Problem orientated language for logic design

A. Kaletzky and D. W. Lewin

Department of Electrical Engineering and Electronics, Brunel University, Kingston Lane,

Uxbridge, Middlesex UB8 3PH

Existing specification methods used in computer aided design of logic systems are reviewed. A new
language, based on ALGOL 68 is proposed as a high level method of functional specification. The
implementation of some subsets of the language is described.

(Received July 1975)

1. Introduction

In the design of large digital systems, CAD techniques have
proved to be extremely effective. This is particularly so in the
production engineering phases of design where logistics and
documentation have been generated automatically, for example
the layout and routing of printed circuit boards, backplane
wiring, etc. However, very little work has been done in the
general area of logic circuit synthesis due mainly to the lack of
a suitable method of specifying many variable systems. One
logic design system which has been described in the literature is
the CALD (Lewin, Purslow and Bennetts, 1972) system which
handles combinational and sequential circuits with up to 20
variables, using batch processing techniques. A major dis-
advantage of this system is that the synthesis routines require a
tabular input to be specified by the designer which severely
limits the size of problem which can be conveniently handled.
One solution to this problem is to develop an interactive logic
design language which allows the designer to describe a sub-
system component from a standard teletype terminal. The
language should allow a partial specification of the logic
circuit to be declared (that is, only the pertinent input/output
conditions are required to be specified) with the computer
software continually assembling and checking the final tabular
description (or its equivalent). For example in the case of
combinational circuits, the designer would first declare the
number and type of input and output variables and then carry
on to specify the outputs required for a particular combination
of some subset of input variables. This is analogous to the usual
method of logic design where outputs are specified only for
combinations of input variables of specific interest.

In addition the designer should also be able to declare a
functional description of the circuit of the form x = f(y) where
x and y are input and output vectors and f"a functional relation-
ship which may be either a primitive or derived function.
Facilities must also exist for the specification of ‘don’t care’
terms. Another requirement is that the language statements
must be checked for logical errors and conflicts, in addition to
the usual syntax checking procedures. A conflict can arise in a
partial specification due to an output being simultaneously
required to be logical 0 or 1 or a ‘don’t care’ condition.

To achieve the necessary interaction the designer must be
constantly updated with computer adjusted messages informing
him of inconsistencies, errors and when further clarification is
needed.

In the system to be described the logical function of the circuit
is specified by a procedural description in terms of elementary
combinational operations. Emphasis is placed on the use of
‘don’t care’ terms and on the treatment of logically conflicting
definitions. In the case of sequential logic, the designer specifies
the control algorithm as a conventional flowchart, which is then
described using the design language and automatically trans-
lated into a state table description. A translator to the HILO
logic simulation language is also being developed (Flake,
Musgrave and Shorland, 1975; Flake and Musgrave, 1975).
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HILO is a structural hierarchical hardware specification
language capable of system simulation and fault insertion.
The language is approximately equivalent to a macro assembler,
the basic data objects being signal wires and bistables. Basic
functions are elementary logic elements—AND, OR, etc.
More complex functions are defined in HILO by structure§’
similar to FORTRAN subroutines and out-of-line functions3
An extension allows the behavioural specification of finite stat®
machines using a FORTRAN-like logical IF and GOTG
constructions and labels. =

In considering the language the basic approach has been t@
reject the purely behavioural, black box model of classncaﬁ
automata theory in favour of a functional or pseudo-structurat
concept. The value of this approach has been eloquently‘é
argued by Dijkstra (Dahl, Dijkstra and Hoare, 1972). W%
regard his arguments as no less applicable to logic desngrB
than to programming. o

Finally, although it has been argued that linguistic represeng
tations are less amenable to mathematical treatment thaxé
graphical ones, this does not appear to be inherent. Indeed, i
the linguistic specification is rigidly constrained by the rules og
structured programming it gives rise to a structure far SImple%
than, for example a Petri-net. (Petri, 1962).

Bearing these principles in mind a logic design language hasz
been proposed, based on ALGOL 68 syntax, which can act ag
the input medium for the CALD system. The language ha$>
been formally defined, and is described together with the>
examples of its use, in the following sections of the paper.

