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1. Introduction

There are many automatic quadrature routines in existence
and more are being constructed daily. A few of these have been
published in the open literature. Most subroutine libraries
contain several locally developed automatic quadrature rou-
tines. There are many reasons for this proliferation, the principal
one being that there are no generally accepted standards or
benchmarks by which one routine can be compared with
another. Thus, any individual who cornstructs a routine can
find some problems for which it is more efficient than an
existing available routine, and with this evidence, arrange for
its inclusion in the local subroutine library. Existing routines
are not removed because there are other problems for which
they are more efficient than the new routine.

It is generally agreed that the structure of automatic quad-
rature routines is sufficiently complicated to preclude the
possibility of comparison or evaluation by analytic means and
that numerical experiments have to play a basic role. The
questions to which we devote ourselves in this paper are how
such experiments should be constructed and how their results
should be interpreted.

In Section 2 we discuss the background of the testing problem.
In particular, testing automatic quadrature routines is intrin-
sically more complicated than testing simpler function evalu-
ation routines. We describe briefly some previous work in this
area (the Battery experiment) and draw attention to some of its
defects.

The balance of the paper is devoted to describing and discus-
sing a new evaluation technique. We term this the performance
profile method since it is motivated by the nature of the per-
formance profile described in Lyness and Kaganove (1976).
We draw heavily on the discussion in that paper which we refer
to as CAQR.

In Section 3 we introduce problem families and report on the
form of our experiments which produce statistical distribution
JSunctions. In Section 4 we describe how a problem oriented user
might use these statistical distribution functions to decide
between various automatic quadrature routines. The discussion
leads naturally to the suggestion that a quantity denoted by
V(Equad(S, &q)) be used as a basis for comparison of different
routines. Briefly, v(E,,,4(s, &.q)) is the average number of
function values required by the routine to integrate members of
a specified problem family when the quadrature routine toler-
ance parameter has been set in such a way that an accuracy
&eq 1S Obtained with probability s.

In Section 5 we discuss the sort of results obtained in this way,
illustrated by graphical machine output using three rather
mediocre routines from our local library. An important
experimental result is that the results of comparisons based on
V(Equad($, &q)) are almost independent of the value of s

assigned for the comparison. If this were not the case, the
technique would not be of practical use.

Finally, in Section 6, some of the deeper implications of this
technique are discussed.

2. Background: the battery experiment

The problem of evaluating and comparing numerical software
is not new. Considerable success has been achieved in this field
for many types of numerical software. However, for software
dealing with the more sophisticated problems, serious questions
about evaluation remain.

There seems to be a natural division of software into problems
for which a finite decision process is known, and problems for
which it is known that no such process exists. This is discussed
at some length in our previous paper, CAQR. In this paper we
deal specifically with automatic quadrature routines which have
a calling sequence of the type

QUAD(A,B,EPQUAD,FUN, .. .) .

The features which such routines have in common, but which
are not shared by routines based on a finite decision process,
include the following:

1. It is possible for the routine, however well coded, to return
an entirely incorrect result. This happens because the exact
arithmetic algorithm on which it is based is unreliable, and
this property is quite independent of machine arithmetic
characteristics.

2. There is a cost versus reliability trade-off. One can alter any
routine to make it significantly more reliable, if at the same
time one is prepared to make it significantly more expensive.

3. Minor changes in the choice of integrand function may lead
to major differences in performance. (This is a consequence
of the nature of the performance profile discussed in CAQR,
Section 3.)

These properties make comparative evaluation a difficult
process. This paper is devoted to the design of a sophisticated
testing procedure which can differentiate between several
different routines, all of which have these properties.

In the discussion we use the following notation:

&quaa- the value of the input tolerance parameter EPQUAD.
&q - the tolerance required by a user.

& . the accuracy of the result actually returned by a
routine.
v : the number of function values required by the routine.

To illustrate the basic difficulty we consider an isolated set of
results. Suppose, for a specified problem P,, we use three
different routines Q,, Q,, Q3 with &4, = 107 % and the results
are as follows:
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Q18 =005 x 1073; v =220

05 6 =02 x 1073; v =200 »P,

Q3:6 =11 x 1073 v =100
The question is: ‘Which is the better routine for this problem
and this accuracy ?” One can make good arguments in favour
of any of these by using different bases for comparison. Sup-

pose one carried out another experiment using a slightly
different integrand function and found

2.1

Q16 =08x1073; v =180
0506, =500 x10"3; v= 30 »P, . 2.2)
03:6=01x1073; v =210

It is unlikely that the same basis for comparison would yield
the same choice of routine.

