On the generation of the pseudo-remainder in polynomial

division
Y. L. Varol*

Department of Mathematics, Ben Gurion University of the Negev, PO Box 2053, Beersheva 84 120,

Israel

All the known methods for finding the GCD-greatest common divisor—of two polynomials are
based on some variation of Euclid’s algorithm, which uses repeated division of the successive
divisors by the remainders. Two new algorithms for generating the remainder resulting from the
pseudo-division of polynomials over a commutative ring are suggested. They are compared with
respect to memory and CPU requirements. It is found that the new algorithms are more efficient,
in particular, when the difference between the degrees of the polynomials is large, and/or the

commutative ring is not that of the integers.
(Received July 1975)

1. Introduction

Symbolic manipulation of polvnomials is a field which has
received considerable attention from computer scientists, and
resulted in the development of various software packages such
as ALPAC (Brown, Hyde anu Tague, 1963), PM (Collins,
1966), and SAC (Collins, 1971). Finding the greatest common
divisor of two polynomials, is of particular interest in this field
(Brown, 1971), (Brown and Traub, 1971), and (Collins, 1967).
This in turn is based on some variation of Euclid’s algorithm,
which uses repeated division of the successive divisors by the
remainders. The efficiency of the whole process is very much
dependent on the generation of the remainder, which is the
subject of this paper.

m u .
Given two polynomials 4 = X agx™ ", and B = X bx""*
i=0 i=0
over any commutative ring, we wish to obtain the pseudo-
remainder R resulting from the division of (b,)" "*! 4 by B.
Multiplying A by (o)™ ~"** enables one to carry out the division
within the commutative ring. Knuth (1969, p. 369) gives the
following classical algorithm to find the remainder:
S1: Do step S2fork=m —n,m —n —1,...,0; then the
algorithm terminates with a,,_,4 1, Gp—p+2 - - -» @y as the
coefficients of the remainder.

Forj=n+k—-1,n+k—-2,...,0set

Um—j < boly_j — @p_p_y byiy—; for j > k, and set

Q- j < boa,_; for j < k.

Note that the order of the coefficients has been reversed to
simplify the notation further on. This algorithm is quite
efficient timewise, and has minimal memory requirements when
one is working over the commutative ring of the integers.
However, serious degradation takes place in both respects for
the case of multivariate polynomials, or any other commutative
ring. In what follows, two alternative algorithms are suggested
and then, all three are compared with respect to storage and
time requirements.

S2:

2. Generation of the remainder
Forany fixed/,0 < i < m — n, let C; be the set of all sequences
{Ac}i-,, of positive integers such that,

I<c<m+1-n-i
1 < A < n, for every k

M

*Now at: University of the Witwatersrand, Johannesburg.

178

An element {4,}¢_, of C; corresponds to the remainder term
resulting from the following sequence of operations in the
division process: The term a;b% "*!x™~! is divided by byx";
the quotient, multiplied by b,x""* results in a term
—abn"h, x™ "% which is divided by the leading term in B;
the quotient of this operation, multiplied by b2 x"~*2 results in
abn~""1b, b, xm "'~ *1~4%2 which is again divisable by bx"; . . .;

c
this process is stopped the first time X A, > m — n — i, witha
k=1

c
remainder term of (—1)°adn*! ™" b, b,, ... by X" 32 A

The inequalities in Equation 1 should now be apparent, since
A’s are the subscripts of the coefficients in B, and if
c—1

X A > m — n — i, then the last division by byx" could not
k=1
have been performed.

Clearly, there is a one-to-one correspondence between
elements of C; and the terms of the remainder resulting from
the division of ab7™"*!x™~! by the polynomial B. This
remainder can be written as:

R; = a; (E (=1)bn*17""<b,.b,, . . .blcx"'"'"k:l‘k> . 2)
Ci
Accordingly, the pseudo-remainder in the division of b7*!~"4
by B is:
+ X R,.
i=0

m .
R = b’3+1—" (p aix"'_')

i=m+1-n

3

To obtain all the coefficients of x"79, in R, we shall consider a
combinatorial method for deriving the set of all the sequences
{A¢} corresponding to them. This set, denoted by Q,_,, will be
formulated as a union of additive decompositions of integers
which are easy to generate, and well known in number theory.
The new algorithms will use this formulation of Q,_, to compute
the cumulative coefficients of the remainder.