2. Language requirements
2.1. General
The general requirements for CAD systems imply that the%
specification procedures used must be as far as possible snmllalg
to existing deSJgn methods. Input procedures should be inter=.
active, and require the minimum of programming skill for their>
application. Automatic checking for errors and conﬂlctg
should be an integral part of the syntax checking routines. Th%
CAD system (in this case CALD) must be accessible throughy
a remote teletype or graphics terminal on a timesharing system.
Any software developed should be easily portable, allowing the
system to be operated on different computer installations.
Input procedures for CAD systems consist normally of two
parts: an overall command structure which enables the user to
interact with the program, and a problem oriented language
used to specify the system being designed. In view of the facili-
ties available in modern time sharing operating systems, which
enable many of the overall command structure requirements
to be implemented directly, the authors decided to concentrate
initially on the requirements of the problem oriented language.
The justification for this is that with modern editing techniques
(e.g. GEORGE 3 editor) the language can be a pseudo-batch
one in the first instance, with a large amount of interaction
being provided by the user editing source files. Initially, the
source file can be set up by using an interactive macrogenerator
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in which the actual parameters, rather than being specified after
each macro call, are input from the teletype when they are
required in the text.

Furthermore, as the system must be easily portable, and as
any user will have to be familiar with the operating system of
the host machine, it is proposed to use the host machine’s
editor. The macrogenerator should be a part of the CALD
system, but its development will be delayed until the target
language is ready.

The CALD synthesis modules require tabular input in the form
of ON and OFF vertex arrays and state tables. Thus the lan-
guage, even if it is to be based on a functional approach should
be capable of specifying subsystem components using Boolean
expressions. Facilities must also be available for the explicit
declaration of small truth tables. However, it is intended that
the language should be used primarily for the design of large
circuits. It is obvious that the use of a complete tabular
specification for large variable circuits is out of the question,
due to the excessive storage requirements.

2.2. Circuit model
The model used in the specification language considers a
combinational circuit to consist of ‘wires’ carrying ‘signals’
which can be 0, 1 or X (don’t care). These signals (shown in
Fig. 1) may be ‘rowed’ (to form a highway) so that a vector of
wires representing, e.g. a binary integer, can be treated as one
entity. Unlimited fan out is allowed from any signal wire.

The wires form the interconnection paths between com-
binational logic elements as in the usual logic circuit network.
Each element in the network has a set of input wires, on which
signals must be present before it can operate and a set of output
wires, on which it creates signals. The sequence of operation is
shown in Fig. 2, the outputs appearing after the input wires are
activated. The logic elements may be intrinsically defined in the
problem orientated language (using basic boolean connectives
such as v and A, etc.) or may be other combinational units,
defined by the des1gner elsewhere.

The operation of a model proceeds on a step by step basis
(corresponding to the ‘elaboration’ of its language description)
and is as follows:

1. Initially all wires are in the undefined state, with no signals
on them.

2. Signals appear on all input wires simultaneously.

a
.- -& wire
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[2]¢ . wire array (highway)
[+ —
(0]
¢ |
~— X Py wire with signal

Fig. 1 Signal/wire convention
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Fig. 2 Operation of logic element
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Fig. 3 Operation of subsystem model

3. All elements which have signals on each input wire and no
signal on any output wire are ‘operated’, i.e. create signals on
their output wires.

4. Step 3 is repeated until
5. All output wires have signals on them.

During this process (illustrated in Fig. 3) all signals including
the input ones, must persist on the wires on which they were
created. Note that the model can only represent combinational
circuits since feedback loops are prohibited by the condition
that all wires are initially undefined.
For example, Fig. 3 can be described by:
proc unitl = (signal a, b, c) [1:4] signal
begin signal x = aAb,
signal y = bve,
[1:3] signal w = unit2(—x, b),
signal u = yAb;
signal z = (w[1], w[2], w[3], v);
z comment this is the one statement allowed which
delivers the value of the result
comment
end
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Two approaches, not mutually exclusive, are possible for
extending the model to cover sequential circuits. The first is to
allow modes such as ref signal (a one bit store) and ref [1:7]
signal (a vector of n bits). This makes a sequential specification
similar to a conventional register transfer language. Parallel
operations can be specified as ALGOL 68 collateral clauses and
an algorithm for the extraction of control states exists
(Friedman and Yang, 1969).

Work is also being carried out in parallel on the specification
and evaluation of hierarchical (that is structured) complex logic
systems (Foo and Musgrave, 1975) and the language used in
this paper can be used for specifying the initial input procedures.

