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Recently several fast computational methods have been developed for solving finite difference
approximations to the standard partial differential equations of mathematical physics.

In this paper, the application of a new fast algorithm for solving tridiagonal systems with constant
coefficients occurring in the solution of boundary value problems is presented.

It is shown that the development of such methods of solution for commonly occurring problems in
mathematical and computational physics can yield fruitful gains in efficiency.
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1. Introduction

The use of digital computers to obtain approximate solutions
of boundary value problems involving ordinary and partial
differential equations is nowadays extensive. In using such
machines there is always considerable motivation to find the
most efficient methods of solution. Thus, for instance, in the
solution of the linear diffusion equation in one space dimension,
the well-known explicit method of solution (Richtmyer, 1957),
although possessing great simplicity and ease of solution, is
unacceptable because the stability condition kAt/4x* < 0-5
imposes such a severe restriction on the forward integration
time step that long computation times are inevitable.

Implicit methods are generally preferred because of their
superior stability characteristics but suffer greatly from the
disadvantage that they require the solution of tridiagonal
systems of difference equations at each time step, which
indirectly involves more work. However, these systems, usually
solved by Gaussian elimination or one of its variants, are quite
often given far greater generality than they actually possess or
deserve, for in many cases the finite difference equations possess
constant coefficients and are often symmetric in form. Thus,
the need for a special purpose-built solution process in these
instances can be clearly justified.

In the following sections, an exact factorisation of the
coefficient matrix incorporating the implicit finite difference
equations derived from a linear diffusion problem in both one
and two space dimensions is obtained, resulting in an algo-
rithmic method which is stable, semi-explicit and one for which
the amount of computational effort is comparable to that of the
explicit method. By extending these ideas to elliptic problems,
a previous paper (Evans, 1972) demonstrated the applicability
of the method to block tridiagonal systems where significant
time reductions can be obtained for the direct solution of
Poisson’s equation over a two dimensional network (for a
restricted class of problems). In this paper, the ideas are
extended to elliptic problems involving the use of alternating
direction methods and can be applied to a class of 2 point
boundary value problems with which a more recent algorithm
of Rose (1969) is unable to cope successfully.

12. An implicit method for solving the diffusion equation
We wish to obtain the solution of the diffusion equation
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in the domain R:[0 < x < 1;¢ > 0] subject to the initial
condition,

ux,0) = f(x)for0<x <1,
and the Dirichlet boundary conditions,
u=1uyt),x =0

(2.1a)
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and u = u,(t),x =1fort >0, (2.1b)

where u,(?) and u,(¢) remain bounded as ¢ — oo and there are
no discontinuities in the initial and boundary conditions.
The region R is covered by a rectangular mesh, the nodak

a

points of which are given by, 5
[V

x;=ih;i=0,1,...N;Nh =1, 8

and 3
3

t=jlj> 3

The constants 4 and / are the mesh and time 1ncrementz
respectively, and the ratio kI/h? is usually denoted by r. ]
The simplest implicit finite difference method for solving (2. lﬁ
is to replace it by the finite difference equations, %
(ui,j+1 - 1_1)/1 = k(u, 1,j+1 2ul J+1 + ul+1,]+1)/ g
R+0r 3D (=1,2,. -1, (222

where u; ; is the point u(ih, jI) on the chosen rectangular grld0

We now make the substitution (Evans, 1971),
r = kilh?* = a/(1 — a)?

which gives the value of « as %

a=05[Q2+!r)— {2+ Yr)* — 4}1] .

If we now substitute the parameter « into the equation (2.2), w§
see that the implicit finite difference equation at the point (7, ]E
has the form,

—0U;_y J+1 + (1 + az)ut g+l T Uiy je1 T (1 - a)zuij(z 52’;

which relates the three unknown u values at the (j + 1)/th tlm@
to the known u value on the jith line.

Applying this equation to the points i = 1,2,...,N — 1 o@
each grid line, we obtain the system of (N — 1) linear equationgg

in the (N — 1) unknowns >
Uy js1> Uz ji1s -+ » Uy—1,j+1 0 the form §
N
Auj+1 = Bul + fj P’y (2.6?
where
1+ a2, —a, ]
—a, 1+a% -—a 0
—o ;
A=
0 . —a
| —o 1 + o? ]
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B =

(1 - )?, : auo(]l)
(1 — a)? 0
' . ,andf; = .
|
- ) aul(ﬂ)

In a similar way, we can treat the more accurate Crank-
Nicholson finite difference method in which the term 9%u/, >
in equation (2.1) is replaced by the average of the central
difference operators on the lines (j + 1)/ and ji.