We first observe that, combining the definition of Q,_, with
the exponent in Equation 2, we get

c
m—i— X Ah=n-—gq.
k=1

This implies that every sequence in Q,_, must have the last
c—1

element, A, greater than or equal to ¢g. Otherwise, ¥ A, >
k=1

m — n — i, which contradicts Equation 1. Sequences in Q,_,

The Computer Journal

202 udy 61 U0 188n6 AQ Z260¥1/8/ L/2/0Z/31014e/|uf00/W0d"dNo"oIePEDE//:SARY WO.) PAPEO|UMOQ

must therefore satisfy the following conditions:
1 <2 <n,foreveryk ,
1<ce<m+1-n,
g<i<n, @
0<i<m-n,

c—1
m—-2n—i+q< T A<m-—n-—i.
k=1

Using straightforward induction, one can now prove that,
On-g = ULy {UjZ8 {Pmn-i-; X {g +}}}» O

where Pl is the set of all additive decompositions of the positive
integer / from integers less or equal to n, ¢ + j stands for 4,
and x is the usual cross product of sets. Note that the union is
defined for m — n — i — j > 0, with P, being the identity with
respect to the cross product, i.e. Po x S = S for any set S. One
can also show by induction that,

P=Us, {Pry x {13} - ©

I—u20

Using equation (6) and interchanging finite unions of sets,

Utz {Ppopioyx {g+ j3}} = UrZ8{{U - (P jmu X {133}
x{q +Jj}}
= U;:=1{{U;=_3{Pm—n—i-‘j—ﬂ

x{g +j3}} x{u}} . Q)
A simple comparison between Q,_, and Q,_,+,) leads to our
final observation. From equation (5), we see that for any i,
Pp_pn-j—i x{g + j} which appears in Q,_,, is also part of
On—g+wfori — p,and0 < p < min (i, n — g — 1).Therefore,
to generate all the Q,_,’s, one could initially derive all sets of
theformP; x {k}forl1 </ <m+1—n,1 <k < n,and then
consider proper subsets of them according to equation (5)
(Algorithm U). A second approach could be to generate each
Q, -, separately using equation (5) in conjunction with equation
(6) and (7) (Algorithm T). This approach would be more
efficient if one is interested in only some of the coefficients in the
remainder and not all of them.

3. Algorithms

The two algorithms presented below generate directly the
product [T (b;,) rather than the sequence of subscripts {4;}.
Accordingly, the letter Q is now used to stand for the sum of
such products.

Algorithm T

This computes the coefficient 7,_, of x"~? in the remainder.
Repeating steps T1to T3 forq = 1, 2, . . ., n would produce the
whole remainder.

T1:Set Q, « bp*'™" and
QJ « _(Ql/bo)bq+j—2’ for 2 Sj <n-— q + 2, and
Q;«<0 ,forn—g+3 <j<m—n+2.
T2:Forl=3,4,....,m —n+ 2setk « min(n,/ — 2) and

0« 0 — ,-231 (Ql—j/bo)bj .

m—n+2
T3: Set Th—gq < Qlam—n+q + 1_22 Qlam-n+2—l .

Algorithm U

The sum of products [T (b;) which correspond to sequences in
P, x {k} for various / and k are initially computed, and then
combined to produce the coefficients.

Ul: Set P, « b77"
U2:Fori=23,...m+1—n,setk « min(— 1, n) and

k
Pie— X (Pi—j/bo)bj
j=1

Volume 20 Number 2'

U3:Fori=1,2,...,m+1—nandj=12,...,nset
Ki’j <_-Pibj’ a.nd
l~min(n+1—j,i)