When specifying sequential circuits the basic storage require-
ments are satisfied by using the ALGOL 68 assignation. For
example, in the assignation a: = b; a is of mode ref signal and is
interpreted as the input to a bistable, whereas b can be either
of mode signal, in which case it is simply a wire, or if it is ref
signal; it is automatically ‘dereferenced’ to signal by the rules
of ALGOL 68. The dereferencing is interpreted to mean ‘the
wire with the output of bistable ’. From an input of this type
it is possible to generate a state table for the control structure
together with the corresponding data structure, as an input to
the CALD system.

The second approach is far more restricted, but has the
advantage of requiring a far simpler language subset and
corresponding to a well known manual design method—the
Algorithmic State Machine concept, described by Clare (1973).
The main simplification is that the data path (i.e. internal
storage and any combinational operators used) is excluded
from the sequential control unit being designed. Thus, there is
10 need to introduce ref signal for internal variables—the state
variables are implicit in the position of the language element
being elaborated. This model owes its ‘sequentionality’ to goto
statements and labels—it corresponds almost exactly to the
programming flowchart. It is in fact Clare’s class 4 machine.

The ASM approach has been selected for development
initially. This does not rule out the eventual implementation of
an integrated logic specification language, but at this stage it is
more advisable to separate the problems of control and data
path specification.

2.3. Language

Before a model of this sort can be processed, it must be des-
cribed to the computer in a suitable format. It was thought
advantageous to base the problem orientated language on the
syntax of a well established language structure, which alleviates
the design problem and increases the acceptance of the
language among users. Table 1 compares the distinctive features
of current high level languages which could be employed for this
purpose with what is available in low level languages.

Of the languages considered, PL/1 (Bates and Douglas, 1970)
was thought to have a syntactic structure which would be time
consuming and difficult to implement. Iverson (1972) (APL)
uses a peculiar symbol set, has some unfamiliar features (e.g.
evaluation of expressions from right to left), and tends to be
too concise—it is difficult to see (without some considerable
experience) what an Iverson program is intended to do.

ALGOL 68 (van Wijngaarden, Mailloux, Peck and Koster,
1970; Lindsey and van der Menlen, 1971) has several desirable
features—the distinction between reference to a value and the
value itself, the prelude in which operators may be defined,
and the capability of automatically selecting the version of the
operator suitable for the operands. In addition there is a very
powerful and convenient set of conditional clauses.

Using ALGOL 68 syntax the combinational units in the
model could be packaged as operators or procedures. The model
requires after a unit is elaborated, that its internal wires go into
an undefined state till the next elaboration. This is analogous
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Table 1 Comparison of high and low level languages

High level language Low level language

Semantics depend on context Semantics do not depend on
context

High object source ratios Low object source ratios

Possibility of statement No reordering or optimisation

reordering and optimisation

Library routines including Explicit calls to library

implicitly routines

Operators context sensitive Instruction always compiles

compile differently with the same op code

different operands

Many errors detected as Few errors detected as syntax

syntax errors errors

to what happens in ALGOL 68 (and 60) block structure with
locally generated objects.

3. Description of language o
3.1. Combinational networks g
As discussed earlier, the syntax of the language is based on a=
small subset of ALGOL 68. This enables Backus—Naur form,g
rather than the more elaborate two phase grammar expans1onQ
to be used for its formal definition, as shown in the Appendix.c
The definition of a combinational unit is packaged as an-
ALGOL 68 routine, that is an operator or procedure deno-—§”
tation. The routine consists of a header, specifying the con-:
nections between the unit and its environment, (i.e. them
interrelationships with other modules at the same system level)fgl>
the names and modes of input parameters, output mode, thes
name of the routine, etc. The header is followed by the bodyo
of the routine, which corresponds to the wires and operatorso
inside the model. 3

As the routine represents a combinational operator, onlyo
objects which have the mode signal (i.e. signal values which areg
attached to a name for the entire duration of the routine’ss
elaboration) are permitted. The mode ref signal, which woul
represent a store of one bit is forbidden.

Objects of the usual ALGOL 68 modes bool, int and references.g
to them may be used in a restricted sense, to make the speci,
fication more concise. They do not, however, have any physicals
interpretation in the model—thus they cannot be used a£
parameters or delivered results.

