)Q from P{S } Q. Suppose P {S} O holds,
e[S]e’ and ee[(3x)P]. Then there is an m such that
e(m[xy €[P] and by aloofness e'(m/x)>e[Q]. Hence
e e[@xQ].

(¢) Universal generalisation. This says that if xe 4 we can
infer (Vx)P {S }(Vx)Q from P {S} Q. Suppose P {S} Q holds,
e[S]e’ and e € [(Vx)P]. Then for all m, e{m/x) € [P] and
by aloofness e'{m/x) € [Q]. Thus €' € [(Vx)Q].

Corollary 4:
The rules of stability and generalisation are valid for generic
commands.

In Schwarz (1975) I prove that if the rules of consequence,
conjunction and disjunction are added to the generic, stability

154

and generalisation rules then the system is complete in the sense
that any assertion with a generic command which holds in all
structures is provable. The essential step of that proof is a
construction which gives for {P = > Q}, P’ and Q’, formula R
such that in any structure M,

[Rly = [true]y if [P => Q<= [P'— Q' In -
A significant fact about generic command {P = > Q} is that it
is the largest relation compatible with the requirement that P
and Q are good pre and postconditions and which also satisfies
stability and aloofness. More formally we have

Theorem 5:
If S is a command satisfying stability and aloofness such that
P{S}0 holds, then [S] = [P => Q].

Proof-
[S] = {Ce, €'>: e[STe'}

= {e, e'-e): e[S]e'} stability
=n {{e e e):ee*[S]e - e*} aloofness
=n { e, &' -e):e-e*[S]e” and

e’ =;e*} stability
cn{{ee ey ee*[P—> Qe

and e’ = ; e*} hypothesis

=[P=>0]
On the basis of Theorem 5 we may say that the meaning of
generic commands is determined from the proof rules for it in
the sense that it is the largest relation which is compatible with
the assertions which can be derived from those rules and which

satisfies stability and aloofness. In general given any proof

system for partial correctness assertion we can find such
maximal meanings for the commands of the system which are
compatible with the proof rules and satisfies stability and
aloofness. A general construction for this can be found in
Schwarz (1975) where I also argue that a criteria for the ade-
quacy of a proof system should be that the relational semantics
given by this construction should agree with the ‘intended’
semantics.

6. Semantics of recursive procedures

There are several methods available for defining the meanings
of calls to recursive procedure. I will adopt one which gives the
meaning of recursive calls in terms of a sequence of non-
recursive ‘expansions’ of the given procedure. This has the
advantage of not requiring a detailed ‘description of the calling
mechanism.

In the rest of this section let F be the recursive function
declared by [f(X) = S]; let Sy = {true = > false}; let F, be
the nonrecursive procedure A(X)Sy; for n > 0 define S, ., and
F,, inductively by S,,; = S{S,/f> and F,,, = AX)S, ;.
Then I define

[call F(4)] = v [call F,(4)] .
n=0

Because S, contains fewer occurrences of calls to recursive
procedures than S does we may assume that each component
of this union has been previously defined. In order to verify the
validity of the recursive invocation rule it will bé necessary to
make certain assumptions about the nonrecursive calls in
terms of which recursive calls are defined. The requirements
would be met by any reasonable definition of calls to non-
recursive procedures.
Requirements:

1. All commands satisfy stability and aloofness.
2.If G, = AX)S*, G, = A(X)S** and [S*] < [S**] then
[S<G,I>] = [SKG./f>].

The Computer Journal

202 udy 61 U0 188n6 Aq 0Z80YH/1S L/2/0Z/31014e/|ufoo/W0d"dno"oIePEDE//:SARY W) PAPEo|UMOQ

Theorem 6:

If a relational semantics for a language with recursive and
nonrecursive calls satisfies requirements 1. and 2. then recursive
invocation is a valid inference rule.

Proof:
LetG = {P => Q} and F* = A(X)G. Then an instance of the
recursive invocation rule for Fis

Pi{call F(A)}Q, P{S{F*/f>}0
Py{call F(4)}Q,

Suppose the antecedents hold. I will show that for all »
[S.] = [G] and hence by 2. applied to {call f(A)}, [call F,(4)]
< |[call F*(4)]. By hypothesis [call F*(4)] < [P, — Q,].
Thus taking a union over n gives [call F(4)] < [P, — Q,].
The proof of [S,] = [G] is by induction on . [S,] = ¢ and

References
DuxsTRA, E. W. (1975).
DoNAHUE, J. E. (1975).

hence the base case is immediate. If [S,] = [G] then by 2.
[S,+1] = [SCE*If>] < [P— Q]. '

By Theorem 5 [G] is the largest relation smaller than
[P — Q] which also satisfies stability and aloofness. Since

according to 1. [S,,,] satisfies stability and aloofness
I]:Sn+1]] = I.[G]]

Acknowledgements

The results of this paper are taken from my dissertation (1975)
for which John Reynolds was a helpful adviser. Work on that
dissertation was partially supported by grants from the US
National Science Foundation GJ-41540 and ARPA 30602-72-
C-0003. Rod Burstall and David MacQueen read drafts and
made suggestions on presentation. Eleanor Kerse typed those
many drafts. The preparation of this paper was supported by
the UK Science Research Council.

Guarded commands, non-determinacy and formal derivation of programs, CACM, Vol. 18, No. 8, pp. 433-457.
The mathematical semantics of axiomatically defined programming language constructs, Proceedings of Symposium
on Proving and Improving Programs, Arc-et-Senans, France, pp. 353-370.

od

HircHCOCK, P., and PARK, D. (1973). Induction rules and termination proofs, Automata, Languages and Programming, (ed. M. vaat)é

pp. 225-251
HoaAreg, C. A. R. (1969).

E. Engeler) Springer Verlag, pp. 102-106.

An axiomatic basis for computer programming, CACM, Vol. 12, No. 10, pp. 576-580, 583.
Hoarg, C. A. R. (1971). Procedures and parameters: an axiomatic approach, Symposium on Semantics of Algorithmic Languages, (ed.

woJ) papeoju

IGARAsH]I, S., LonDoON, R., and LuckHaM, D. (1975). Automatic program verification I: a logical basis and its implementation, Acta

Informattca Vol. 4, pp. 145-176.

OppEN, D., and Cook, S. (1975). Proving assertions about programs that manipulate data structures, Proceedings of 7th Annual AC. M"’

Symposzum on Theory of Computing.

ScHWARZ, J. 8. (1975). Partial correctness formalisms, Ph.D. dissertation, Syracuse University, School of Systems and Information Science.

/-

Volume 20 Number 2

202 I1dy 61 U0 1s8nb Aq 0Z80vY/1LS1/Z/0Z/3I0MHe/|ulwoo w0 dnoojwapeoe,

155