Even with this basic situation, it might be hoped that if one
carried out a sufficiently large number of numerical experiments
using many different integrand functions, the overall results
would reveal some recognisable trend of preference. Two major
attempts in this direction are fairly well known, and have the
same overall structure. One of these, reported in Casaletto,
Picket and Rice (1969) was carried out at Purdue University.
The other, reported in Kahaner (1971) was carried out at
Los Alamos Scientific Laboratory. We refer to these projects as
battery experiments and we describe one in broad outline.

Kahaner’s investigation involves Ny(= 21) different integrand
functions, together with limits of integration, and Ny(= 11)
different automatic quadrature routines. Each integral is
evaluated by each routine using Nz(= 8) different tolerances

£quaa- Since the true value of the integral is known in each case,
he obtains from each of these NpNyNy(= 1848) runs two
results ¢,., and v. Kahaner also recorded the machine time. In
his article, Kahaner gives complete details of the N, different
integrand functions, and source listings of each automatic
quadrature routine for which a readily accessible reference is
not available. He also gives the complete set of results for three
of the values of £g,,4. This list of 3NPNQ( 693) triplet entries
occupies 17 printed pages.

Thus, this project is exceptionally well documented. Any
reader may examine the results and, if he wishes, form his own
conclusions. But such an examination of the results shows that
it is very difficult to extract from them much in the way of an
overall conclusion. Most routines did very well in some
problems and very badly in others.

Kahaner’s experimental technique is completely objective; if
among his routines there had existed one overall superior
routine, this investigation would have found it. However,
interpretation of these results turned out to be quite subjective.
In the end, based principally but not exclusively on an ‘average
reliability’ and an ‘average speed’ for each routine, Kahaner
selected three for the Los Alamos subroutine library.

Our objections to the battery experiment turn principally on
one key aspect. This is, that in an attempt to obtain wide
generality, the integrand functions are chosen to be ‘as different
from each other’ as possible.

The obvious consequence is that one does not use integrand
functions which are close to one another. For example if P,
(the problem whose results are listed in (2.1) above) is included
in the list of integrand functions, then P, (the neighbouring
problem whose results are listed in (2.2)) is not included. Since
the results for P, and P, are so very different from each other,
it is unfair and may be misleading to include one but not the
other. If the results for P, are included and the user’s problem
happens to be P,, he may imagine, incorrectly, that the P,
results are -applicable to his problem too. Such a conclusion
would be valid only if the performance profile were smooth.
Since this is not the case, the problem oriented user can be
grossly misled.

An incidental defect, which could easily be corrected, is that
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the lack of fairness in choosing the first integrand rather than
the second—or vice versa—is compounded in these experiments
for the following reason. In Section 3 of CAQR, it was pointed
out that if a chance failure occurs at a particular tolerance, a
failure due to the same basic cause may occur at stricter toler-
ances. Thus, an unlucky choice of integrand function for some
routine may involve it in more than one failure.

The present authors, in designing the ‘performance profile’
evaluation technique, have been motivated by this unfair aspect
to carry out much more extensive experiments. By using a
problem family of similar integrand functions (defined in the
next section), we essentially include both P; and P, and many
other neighbouring integrands. By the same token, it turns out
that, based on the results for a problem family, a problem
oriented user can take advantage of only those sections of the
overall results which seem to apply to his problem. This has
led: to other complications which are described in the next
sections.

3. The statistical distribution function
The technique which we shall propose is based on the nature ofj
the performance profile which is discussed in detail in Sectlom
3 of CAQR. If we are interested in a particular attribute of aw
integrand function we choose a problem family, each of whosg-
members has this attribute. An individual member of a family.
is specified by assigning a numerical value to an additiona}
parameter A, which may appear in the integrand function:
f(x; 2), or in the integration limits a(A) and b(1). A may take
any value within a specified range, ie. Al_ <A <Ay As am
example one problem family is specified by

a=1,b=2

G ) = p((x — A + )" p =001 Q.

0-998 < 1 <2:02
Each member of this family has a peak of height 100 and half
width 0-01 within or very close to the end of the integratio
interval. The exact value of the definite integral is of order I;
specifically between 1-00 and 3-12.

If our numerical experiments are limited to a single automatx%
quadrature routine (or algorithm) and a single problem family;
then each individual experiment or run may be specified by
two (1nput) parameters A and &,,,4. Corresponding to eaclg
such pair we may define &,.(4; squad) the error |If — Qf| of
the result returned by the routine (or algorithm) and 8
(4; €quaa) the number of function values required by the routiné
to return this result. A plot of the function &,.,(4; &4yad) agamsg
4 for a fixed value of ¢4, is a performance profile. This 15
illustrated in CAQR (Fig. 1). Z

A fundamental property of automatic quadrature routmei
is that the functions ,(4; &quaa) and V(4; &quaq) are rapidl
varying discontinuous functions of A. (As functions of Equal®
they are generally p1ecew1se constant and usually but nof; .
invariably monotonic increasing and decreasing respect1ve1y§
Because of this they are not suitable as a direct measure of the
efficiency of an automatic quadrature routine.