Objects of mode signal consist of an identifier associated w1thf<y
a value of 0, 1 or X (don’t care) or simply a literal value of2
0, 1 or X. The former case represents a wire with a signal on it
A constant signal may be associated with a wire by a declaration3
e.g. sngnal awire = 1. Note that wire awire will have a 1 signal@
on it in every elaboration. An input signal may also come in asg
a parameter; for example:

0c/e

proc aproc = (signal awire, bwire) signal:

¥20c 4

where wire awire is now the wire from the first input port. Note
that parameters are passed by value rather than by name or
reference since other mechanisms are not possible because of the
prohibition of ref signal. Alternatively awire may be the output
wire of an internal operator, such as:

signal awire = bwire + cwire

signal awire = add (bwire, cwire)
In the first case, awire is the output resulting from an instance
of the operator associated with the token + and the operands
bwire and cwire. In the second case, awire is the output resulting
from an instance of the unit associated with the procedure
called ‘add’ and having inputs bwire and cwire.

It should be stressed that these declarations are not store

assignments which in some languages are also denoted by the
token ‘=". In ALGOL 68 assignations are denoted by ‘:="and



are forbidden in the case of a combinational specification with
objects of mode signal. This is because any assignation which
has mode signal on its right hand side must also have mode ref
signal on its left hand side; this however would represent a store
and is therefore forbidden.

The declarations as described above are sufficient to specify a
combinational model. However, such a description would not
be elegant, and further facilities have been introduced to
facilitate circuit specification. For example, a vector (or row)
of wires may be represented by one identifier as:

[1:3] signal arow = (awire, bwire, cwire)

this being equivalent to:

[1:3] signal arow = ; arow [1] = awire, arow [2] = bwire, arow
[3] = cwire .

Note that brackets are used in the conventional manner to

indicate subscripting when row elements are used, and also for

declaring the dimensions of a row (in certain circumstances the

dimensions may initially be left undeclared).

Modes such as ref [] signal, ref [][] signal, ref [1:3] signal,
etc. are forbidden as they would represent storage.

Declarations of the form [a:b] signal arow =; are the only
non-ALGOL 68 syntactic construction in the language. They
serve to warn the translator that an object arow of mode [1:3]
signal will be defined by declaring its individual elements.
(Note that [] signal and signal are different modes.)

Facilities also exist in the Language for defining complex
operators such as exclusive or, comparator etc. in terms of
elementary operators or as primitives (if their hardware
implementation already exists). The constructions used are

priority {operator token) = (integer)

to define priority for syntax analysis and

op {optoken) = (definition of iogic <ircuit as with routine)
The second part of Example 2 illusirates the use of the exclusive
or operator.

An additional feature of ALGOL 68 is that the same operator
token (e.g. +) can represent many different operators, the
actual operator selected being dependent on the modes of the
operands. Thus

[1:24] signal a, b

[1:24] signal c = a + b
will select a 24 bit parallel adder but

[1:4] signal a, b

[1.4] signalc =a+ b

will select a four bit chip adder.

This feature is useful in descriptions of complex circuits
containing separately designed modules such as LSI chips.

After all the relevant signals have been declared, the next stage
is the elaboration of a statement which delivers the result of the
routine. The result may be of mode signal, [] signal, [ ][] signal,
etc. Note that it is impossible to have several alternative
statements in one routine. Loops are prohibited as they can
make the unit sequential.

3.2. Sequential circuit
We have chosen to base the sequential subset for initial
implementation on Clare’s ASM (Clare, 1973). Thus, the only
features necessary are a way of describing a state and a means
of selecting the next state. There is no necessity for explicit
variable stores—the only internal variable is implicit, the
current state.

Thus, the typical construction of a sequential specification is a
conditional:

label: if condition then out 1,/out 2, out 3, goto label 1
else out 4, goto label 2
fi

The label serves only as a target for a goto selecting the next
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state. The condition is a boolean expression made up to input
variables. The outs are output signals—technically, invocations
of procedures. Constructs separated by commas may be per-
formed in parallel, while those separated by semicolons are in
sequence. :

4. Implementation
At this stage, it was considered more important to study the
particular problems of logic design with text input rather than
engage in the development of sophisticated software with
complex syntax analysis, etc. To reduce the software effort,
small subsets of the language were selected for initial imple-
mentation. The aim is to deal with the specific problems of this
project while avoiding, for the time being, the general problems
of implementing a large and rich language.