It can be shown by a similar analysis to that given earlier that
with the transformation,

r=2a/(1 — «)? .7

or
=T[4+ 1/r)= {1 + 1/i)*> = 1}}] 2.8)

the finite difference equation for the Crank-Nicholson method
becomes

2
—oti_g ey + (L + 0y — oty q jiq =

au;—y;+ (1 — 4o + oy ; + awyyy ;s 2.9

which when applied to the points i = 1,2,..., N — 1 on each
grid line gives a linear system of equations similar to (2.6) but
with

ouo(j) + oug((G + 1)I)
0

and f;
0 L. 0
o« 0 ous(GI) + oy (G + 1)
where § = 1 — 4o + o>

From the stability considerations of the two implicit methods
discussed in this section, we know them to be stable and free
from rounding error growth for all values of r > 0. This
condition can be verified to be satisfied for all « in the range
0'< a < 1 for both equations (2.6) and (2.9).

The solution at each time step is usually obtained by solving
the implicit equations (2.6) and (2.9) by a variant of Gaussian
elimination (Varga, 1963). For large time integrations, this can
involve a considerable amount of computation. However, in
very many cases, the implicit equation (2.6) yields a matrix 4
which is often symmetric with constant coefficients, and the
need for a special purpose algorithm can be justified parti-
cularly if the equations contain time varying constants k(¢) or
if frequent changes in the time step A¢ (and hence r) are envis-
aged which would require recomputation of the tridiagonal
matrix algorithm. A further application is when implicit
methods are used in a Stefan problem and the range of
integration varies at each time step.

3. Applications to boundary value problems

In the numerical solution of quasi-linear parabolic and elliptic
partial differential equations with constant or time varying
coefficients involving two space dimensions and specified
boundary conditions by the alternating direction implicit
methods, there occurs a similar computational problem in
which the ideas developed in Section 2 can be exploited.

For diffusion problems involving two space dimension, we
consider a square region R with sides of length unity and mesh
coordinates specified by (ih,jh) for 0 <i,j < N where
h = Ax = Ay = 1/N, the mesh increment. The initial con-
ditions are specified in the plane region R with boundary S.
The differential equations and the boundary conditions are
defined on the sets R’ and S’ of all points (x, y, ¢) such that
t>0 and (x,y)eR and such that ¢ >0 and (x,y)eS
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respectively. Thus, we consider the equation
0%u

2
Z_;‘ —k (%2‘ + 2) (x,9, )€ R’ G.1)
with boundary and initial conditions
ulx,y,t) = glx, y,t), (x,y,t)eS , (3.2
and
u(x, y,0) = f(x, ), (x,y)eR . (3.3)

A significant advance in the solution of such problems was
made by Peaceman and Rachford (1955), who devised the
method of alternating directions for solving the finite difference
equations arising from (3.1). In this method, we use two forms
of equation alternately in successive time steps; in the first
the finite difference equations are implicit in the x-direction
and explicit in the y-direction, and in the second the directions
are interchanged.
Again, we use the relation
kllh? = /(1 — a)? (3.4
to simplify the implicit finite difference equations derived from
(3.1) in the x— and y— directions to obtain,
—oti_g jomer + (U4 0y jopey — Qisy jones
= ol j_ 150 + (1 — 4 + @)y j 50 + QU j1 1,20 5 (3.5)
and
aul] 1,2n+2 + (1 + o )u:] 2n+2 — ou; i,j+1,2n+2
= oU;_q ,Jjs2n+1 + (1 — 4o + o )u i,j°2n+1 + Uiy g sJs2nt+1 (3 6)
for all points 1 < i, j < N — 1 and subject to the boundary
conditions (3.2).
The equations (3.5) and (3.6) when grouped together yield the
following pair of compound matrix systems,

Eu,,,, = Fuy, + g,

and 3.7
Eiy,yy = Fiigpy + 9,
where E and F are compound matrices of order
(N — 1 x N — 1) and defined as
A ol ol
A 0 al . . 0
E = F =
o . 0. . a

with A,  and f as previously defined in Section 2 and u, ii are
row-wise and column-wise compound vectors yielding the
solution along rows and columns of the given domain R and
g, and g, are vectors derived from the appropriate boundary
conditions and ordered row-wise and column-wise accordingly.