The difficulties encountered in interpreting battery type
experiments may be traced to this property. By relying on
individual values of the input parameters A and &,,,q One has
introduced into the results a significant arbitrary component
which we believe is responsible for frustrating the evaluation
process.

As the basis for our evaluation technique we have introduced
measures which treat the problem family as a whole. One of
these is

._.
00'dne’oiwaped

(3.2

1 A+
v(squad) = /l — l_ J:\_ V(A., 8quad) di

an average function value count.
In the context of class 1 software (see CAQR, Section 4) the
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Fig. 1 The statistical distribution functions ¢(req, £quaa) as a
function of &req for Problem family (3.1) and routine ANC4

root mean square average of ¢,., is a simple and useful measure
as errors arise mainly from machine arithmetic and are rarely
greater than three or four units of the machine accuracy
parameter. However, with quadrature routines there are usually
a few very large errors and this sort of average would be unduly
influenced by individual wild values. Instead we retain the whole

distribution function
Proportion of values of A for which
P(x; equaa) = (
quad Igact(l; equad)l <Xx

) 3.3)

1 A+
= = | A~ e DD 2
where H(t) stands for the unit step function (Heaviside
function)
1t>0
Ht)=121t=0.
0r<0
We calculate these quantities using Monte Carlo integration to
approximate the integrals in (3.2) and (3.3). Thus we make m
runs to obtain a set of results:
€act(Ai5 Equad); V(Ai5 Equaa) i=1,2,...,m .
The values of A are chosen from the range (A_, A,) using a
(repeatable) random number generator. The quantities
N m

(3.4)

1
Vnlbaud) = = Z Wi Equea) 3.5)
i=1
and
63 quaa) = 1 (Number of va¥ues of i for which)
m Ieact(li’ 8quad)| <x
1 m
= y_n i=21 H(x - leact(li; 8qua\d)l) (36)

are approximations to (3.2) and (3.3), respectively.

As in any statistically based experiment, the size of the sample
used has to be chosen with care with a view to the accuracy
required in the results. Naturally, in our experiments we have
attempted to do this. But one of the advantages of this approch
is that in cases of subsequent doubt or disbelief in the data on
which the conclusions are based, the distribution function can
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be recomputed by any interested person, and conclusions can
be altered if significant differences are found. Once a problem
family is defined, and a quadrature routine is chosen together
with a value of &g,,q4, the functions ¢(x; £;,,4) and v(eguaq) are
well defined and can be determined. What we have described
above is one method of doing this.

We have found in practice that relatively small values of m,
such as m = 100, are sufficient to obtain a clear idea of the
form of these functions. However, we have been very cautious
in any experiment whose results are recorded and have generally
used m = 1,000. We believe that this has produced ¢(x; &4yaa)
to within 19} for most of the range of x. Specifically for values
of x for which

0-01 < @(x; €quaa) < 0-99
the approximation satisfies

ld)m(x; equad) - ¢(x’ squad)[ < 0-01
and

Ivm(aquad) - v(equad)l < 0-01 v(squad) .
Spot checks have indicated that the accuracy is better than this.
We shall assume henceforth that this calculation has been
properly carried out and that the functions ¢(x; ey,.qe) and
V(equaa) are available to the required accuracy.

In Fig. 1 we illustrate the nature of the results we have
obtained. Here the problem family is the one defined in (3.1)
and the routine is a local one called ANC4 (an adaptive
Newton Cotes routine). Portions of distribution functions
&(x; &442q) €Xpressed as a percentage are shown for a range of
values of gg,,4. In practice, except in the case of a few pilot
calculations, these statistical distribution functions are not
plotted. The information from which they could be plotted is
retained on tape and used directly to obtain such quantitative
results as we may require. The illustration is useful in the con-
text of describing precisely what data is being calculated and
in describing the subsequent use made of this data.

Each curve is labelled with the value of &,,4 and in paren-
theses the value of v(gy,,q4). The ordinate is not linear but is
scaled in such a way that if log ¢, were normally distributed,
the curve would appear as a straight line. The parts of the
curves not illustrated (i.e. ¢ > 98% and ¢ < 2%) reflect a
distribution with a more pronounced tail than a normal
distribution. The ‘bumps and wiggles’ in these curves arise
from the nature of the performance profile.