These initial implementations used as research vehicles, will
indicate empirically which language features are of most use in
practical designs.

4.1. Combinational circuit

Input variables are declared in the header as described for the

full language. Output variables are declared as a single array

(Lindsey and van der Meulen, 1971) and indexed through to 20.
The basic construct selected is shown below:

if condition then signal declaration

else signal declaration
fi

Only output signals may be declared in the subset—internal
signals are prohibited.

The condition, if it is not a simple Boolean product, is
transformed into a sum-of-products form. The whole construct
is then repeated with each product as a condition.

ON and OFF terms are stated as lists for each output
variable. An

if simple product condition then signal declaration fi

construct can be added to the relevant list (or if the signal is set
to 1, off if zero, both if don’t care). However, the condition may
not include every input variable as a literal. Thus, either the
condition must be expanded to a large number of ‘all-literal”
conditions, or some reduced specification found. An obvious
solution is to use a data representation consisting of two words
per item above the bits in the first word indicate the presence or
absence of an input literal, and the second word their values.

Conflict checking is facilitated by this representation. The
criterion for conflict freedom is thateach new item added to one
list must have at least one input literal in common with each
item existing on the opposite list, and the value of that literal
must be different.

Although this criterion is expensive to evaluate in terms of
computation time, if the checking is done as the specification is
interactively input, the delay caused by checking will be small
compared to the general overheads of input.

4.2. Sequential circuit

The aim in this case was to translate the specification to the
HILO language (Flake and Musgrave, 1975) rather than
directly to a state table. In fact, the chosen method is to trans-
late to an intermediate language, from which HILO code can
be derived very easily. The intermediate language is also to be
capable of being easily transformed to a state table.

The intermediate language COLT is basically the specification
language with nesting removed. Nested if conditions are
removed by working out the complete condition on which an
output depends, and then reordering the conditions and outputs
so that the conditions most difficult to satisfy appear first. Thus

I: if a then if b then u else w fi
else if ¢ then x else y fi

The Computer Journal

202 udy 61 U0 188n6 AQ | G80TH/E9L/2/0Z/310ME/|UL00/W0d"dNO"oILLSPEDE//:SARY WO.) PAPEOUMOQ



m: comment next state description comment
is transformed to
! IF(a A b)) OUT(u)GO(m)IF(a)OUT(w)GO(m)
IF(c)OUT(x)GO(m)OUT(y)GO(m)
m

4.3. General

To satisfy the portability requirement the implementation
language for all software will be BCPL (Richards, 1969), which
is usable on many different machines and which is itself highly
portable.

As the user will have to be reasonably familiar with the
operating system of the host computer, it is intended to use as
much as possible of the available software. The overall com-
mand structure to control CALD will be, e.g. in the case of the
ICL 1900 series machines, GEORGE 3 macros. A sufficiently
comprehensive set of macros can be defined to make special
control software unnecessary. Initially, the host computer’s
editor will be used to provide interaction with the specification
source file. If experience shows this to be inadequate, it should
be easy to specify and write a special purpose editor.

5. Conclusions

A problem orientated procedure language for the specification
and design of combinational and sequential circuits has been
proposed. Initial work suggests that this language is a conven-
ient means of generating logic specifications using a practical
model easily assimilated by the designer. It has also been shown
that ALGOL 68 syntax provides a convenient basis for the
logic specification language.

Given the present level of technology, the partitioning of the
system being designed has to be done by the designer rather
than automatically by the CAD system. This does not limit the
designer in any way, since this is the natural method of design-
ing complex systems. However, it does mean that system opti-
misation is restricted to subsystem level. Currently work is in
progress on implementing the language subset, using BCPL
as the programming medium on the ICL 1900 range under
GEORGE 3 and on the PDP 11 under DOS.

6. Examples

This section illustrates some typical problems specified in the
design language. Example 1 is a functional representation of a
combinational circuit for code conversion, while example 2
shows the explicit declaration of a truth table. The specification
of a simple flowchart (shown in Fig. 4) is illustrated in example
3, with a more complex example, that of Clare’s blackjack
machine (1973), in example 4.