1
0« 2 Kiy1-wj+u-1
n=1
U4: Forq=1,2,...,nset

m+1-n
Tn-gq < P1bolm—n+q — '21 QiqOm-n+1-i +
i=

4. Discussion
Both algorithms T and U are given in their form implied by the
formulas derived earlier. The sign (—1)° of equation (2) is
obtained by introducing a minus sign with each multiplication
by b,. Note that the leading coefficient, b, of B, is initially
raised to some power, and later stages all involve removing
these powers by successive divisions. This may look untidy, and
the loops can indeed be organised in reverse order to eliminate
what seems to be a duplication. This can only be accomplished
at the expense of loosing the recursive nature in the computa-
tions of Q, and P,. and leads to inefficiency. In algorithm
step U3 introduces two matrices which increase storagé
requirements, and the hidden multiplications involved i®
accessing their elements contribute to CPU time. However, th§
operations in step U3 could be implemented using only on
matrix. In fact, no matrix notation is necessary. Steps U3 an
U4 could be replaced by:
Forg=1,2,..., nset

m+1—n /min(n+1—gq,i)
r ‘_Poam-n+q - z () (Pi+1—u)bq+u—l>

n—=q
i=1 p=1

dny Gxon

ne=DIWapeoe//:s

~
(o)

Om—n+1-i *
These different versions of algorithm U would imply a tradeoff
between memory and CPU requirements.
Exact memory requirements for the three algorithms depend
on their implementation. For polynomials over the integers, §
quick inspection of algorithms S, T, and U reveals that theig
memory requirements are bounded below by m + n, 2(m + 15
and 2(m + 1) respectively. In algorithm U, this lower bound i§;
2(m + n(m + 1 — n)) if step U3 is implemented as specifieds
In the multivariate case where the coefficients in 4 and B are;
themselves polynomials, the bounds above represent the
number of pointers to be used. In this, as well as the case of &
general commutative ring, where the division process is carrie%
through symbolically, the actual storage requirements are thg
above bounds added to a much larger constant. This constant
depends on the amount of reduction or simplification thag
could be performed among terms of the form abp1™""*b, ..o
b,,, and is independent of the algorithm chosen. Therefore, ng;
significant superiority can be claimed in favour of one of the-
algorithms, as far as memory requirements are concerned. =
In estimating CPU time requirements one must take int®
account the organisational overhead involved in algorithms
and U. However, if one confines oneself to counting the
operations * and /, it can be shown that exactly (m — n + 1)
(m + 3n)/2 such operations are performed in algorithm S. A
similar operation count for any implementation of algorithms

wo

Table 1

m =50

15 12 9 6 5 4 3
29 29 27 25 26 24 26 2
244 178 108 53 35 22 13
173 133 90 54 39 29 20
* 115 86 61 34 25 17 12

QTN »S
A0V R VLN

179

T or U would result in an expression involving the dominant
term n*(m — n). Clearly, algorithms T and U are more time
efficient for m sufficiently larger than n. They also enable
computation of only part of the remainder.

The above conclusions have been substantiated by the results
of computer programs implementing the three algorithms.

References
BrowN, W. S. (1971).
BrowN, W. S., and TrAUB, J. F. (1971).

The programs were run on a CDC CYBER-73 computer.
Table 1 shows results pertaining to the division of a poly-
nomial of degree 50 by polynomials of varying degree n. In the
table U stands for the algorithm as specified, and U* stands for
a version based on equation (8). Except for m and n, all entries
are in milliseconds.

On Euclid’s algorithm and the computation of polynomial greatest common divisors, JACM, Vol. 18, pp. 478-504.
On Euclid’s algorithm and the theory of subresultants, JACM, Vol. 18, Oct 1971 pp. 505-514.

BrowN, W. S, HYDE, J. P., and TAGUE, B. A. (1963). The ALPAK system for non-numerical algebra on a digital computer, Pt. I: Bell
System Tech. J., Vol. 42, No. 5, Sept. 1963, pp. 2081-2119; Pt. II: Ibid., Vol. 43, No. 2, March 1964, pp. 785-804; Pt. III: ibid., Vol. 43,

No. 4, July 1964, pp. 1547-1562.

CoLLins, G. E. (1966). PM, a system for polynomial manipulation, CACM, Vol. 9, No. 8, pp. 578-589.

CoLLins, G. E. (1967).
CoLLiNs, G. E. (1971).

ACM, New York, pp. 144-152.
KnutH, D. E. (1969).