4. Comparing different routines

A set of statistical distribution functions of the type illustrated
in Fig. 1, corresponding to different problem families and differ-
ent automatic quadrature routines, provides a wealth of
information which experts might spend a great deal of time
examining with a view to determining defects or advantages of
particular routines in various contexts. However, we are
primarily concerned here with providing a non-expert, the
user, with information that he might require for his particular
problem. To this end we discuss in this section how a
sophisticated user might use this information. Then having
determined what he would do, we automate this process. Instead
of presenting to the user the raw statistical distribution
functions, we present the required information in graphical
form.

It seems most unlikely that a particular user will ever have a
problem which coincides precisely with a member of a problem
family which has already been investigated. But it has been our
experience that, in any difficult problem, there is a salient
feature of the integrand which is primarily responsible for
difficulties to be encountered in numerical integration. If this
feature can be isolated one can, as a practical measure, proceed
on the basis of statistics obtained for a problem family having
only this feature. Either such statistics would be already
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available or they could be specially obtained.

By way of illustration, we suppose that the dominant feature
in the user’s problem family is a peak of the type which occurs
in the problem family described in the previous section (3.1)
and that he requires an accuracy ¢, = 10~ 3. He has a choice
of three automatic quadrature routines, called ANC4,
ASIMP and ROMBERG, and for each he has available a set of
statistical distribution functions- corresponding to problem
family (3.1).

First he might examine the situation with respect to ANC4.
If he goes straight ahead and sets &, = 1072, reference to the
Fig. 1 shows that he has a success probability of s = ¢ (1073;
1073) = 79:7% and that v(10™3) = 73-3. That is, he must
expect to obtain a less accurate result one time in five and the
cost, on average, will be 73-3 function values.

If he would like to increase his success probability, he can do
so simply by using a smaller value of &,,4. Thus, if he uses
€quaa = 107°"%, he has a success probability of obtaining
Eeq = 1073 given by ¢(1073,107%%) = 96-1%. Naturally,
he pays for this in terms of additional function values, i.e.
v(1073%) is 82-3. If he uses &y, = 107%, he increases this
success probability to ¢(1073, 107%) = 99-8% but the average
cost is now up to v(10™%) = 97-4.

Thus, to make effective use of this routine in this class of
problems, the user has to decide both the accuracy he requires
and the probability of success he is prepared to pay for in
terms of function values. Once he has fixed these parameters,
he may use the figures given here to find what value of &;,,q
to use and what it is likely to cost.

Placing the onus on the user to provide a success probability
is a departure from the normal practice. If he declines to state
one, he may simply use &,,,4 = &, and this is done for him by
the code—usually in rather an arbitrary fashion. As a sub-
jective comment, it seems to the authors that the user should be
warned unambiguously that the routine may fail, in fact that
statistically it will fail. He is more likely to take this warning
seriously if he is asked to state. what he wants his failure rate
to be, or more precisely, what success probability he is prepared
to pay for in terms of number of function values. The result of
even putting questions like these to a user can only be favour-
able. Possibly the best result would be for him to avoid the use
of the relatively expensive automatic quadrature routine, and
to code his own special integration in a more reliable manner,
taking into account special features of his problem. But even
if he does go ahead and makes use of an automatic quadrature
routine, he is at least clear in his own mind about the nature of
the gamble he is taking.

The authors’ main criticism of most of the documentation we
have seen on quadrature routines is that this fundamental
aspect of the whole problem, far from being clearly spelled out,
is usually suppressed. The user is often led to believe that only
in really pathological cases is there any significant chance of the
routine failing at all. The truth seems to be that for moderately
difficult integrand functions, if a reasonably economical
routine is used, following the instructions, it fails about 5 to
15% of the time.

Returning to the problem at hand, let us suppose that this
user is definitely going to use one of his three automatic
quadrature routines and decides that s = 909 is sufficient.
By means of a double interpolation process on the curves in
Fig. 1, he can determine that if he sets g,,q = 1073'3 then
H(Ereqs Equaa) = ¢(1073;1073°3) = 90%. The average cost is
W(€quaa) = ¥(1073°3) = 78:7. It is convenient to denote by
E .4, the value of gg,,4 chosen in this way. E,,q is a function
of s and ¢.,. The colloquial manner in which this user could
justify this decision is to say that he has decided, on the basis
of the curves in Fig. 1, to introduce a safety factor 10~°'3 into
£quad SO as to increase his success probability from 79-79; to
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90% and his average cost from 73-3 to 78-7.