Example 1
comment this procedure converts four-bit BCD to excess-3 code
comment
proc excess3 = ([1:4] signal binary) [1:4] signal;
begin if abs(binary) 10 then [1:2] signal three = (1, 1);
binary + three
else (X, X, X, X)
fi
end

Example 2
comment this procedure converts from pure binary to Gray code;
the method of specifying a fully defined truth-table is illustrated
comment
proc gray = ([1:4] signal i) [1:4] signal:
begin if ; = (0, 0, 0, 0) then (0, 0, 0, 0)
elsf i = (0, 0, 0, 1) then (0, 0, 0, 1)
elsf i = (0,0, 1, 0) then (0,0, 1, 1)
elsfi = (0,0, 1, 1) then (0, 0, 1, 0)
elsf i = (0, 0 0) then (0, 1, 1, 0)
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nonrec in 0

recl

out101

!

Fig. 4 Flowcharts for example 3

elsfi = (0,1,0, 1) then (0,1, 1, 1)
elsfi = (0, 1, 1, 0) then (0, 1, 0, 1)
elsfi = (0, 1, 1, 1) then (O, 1, 0, 0)
elsfi = (1, 0,0, 0) then (1, 1, 0, 0)
elsfi = (1,0,0, 1) then (1, 1,0, 1)
elsfi = (1,0,1,0) then (1,1, 1, 1)
elsfi = (1,0,1, 1) then (1, 1, 1, 0)
elsfi = (1, 1, 0, 0) then (1, 0, 1, 0)
elsfi = (1, 1, 0, 0) then (1, 0, 1, 0)
elsfi = (1,1,0, 1) then (1,0, 1, 1)
elsfi = (1,1, 1,0) then (1, 0,0, 1)
elsfi=(1,1,1, I)then(l 0,0,0)

end

comment a far more elegant way of achieving the same result
comment

op ® = ([x, y] signal a, b) [x, y] signal:

begin [x, y] signal z =,

for i from x to y do

z[i] = (ali1v bli]) A —(ali] A BLiD);
z
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end
priority @ = 4
proc gray 1 = ([1:4] signal i) [1:4] signal:

begin [1:4] signal j = (0, i[1], i[2], {[3]);
i)
end

Example 3 (sequential)

comment this unit recognises a 101 sequence in a one bit input
Stream comment

proc recl01 = (ref proc out101, sigin in) void:

begin

nonrec: if in then goto recl else goto nonrec fi;

recl: if —in then goto reclO else goto nonrec fi;

recl10: if in then out101 else goto nonrec fi
end
Example 4

comment this is a description of Clare’s blackjack machine
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comment
proc blackjack = (ref proc HTVC, HADD, HT10, HJ50,
HT22, HK50, HCLS, IHHIT,
IHBRK, IHSTND,
sigin YCRD, YF50, YACE, YG16, YG2I1)
begin
b: HTVC;
a: skip, if YCRD then goto « fi;
¢: HADD, if —YF50v YACE
then HT10, HJ50, goto ¢
fi;
d: THHIT,
if YG16
then if YG21 then if YF50
then HT22, HK S50, goto ¢
else goto g
fi

else goto A

fi
else if YCRD then goto b
else goto d

fi

fi;
g: ITHBRK, HCLS, HKS50

if YCRD then goto b else goto d fi;
h: THSTND, HCLS, HK50,

if YCRD then goto b else goto d fi
end
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Appendix 1 Syntax of combinational language
{signal value) ::= |0|1|x]e]
x represents a don’t care output, ¢ an undefined (not yet defined)
signal and can be represented by a blank in the language.
(identifier) ::= |(letter)|<identifier ){letter)|<identifier)
(digit))|
{signal primary) ::= |{signal value)|{identifier)|({signal
expression)|(identifier)[({integer
expressions)]|{closed clause delivering
mode signal)|
all the identifiers above should refer to objects of mode signal
and [] signal respectively.
{sig value set) ::= |{signal primary)|{sig value set),
{signal primary}|
{sig value row) ::= ({sig value set})
The above construction is used to declare a row of signals
{rower) ::= |[]|[int value):int value)]|
[int value):{int value) at (int value)]|

{row primary) ::= |(sig value row)|{signal row expression)|
{closed clause delivering [] signal)|
{signal multiple declaration) ::= |(rower){identifier) =
|{rower)<identifier) =
{row primary))

Constructions involving int or bool objects and not signal are
defined as in ALGOL 68. Structures and unions are not
permitted.
{sigmode) ::= |signal|{rower){signmode}|
{redeclaration) ::= |[{int value)]<identifier) =

{signal primary)

References

Used to define signals on a row which is declared but not

defined.