Thus, we have shown that the alternating direction implicit
methods can with a little analysis be expressed in a compu-
tational form whereby the tridiagonal systems which need to be
solved along each row and column of the network can have a
predetermined factorised form, thus eliminating the most
tedious and time consuming part of the method.

Consider further then, for example, the second order elliptic
partial differential equation

o*u  0%u
~ a5 2+20u—f(x,y)0<x,y<la=a(t) 3.8)

in the unit square R with the Dirichlet boundary conditions,

u(x, y) = b(x,y), (x,»)edR , (39
where b is specified on dR, the boundary of R. Writing (3.8) as

0%u %u
[-—a—x—2+ou]+[—5;2+au] =f, (3.10)
where each term in brackets represents a differential operator
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in the space variables x, y.
Then, with

Hu; ;= [2 + oh®u; j — uipq; — iy j)/R* (3.11)

Vug ;= [2 + oh®)u; — w54 — u5-11/0°
representing discrete approximations to these differential
operators at the point (ih, j5) on a uniform mesh of side

h = 1/N, the discrete matrix problem correspondlng to (3.1),
(3.2) can be written in the form,

H+Vu=f (3.12)

where H and V are real (N — 1)> x (N — 1) matrices and f
is the appropriately modified right hand side vector. Of
particular importance to this discussion is the form of these
matrices. With the correct ordering of the points of the network
(row-wise for H and column-wise for V), it can be shown that
both systems have at most three elements per matrix row.
Writing (3.12) as the pair of equations,

H+ ohu=(wl—-Vu+f, (3.13)

V+ olhu = (wl — Hju + f;
we now insert iteration superscripts to define the Peaceman—
Rachford alternating direction implicit method as

(H + 0,,H)a™*? = (w,] — V)™ +f , (3.19)
V + 0, u™*? = (0, — Hu™ + f ;
where {w,}, m=1,2,...,N) is a sequence of positive

numbers chosen to accelerate the convergence of the iteration
method. Thus, we see from (3.14) that in order to carry out a
single complete iteration, the direct solution of tridiagonal
matrix equations on horizontal mesh lines and then vertical
mesh lines is again necessary.

By making the substitution,

(0 + 0 )h? = (1 — a,)? (3.15)

where {a,} (m =1,2,..., N) is a parameter sequence ana-
logous to the w,, sequence but with a dual purpose role. It is
designed not only to accelerate convergence, in the same way
as w,, but also to achieve finite difference equations which when
grouped along the rows or columns of the network in the
manner indicated above yields a coefficient matrix which is
directly factorable, i.e. the matrices (H + w,[) and (V + w,I)
each to possess a factorable form P,,Q,, which will be discussed
in Section 4.
The result of substituting (3.15) into (3.14) produces finite
difference equations of the form,
—UpUi—1,j + (1 + am)uz_) OmUiv1,j =
g:;GE=1,2,.. , N—Dforj=1,2,..,N—1 (3.16)
and
=0y jog + (14 )y j — Wty joy = 825
G=1,2,..,N—1Dfori=12,..,N—-1
where the vectors g,, g, are the suitably modified right hand
sides of equation (3.14). These equations when grouped
together give a sequence of directly factorable matrix equations.
The parameter sequence o,,, {m = 1, 2, . . ., N} is then given by

Wy =2/{12+Z, + ({2 + Z,}* — 9*}, 3.17)

where w,,, (m = 1, 2, ..., N) are the Wachpress and Habetler
parameters (Wachpress and Habetler, 1960) and
= (¢ + o)k

An identical analysis can also be carried out on the Peaceman—
Rachford ADI parameters.

Considerable economies can result by using the direct
factorisation method outlined above in the solution of quasi-
linear partial differential equations by the alternating direction
implicit methods and its many variants, i.e. Douglas—Rachford
and locally one dimensional methods. In a two dimensional
region involving irregular boundaries, the order of the
tridiagonal systems can vary from line to line. In addition, the
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acceleration parameter ®,, and hence «, also varies from
iteration to iteration. Thus, the number of tridiagonal systems
which need to be solved can be very large indeed for practical
problems especially if time varying constants k(z) or o() are
involved or if frequent changes in the time step are required.

4. Algorithmic solution of the implicit equations
We now consider the special linear systems occurring in Sections
2 and 3, i.e.