This is the situation with respect to ANC4. Now, having
decided his two parameters s = 90% and &,,, = 10” >, he may
apply the same procedure to the statistical distribution curves
corresponding to ROMBERG and ASIMP. These curves are
not given here, but the result is

Equaa = 10721 and v(E,,,s) = 480 for ROMBERG
and
Equaa = 10727 and v(E,.g) = 71 for ASIMP .

Based on these cost estimates, he may conclude that for these
parameters ¢, = 107 % and s = 90%; and this sort of problem
(3.1), ROMBERG is far more expensive than the other two
routines. Of these other two, ASIMP is the more economical
but by a very small margin.

The process by which E_,,4(5, &q) and V(E,,q) are obtained
from the statistical distribution function is a standard procedure
involving interpolation. There is no need to burden a prospective
user with this calculation. For his purposes a plot of E,,4(S; &req)
and v(E_,,4(S, &.q)) is sufficient and plots of this type may be
obtained automatically. Figs. 2 and 3 are plots correspondin
to the problem discussed in this section. These provide thé
results required by the user for a wide range of g, witg
s = 90%. 2

The prospective user need only glance at Fig. 3 to obtain &
clear idea of the relative cost involved using these three routineg
when he assigns s = 90%. We consider the question of thg
effect of the choice s = 90% (rather than say s = 80%) on th&
outcome in the next section. 8

We close this section by drawing attention to the fact that thg
quantity E_,,4(s, &.q) plotted in Fig. 2 is an approximation to a
well defined functional of @(x; &,,,4) Which is defined in (3.633

namely: ©
o

; 3
Definition: g
Given s and &,.q, Egy04(S, &.q) is the smallest positive value %
Equaa fOr which g

£
A=)

§ = ¢(8req; 8quad) .

For certain values of s and &,.q, Eguaa(S; &.q) may not exist. Fq%
example, a quadrature algorithm which employs a maximum of
thirty function values may be incapable of obtaininge,., = 10~ 1%
with a success probability of 90%;. S

Thus the quantities plotted in Figs. 2 and 3 are approximation3
to mathematically defined quantities based on definitions (3.2
(3.3) and (4.1). We have calculated these using Monte Carlg
integration and interpolation. They can be verified (or shown t&
be inaccurate) by any independent computation.

dy 6} uo

5. Discussion and practical organisation

Fig. 3 illustrates the cost of using any of three routines o%
members of a single problem family when one requires &
stated accuracy ., Wwith statistical confidence s = 90%-
Leaving aside other routines for the moment, it seems that to
document fully the behaviour of these routines one requires
figures corresponding to Fig. 3 for many other problem families
and other values of s.

Up to this time we have treated nine problem families and up
to sixteen quadrature routines. We have obtained plots for
many values of s, from s = 50% up tos = 95%. An outstanding
common feature of these plots has been that for the same prob-
lem family, there is practically no qualitative difference between
plots for different values of s. This is illustrated in Figs 4 and 5
which have been obtained in the same manner as Fig. 3 except
that s = 95% and s = 809 are used as confidence levels in
place of s = 90%. Except for the obvious point that more
function values are required by each routine for a higher
confidence level, there is no noticeable difference between these
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figures. Even the crossover point between the ANC4 and the
ASIMP plots occurs at the same value 107*° of ¢, We
believe that this property of the results is important, and we
hope that it will occur in other problem families too. If it did
not occur, this method of evaluation would not be useful in
practice.

In Figs. 6, 7 and 8, we present some of the results using prob-
lem families which resemble to some extent problem family
(3.1) used in Fig. 3. Each has a peak of height 100 and half
width 1/100. The specification of the problem family appears
at the head of the figure. For these, the resulting plots differ
qualitatively in only a minor way, except in Fig. 8 where
ASIMP consistently fails.

For the interested reader, ASIMP may return a result based
on only nine function evaluations while both ROMBERG and
ANC4 require at least seventeen function evaluations. This
turns out to be critical for the problem family illustrated in
Fig. 8. Whilst, in this paper, we are concerned only with
program evaluation, this figure illustrates possible uses of this
evaluation technique in the context of routine construction.

In Figs. 9and 10, we present some of the results for other quite
different problem families. The problem illustrated in Fig. 9 is
a very easy one and there is usually a factor of only two
between the cost of the best and the worst routine. The
integrand function corresponding to Fig. 10 has a discontinuous
first derivative.

The results given in Figs. 2 to 10 are intended only to illustrate
the nature of the results on which automatic quadrature rou-
tines can be evaluated. The three routines treated here were
taken from our local library and do not represent the present
state of the art. These routines, and other local routines, were
used in a pilot project to see whether this method for evaluating
routines is feasible. On the basis of these results we have decided
to continue with the project and we give here a very brief
description of its organisation.