Subresultants and reduced polynomial remainder sequences, JACM, No. 14, pp. 128-142.
The SAC-1 system: an introduction and survey, Proc. 2nd Symposium on Symbolic and Algebraic Manipulation,

The Art of Computer Programming, Vol. 2: Semi-numerical Algorithms, Addison-Wesley, Reading, Mass.

Book reviews

Applications of Algol 68, Conference proceedings edited by V. J.
Rayward-Smith, 1976; 264 pages. (University of East Anglia,
£6-50)

‘Which of languages W, X, Y, ..., is best suited to my problem?’
is the first question that a multi-lingual programmer should ask when
starting a new projéct. This book contains evidence on how well or
ill suited ALGOL 68 (or more often ALGOL 68R) has already
shown itself to be in a dozen or more projects in fields as diverse as
automatic text editing, compiler writing, polynomial manipulation,
a mailing list system, interactive graphics, and initial programming
courses. Other papers—there are 26 in all—deal with more general
experience such as use of subsets, introduction of high level macros,
and the results of some benchmark tests.

Most of the myths are shown up for what they are—wishful
thinking generated as counter-propaganda by competitors in the
rat race. Thus at the Pierre et Marie Curie University in Paris, use of
ALGOL 68 in an initial programming course for non-specialists
led to sounder problem analysis and shorter debugging times than
in previous years; the only ‘undesirable’ result was that as the good
became better the gap between good and bad students widened.
‘Sceptic comment’ (= sceptical ?, or septic ?) from colleagues showed
itself to be based on fears that shallow understanding of the nature of
computing would be shown up. Of particular interest is the bench-
mark report; untuned programs in ALGOL 60, FORTRAN and
ALGOL 68 ran at much the same speed; each language had its own
style of ‘tuning for speed’ and ALGOL 68 could (admittedly at some
trouble) be more finely tuned than the others. It then reached a speed
hardly distinguishable from Pascal, a language in which facilities
have been denied to the user in order to force the runtime pace.
But where there is criticism, 68R is often preferred, an unexpected
conclusion which seems to have a moral for compiler writers, to wit,
that if you need facilities to debug your compiler which run counter

to your high level philosophy (e.g. procedure bodies in machine
code), these should be left in as ‘additional, possibly machine
dependent’ facilities, because sooner or later some user will also need
them, and if you withdraw them from the compiler before releasing
it, he will reject your implementation.

B. HigMAN (Lancaster)

Annual Review in Automatic Programming, Vol. 7, 1974. (Pergamon
Press, £2-25)

This volume is one of the International Tracts in Computer Science
and Technology and their Application. The General Editors were
N. Metropolis, E. Piore and S. Ulam. The administrative editors
were Mark 1. Halpern and William C. McGee. The contributing
editors were Louis Bolliet, Andrei P. Ershov, and J. P. Laski
(however, none of these appear to have contributed). The contents
are: A Tutorial on Data-Base Organisation, R. W. Engles; General
Concepts of the Simula 67 Programming Language, J. D. Ichbiah
and S. P. Morse; Incremental Compilation and Conversational
Interpretation, M. Berthaud and M. Griffiths; Dynamic Syntax: A
Concept for the Definition of the Syntax of Programming Languages,
K. V. Hanford and C. B. Jones; An Introduction to ALGOL 68,
H. Bekic; A General Purpose Conversational System for Graphical
Programming, O. Lecarme; Automatic Theorem Proving Based on
Resolution, A. Pirotte; A Survey of Extensible Programming
Languages, N. Solntseff and A. Yezerski.

This is a collection of tutorial and survey articles, with a sprinkling
of novel ideas; they are of a kind and length which are not readily
published elsewhere; and their publication in an occasional review is
to be welcomed. The article on Automatic Theorem Proving by
Resolution is particularly clear, though the method is not now
considered as promising as it once was.

C. A. R. HoARE (Belfast)

The Computer Journal

20z udy 61 U0 188n6.Aq Z2601+/8/ L/2/0Z/31014e/|uf00/W0d"dNo"oILSPEDE//:SARY WO.) PAPEO|UMOQ