{sig mode declaration) = |{signal declaration)|{signal

multiple declaration)|

{combden) ::= {combop)|{combproc)

A combinational unit is packaged as an operator or a routine.

{combop) ::= |Priority {opsymbol) = (digit) op
{opsymbol)({sigmode}, {sigmode})
{sigmode): {combody) | op {opsymbol) =
({sigmode))<sigmode) : {combody)

An operator is either dyadic with priority or monadic with a

priority greater than dyadic operators and the same for all

monadic operators. All parameters must be signals, so must the

result.

{combproc) ::= proc {identifier) = (combparmpack)

sigmode: combody
{combparmpack) ::= |{sigmode)|{combparmpack),

{sigmode)|
{combody) ::= begin {decprelude); {result interlude) end
{decprelude) ::= |{sigmode declaration}|

{interbool declaration)|
{decprelude), {sigmode declaration)|
{decprelude), (interbool declaration|
{decprelude); (redeclaration)|
{decprelude); (decprelude)|
{decprelude); {decprelude),
{redeclaration)
{statement) ::= |(intorbool statement)| goto (label)|
if (bool primary) then {statement)
else (statement) fi|
case {int primary) in {statement sequence)
out (statement) esac]|
{sigmode expression)|
{intorbool expression)|{label:statement}|
{clause delivering sigmode) ::= |(statement delivering
sigmode)|{statement)
statement delivering signal
The object delivered by a statement is the object evaluated last
during the elaboration of the statement.

(result sigmode) ::= |{clause delivering sigmode)|
{label: result statement)|
(result interlude) ::= |{result statement)|{result interlude)

exit (label): (result statement)|

Appendix 2 Standard prelude operators

Operator Operand 1 Operand 2 Result
=) signal signal bool
or [] signal or [] signal (truth value
> or bool or bool of
comparison)
# J or int or int
+ [ Isignal [ Isignal [ Isignal
- (arithmetic
* > function)
A
v
abs [Isignal int
(binary value)
~ signal signal (negation)
Other operators
for int and
bool as in
standard
ALGOL 68

BaTEs, F. and DoucLas, M. L. (1970). Programming Language One, Prentice-Hall, Englewood Cliffs.

CLARE, C. R. (1973).

Designing Logic Systems Using State Machines, McGraw-Hill, New York.

DaHL, O. J., DUKSTRA, E. W., and HOARE, C. A. R. (1972). Structured Programming, Academic Press, New York.

168

The Computer Journal

202 udy 61 U0 188n6 AQ | G80TH/E9L/2/0Z/310ME/|UL00/W0d"dNO"oILLSPEDE//:SARY WO.) PAPEOUMOQ



FLAKE, P. L., MUSGRAVE, G., and SHORLAND, M. (1975). The HILO Logic Simulation Language, Proceedings Workshop on Computer
Hardware Description Languages and Their Applications, New York.

FLAKE, P. L. and MUSGRAVE, G. (1975). A Digital System Simulator—HILO, Digital Processes, Vol. 1, pp. 39-53.

Foo, S. Y. and MUSGRAVE, G. (1975). Comparison of Graph Models for Computation and their Extension, Proceedings Workshop on
Computer Hardware Description Languages and their Applications, New York.

FriepMAN, T. D. and YANG, S. C. (1969).
Vol. C18, No. 7, pp. 593-614.

Methods used in Automatic Logic Design Generator (ALERT), IEEE Trans. on Computers,

IversoN, K. E. (1972). A Programming Language, John Wiley, New York.
LewiN, D. W., PursLow, E. J., and BENNETTS, R. G. (1972). Computer assisted Logic Design—The CALD System, IEE Conference on CAD,

IEE Conf. Pub. Vol. 86, pp. 343-351.

LinDsey, C. H. and VAN DER MEULEN, S. G. (1971). Informal Introduction to Algol 68, North Holland Publishing, Amsterdam.

PeTRI, C. A. (1962). Kommunikation mit Automaten, Ph.D. Thesis, University of Bonn. English translation: Communication with Automata
Supplement to RADC-TR-65-377, Vol. 1, US Air Force, Griffiss AFB, New York, 1966.

RICHARDS, M. (1969). BCPL—A Tool for Compiler Writing and System Programming, AFIPS Proc., Vol. 34, pp. 557-566.