The central feature is a data bank, stored on tape. As the
relatively expensive series of numerical experiments are carried
out, the results, in the form of data for construction of statis-
tical distribution functions, are stored in the data bank. There
is no need to repeat these experiments. When a new routine is
submitted we carry out these experiments for this routine only,
using all presently treated problem families. If a new problem
family is suggested, we may carry out these experiments for all
currently treated quadrature routines, using only this new
problem family. All results are stored in the data bank.

Figs. 2 to 10 may be readily constructed from information in
the data bank using a program for which the problem family
and the selection of routines has to be specified.

At any stage, on the basis of previous results, we may drop
from active consideration any routine or any problem family.

We plan to make our results available in the form of reports
which can be updated from time to time. These reports will
contain principally results in graphical form, like Figs. 2 to 10.
Enough information will be included to enable any other inter-
ested person to repeat some or all of the experiments and
confirm (or discredit) our results. A short section in each report
will indicate our own conclusions from the results.

One of the motivations for this organisation is that it provides
scope for growth. We do not believe that our choice of problem
families is particularly enlightened, nor do we believe that the
best routines have been written. But this does not necessitate
delaying the evaluation process. It merely implies that evalu-
ation is a continuing process and that current conclusions are
liable to be modified or altered. The organisation of this
project allows for this sort of change.

6. The role of ¢,
In this paper we have suggested that the quantity v(E;,,4(5; &:eq))
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where s = @(&;eq, Equaa) Should be used as a measure of the cost
of using a routine and that evaluation should be based on this
measure. The motivation for this choice is described in earlier
sections, and the nature of the results is illustrated in the
figures. In this section we discuss some of the implications of
this choice.

The perceptive user will have noticed that a major implication
is that the role of &g, the input tolerance parameter, has
undergone a subtle change. Certainly the effect of reducing the
value of &,,4 is to produce on average a more accurate result
at an average greater cost. However, £g,,4 should no longer be
considered as representing the required accuracy unam-
biguously. It represents this only in some statistical sense.
When dealing with a specified problem family, once a value of
the success probability s and the required accuracy &.q is
specified, the routine may be tuned by choosing the proper
value of gg,,q from a plot such as the one illustrated in Fig. 2.

The role of EPQUAD as a tuning knob is illustrated by the
following circumstance. As remarked in CAQR Section 2, one
may take any routine and modify it by making its practical
convergence criterion more stringent. By so doing, the modiﬁeg):
routine is more reliable and more expensive to use. We considee
now a case where this modification takes the form of replacing
€quad internally by 107 %¢,,,4 and we disregard the effect of any
physical limit criterion. Thus the behaviour of the modified:
routine with e,,,4 = ¢ is identical with the behaviour of th&
unmodified routine with g4 = 10~ %¢. If one carries throughe
the steps in the derivation of V(E,,,d(S, &.,)), one finds thag
E ..a for the modified routine is larger than E;,.q for thg?
original routine by a factor of 10%, but that v(E ,.4(S, &) 18
identical for both routines. Consequently, this method
evaluation does not distinguish between two routines whick
differ only in the calibration of EPQUAD. Such a changg
corresponds to physically unscrewing a tuning knob ang
attaching it to the shaft at a different angle. %

In a previous paper, one of us suggested just such a change i
calibration for the Adaptive Simpson Routine (Lyness, 19695
Modification 1, p. 488). We still believe such a change to be af,
improvement. However, the evaluation method proposed iff
this paper is insensitive to this change.

For a user to take full advantage of information such as that
displayed in Figs. 2 to 10, he has to assign a confidence level &
and use the proper value of 00 = Equad(S; &q) to Obtaim
accuracy ¢&,., With this particular confidence. It is not unconts
mon for a user to insert a ‘safety factor’ into gg,,4 quite blindI§
and information of the type provided here might help him to d&
this in a less haphazard manner. However, many users are n(%
prepared to go to this trouble. The question arises then as t&
what use, if any, the information in Figs. 3 to 10is to a uses
who does not intend to tune his routine. A basic result which
provides an answer to this question is embodied in Theorelﬁ
(6.8) below. However, the proof of this theorem requires somg
assumptions about the set of distribution functions which w§
discuss next.

0¢/

All individual statistical distribution functions have a
non-negative gradient by definition, i.e.
P& + 4, equaa) = P(E, Equag) for all 4 >0 . 6.1)

The set of distribution functions illustrated in Fig. 1 appear to
have an additional property; the curves corresponding to
different values of &,,,q do not intersect but are arranged in
order, the ones with smaller values of &,,,q4 lying to the left and
the function v(ggy,4) is monotonically non-increasing with £gy4-

Definition:
The set of distribution functions @(x, £4,.4) are termed regular
if both

(X, Equaa + 4) < (X, Equaa) for all x, 4 > 0 6.2)
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and
V(€quaa +°4) < V(ggu0q) forall 4 > 0 . 6.3)
In some cases such as problem families involving highly
oscillatory integrands we have found examples of non-regular
sets of distribution functions. The theorem we are about to
establish requires that all distribution functions be regular.
It follows from (6.2) and (4.1) that E_,4(s + 4, &) <
Eya4(5, &:eq)- Thus an application of (6.3) gives
V(Equaa(s + 4, &) = V(Equad(S; &q)) for all 4 >0 . (6.4)
We are concerned with comparing two different routines,
routine A and routine B. For routine A we define ¢“(s,,q, Equad)>
VA (8quaa) and Ef,q(s, &req) to be functions defined in (3.2), (3.3)
and (4.1). Similarly for routine B we define functions
G (reqs quad)s V2(equaa) a0d ED, (s, £,e)- If routines 4 and B
are among the three used in the illustrations, the curves plotted
in Fig. 2 include EJ,4(s, &) and Ef,q(s, &.,) and the curves
plotted in Fig. 3 include v4(Efy.4(5, £req)) AN VE(Enaa(S, £ceq))-
We now compare a situation in which the user requires an
accuracy ¢, and employs on one hand routine 4 with g,,q = &4
and on the other hand routine B with &,,4 = 5. The subscripts
refer to a particular value used in a particular experiment. The
superscripts indicate a function depending on the routine
used. We suppose that, using routine 4 with Equad = &4, ONE
obtains accuracy ¢, with confidence level s, i.e.

SA = ¢A(£req9 SA) or 8,{ = E:uad(s‘b 6req) . (65)

When using routine B, with &,,,4 = €5 one obtains accuracy
&.eq With confidence level s, i.e.

Sp = ¢B(£req’ 88) Oor ég = E:uad(sB’ sreq) . (66)
We recall that, in a plot such as that in Fig. 3, we should
broadly regard routine 4 as better than routine B if the curve

VA(Equad(S, £re)) is below the curve vB(2,.4(s, &.,)). This is the
condition (6.7) of the following theorem.

Theorem:

Given two routines 4 and B whose distribution functions are
regular, given arbitrary positive values ¢, £, and e, with 54
and sg as defined above, and given

VAELd(S, €re)) < VE(Ead(s, €e)) for s = 5, (6.7)
then one or both of the following inequalities is satisfied.
(a) s, > sp
(®) v¥(e) < vP(ep) -

Proof:
We show that if (a) is violated, (b) is true. We suppose that
SB=SA+A A>O (6.9)

and apply regularity condition (6.4) to routine B, setting
s = 5,. This gives

6.8)

vB(Etfuad(sB, Ereq)) = VB(Eunad(sA’ ereq)) 5 (610)
setting s = s, in (6.7) gives
vA(E:uad(sAs greq)) < vB(Eunad(sA9 Ereq)) . (6'11)

In view of (6.5) and (6.6), this pair of inequalities imply
inequality (6.8) (b) which establishes the theorem.

Note:

The condition that (6.7) is satisfied for s = s, may be replaced
by the condition that (6.7) is satisfied for s = sp in the con-
ditions for the theorem without invalidating the result.

The purport of this theorem is illustrated by the following
example. A user whose program involves integrating functions
which resemble (3.1) may be using routine B (ROMBERG)
quite successfully. In view of Figs. 3, 4 and 5 he might be
convinced that routine 4 (ANC4) is more appropriate. He may
well ask what the immediate effect of switching to routine 4
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might be.

The immediate effect could be disastrous, unless he chooses a
suitable value of ¢, for routine 4. However, one may make the
following assertions which are independent of the value of ¢,
used.

If the average cost remains the same, then the quality of the
approximation is better using A. If the average quality of the
approximation remains the same, the average cost is less using
A. The change cannot adversely affect both the cost and the
quality, but it will either improve the quality, or reduce the cost,
or both. On the other hand, switching from routine 4 to
routine B is certain to affect either the cost or the quality
adversely and may affect both adversely.

Information of this type may also be useful to a user who is
constructing his program and has to choose a quadrature
routine. Normally one carries out a certain amount of tuning
in any case. He is in a position to start with the more
appropriate routine. )

However, it must be emphasised that all this depends on the
conditions of the theorem being satisfied. Thus the statistical
distribution curves for both routines must be regular and (6.7)
must hold for a value of s (s, or sg) which is unknown to the
user. In practice it is not usually feasible to verify rigorously
that these conditions are satisfied.