VAN WUNGAARDEN, A., MAILLOUX, B. J., PECK, J. E. L., and KosTER, C. H. A. (1970). Report on the Algorithmic Language Algol 68,

Numerische Mathematik, Vol. 14, pp. 80-218.

Book reviews

Computers in Neurobiology and Behaviour, by B. Soucek and A. D.
Carlson, 1976; 324 pages. (John Wiley, £13-85)

Computer Technology in Neuroscience, by P. B. Brown, 1976; 650
pages. (John Wiley: Halsted Press, £17-75)

These two books are aimed at widely differing audiences. Conse-
quently it is perhaps most useful to treat them individually before
comprising their relative qualities.

Branko Soucek and Albert Carlson have considerable experience
in writing books about computing. This book, as its name implies, is
designed to provide the reader with an insight into the application of
computers to the life sciences. The problem is that it is extremely
difficult to provide useful information about data acquisition,
computer programming, signal analysis, and simulation, in the space
of less than two hundred pages. For someone fresh to the field,
chapter one, although rather short, contains some interesting ideas
on the mechanisms underlying neural processes. Unfortunately, the
next two chapters switch from biology to the logical operations
underlying the working of a computer rather rapidly.-It is also
difficult to believe that anyone trying to learn BASIC could get very
far with the aid of this book. Nevertheless, the mere fact that the
authors have included something on correlation and spectral
analysis might allow biologists unfamiliar with these techniques to
gain some idea of their importance.

Computer Technology in Neuroscience edited by Paul Brown is
aimed at a completely different audience, namely research workers
in the general area of neuroscience. A good deal of the material is,
however, fairly basic. For example the chapters by A. S. French,
while only providing an introduction to the analysis of neural spike
trains, do provide some very useful references and have the distinct
advantage of having been written by one of the leading people in the
field. One of the main disadvantages of the book is that there are
too many contributors which makes it rather long; consequently
one had the feeling whilst reading it that you were always likely to
pick up some useful ideas but a proper explanation of the work
described could only be obtained by reading the original papers.
Another difficulty is that the book, because of its origin in a sym-
posium, comprises presumably the extended versions of the papers
originally presented, it therefore lacks any real structure. The editor
has for example, made no attempt to group the chapters in any
definite way. In fact, there is loose grouping within the text, but
division of papers into proper subsections with the appropriate
editorial introduction would have helped enormously.

In summary both books have their good and bad points. Soucek
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and Carlson’s book is well laid out and is therefore readable. Its

disadvantages are that it tries, perhaps, to cover too much, tod.

. . . . D
quickly, and jumps too rapidly from biology to computer technologyg.h
Paul Brown’s book contains a great deal of valuable information fofs
research workers, the main difficulty being that it often takes ratheli
a long time to find it.
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Programs, Machines and Computation, by K. L. Clark and D.
Cowell, 1976; 176 pages. (McGraw-Hill, £5-25)

Programs and Machines, An Introduction to the Theory o
Computation, by Richard Bird, 1976. (John Wiley, £7-90)
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As their titles suggest, these two books cover the same groundd
indeed, since all the authors acknowledge Scott (1967) as theig.
inspiration, their similarity is even less surprising. 5
Each book covers adequately the definitions of machines and the:
establishment of the correctness and equivalence of programs. Botl
are intended primarily for computer science undergraduates an@
have been field tested in the authors’ own teaching establishments:’
The authors assume, very reasonably, that their readers will have &
minimal pre-knowledge and a willingness to learn. Any reader whos
is unfamiliar with ‘modern mathematical notation’, and that includeg
most of us over 30, will find that these books are not too easy te!
read. They need to be studied carefully, which is not a bad propertg
of a book intended for undergraduates. Having read both of them
within a short time I am unable to decide if my clearer understanding
of the one is simply due to my having read the other first. Both books’
are well presented and substantial; neither is too expensive by today’s.
standards. g
On the whole I feel that either of these books represents a good bug
for a student involved in the second and third year studies of most,
good computer science courses; there are more exercises in Bird but
the Clark and Cowell is cheaper. I shall recommend to my students
(and colleagues) that they invest in Clark and Cowell, mainly
because of the price and a common affinity for the thinking of
Dijkstra et al.
1 leave the denotation of the (not many) typographical errors as an
exercise for the (I hope many) readers.
ALAN CHANTLER (Yelvertoft)
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