A set of results, such as the ones illustrated here, could well
provide information helpful to subroutine library selection. It
is beyond the scope of this paper to discuss this question in any
detail. But we are quite ready, as a consequence of the results
reported in this paper, to recommend to our librarian that the
ROMBERG routine should be removed. Reinstatement of this
routine should be considered only if a problem family for which
it is efficient when compared with the other routines is
discovered.

7. Concluding remarks

The method for evaluating quadrature routines described in
this paper is, of course, simply one of many conceivable
methods. A technique to evaluate methods for evaluating
quadrature routines is beyond the scope of this paper. We
state in this section what we consider to be some of the
advantages and disadvantages of this method.

Advantages

1. The quantities on which the decisions are based are
mathematically defined and can be recalculated. It is a
repeatable experiment.

2. Once a problem family has been selected, there is apparently
no bias in the treatment. If a routine does badly for a speci-
fied problem family, there is no defence along the lines that
an unlucky choice of integrand functions was responsible.

3. The results are realistic in the sense that they relate to a
‘likelihood of failure’. There is no implication that a routine
can or should be completely reliable.

4. The results are in a convenient form for one to select an
appropriate routine for a particular problem. They are
problem oriented.

5. The conclusions up to this point are compatible with common
experience.

6. It is possible to add routines and problem families and so
build on currently available results.

Defects

1. If the problem families are known it is possible to ‘rig’ a
routine to do all the integrations exactly using perhaps a
dozen function values.
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2. The choice of problem families is a subjective element which messages, etc. are disregarded.
remains in this evaluation procedure.

3. It is a relatively expensive procedure. Acknowledgement
4. To obtain full benefit, the user has to ‘tune’ the value of  we should like to acknowledge assistance from Mr. Kevin
€quad- Karplus of Stanford University in designing the graphical

5.0nly accuracy and economy are tested; i.e. warning  output.

gii?::;ﬁ, J., PIckeTT, M., and Ricg, J. R. (1969). A Comparison of some Numerical Integration Programs, SIGNUM, Vol. 4, No. 3,
KAHErgni?goK (1971). Comparison of Numerical Quadrature Formulas, pp. 229-259, Mathematical Software, J. R. Rice, Ed., Academic
LYNEI;;?S; N., and KAGANOVE, J. J. (1976). Comments on the Nature of Automatic Quadrature Routines, ACM Trans. on Math. Soft.,
LYNE‘;:,LJ.Z,I\Ip.p(.l6956-98)%. Notes on the Adaptive Simpson Quadrature Routine, JACM, Vol. 15, pp. 483-495.

apeojumoq

A historic computer film

In 1951 a film was made in the Mathematical Laboratory at Cambridge University illustrating the operation of the EDSAG
which had then been working since May 1949. The film was originally shown at the First Joint Computer Conference held i
Philadelphia in December 1951 and is believed to be the first film describing a stored program computer to be made. Among the
computer pioneers who took part in it were A. S. Douglas, S. Gill, and E. N. Mutch. @

The film has now been re-issued with an introduction and commentary recorded in 1976 by M. V. Wilkes. It is a 16 mm filmy
is in colour, and runs for approximately 10 minutes. Copies are obtainable at a cost of £95 + VAT from the Computer Laboratorys
University of Cambridge, Corn Exchange Street, Cambridge CB2 3QG. There is a special discount for British Universities ang
similar bodies.

sd

/

European Federation for Medical Informatics—Cambridge Congress
Call for Papers

The Medical Specialist Groups of The British Computer Society have linked with ten other European medical computing societies
to form the European Federation for Medical Informatics. The objectives of the Federation are to promote, throughout Europe,
research, international co-operation and information exchange, and high standards of education in the application of informatiof
processing theory to medicine and health care delivery. ?D
The first congress of the Federation is to be held in Cambridge, England from 4-8 September 1978. Conference session
including practical demonstrations, lectures by industrial participants, and teach-ins, will be held in lecture theatres of the University;
with accommodation provided in Churchill College. ©
The theme of the congress will be ‘reporting on practical experience gained’ and a ‘Call for Papers’ has been issued recently;
If you feel that you have something to say, and you have missed the Call for Papers, then you can obtain copies from ~

Dr. B. Barber

Management Services Division,

North East Thames Regional Health Authority,
St. Faith’s Hospital

London Road

Brentwood

Essex

The closing date for submissions is not until 1 September 1977.
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