[b ¢ 1 [*:] [d, ]
ab ¢ 0 X, d,
= . @4.1)
0ab cf]. .
i a bl |x] |4
or in matrix notation,
Ax =d .

S
We can rewrite the system (4.1) as 2
1+ By, -7 X7 [& g
_ﬁ, 1+ ﬂ)’5 -7 0 X2 82 9-“
.. . . . 3
3
= CHE
. .=y . . =
0 _ﬂa 1+ ﬂ'y Xn &n g
where we have made the simple transformations, 3
5= {b+ (B> — 4ac)t},y = —2¢/5, p = —2af5 , (4.3)3
and g
g = 24/, fori = 1(1)n . (4.49)3

In Evans (1972), a new factorisation for the symmetricS
tridiagonal matrix with constant coefficient elements was=
introduced. We now extend this analysis further to include the
unsymmetric version of this algorithm where the equivalentd
factorised form for (4.1) is given by

A=PQ, (45)5

where P and Q are (nxn+1) and (n+ 1 x n) rectangular mat-£

¢/0¢/

rices of the form, é‘
(&)

il =y 1 1 1 g

1 —y -B 1 Q

- 2

o o .

P= .. ,0 = . 4.6)2
. . . z

. —p 1| B

| 1 —y] | —B] =

Thus, the system (4.1) is more easily solved by rewriting in the
form

POx=g
which with the introduction of the auxiliary vector
yi=1,2,...,nn+ 1) yields the two alternative simpler
systems,
Py =g
and @.7)
Ox=y,

which need to be solved to obtain the solution vector x.

Now the triangular matrices P and Q although rectangular
are both easily inverted forms and the linear systems (4.7) can
be shown to give the following efficient algorithmic solution:



Xn = [gn + ﬂgn—l +...+ ﬂn_lgl - ﬂn-l(ﬂ},)gl T e
— BBV g-1 — BN)"I/[1 — BY"H1], (4.8)
and
Ine1 = _ﬂxn .

Then, a back substitution process yields the components of the
auxiliary solution,

Yi=gi+ Wig fori=nn-1,...2,1, 4.9
whilst the components of the solution vector x are given by
X1 =N
and a forward substitution of the form

X =y + Prio fori=2,3,..,n—1. (410

Since by definition 8, y < |1], it follows immediately that the
numerical processes defined by (4.8) to (4.10) are stable against
the accumulation of rounding errors (Evans, 1972).

For the special case when b = 2a = 2¢, and B,y = —1 then
equation (4.8) is indeterminate, and an alternative expression
can be obtained. Thus, we have

Xo=[ng, — (0 — Dgy-y + (0 — 2)gyz . . + (=1)""'g,]/
n+1) @11

together with

Vi1 =X Vi =8 — Virsfori=nn—1,...,2,1, (412)

and finally

x1=y1,xi=y,~—-x,-_1,f0ri=2,3,...,n—1 . (4]3)

5. ALGOL program

procedure tridiagsolv(n, a, b, c, d);

value n;

integer n;

real a, b, c;

array d;

comment Procedure solves the set of linear equations Ax = d
where the coefficient matrix is tridiagonal with constant
sub-diagonal, diagonal and super-diagonal - entries a, b, c
respectively. During computation all the input vectors are
over-written and the solution vector replaces d, the vector of
constants. A work space of (n + 9) variables is used and the
number of operations is of the order of

multiplications  4n
divisions 2n
additions 4n;
begin
integer i;

array y[1:n + 1];
real beta, betan, gamma, delta, suml, sum2, res, eps;
delta := 05 x (b +sqrt(b12 — 4 x a x ¢));

References

eps .= 0-000005
beta := —aldelta; gamma := —c/delta;
for i := 1 step 1 until n do

d[i] := d[i]/delta;

if abs(beta + 1-0) < eps and abs(gamma + 1-0) < eps
and abs(b12 — 4 x a X c¢) < eps then goto special;
suml := 0;

for i := 1 step ! until n do

suml := d[i] + suml x beta;

betan := betaln;

sum?2 = 0;

for i := nstep —1 until 1 do

sum2 := d[i] + sum2 x gamma;
suml := suml — sum2 x betan x gamma;
betan := (beta x gamma).T (n + 1);
res := suml /(1 — betan);
y[n + 1] := —beta x res;

for i := n step —1 until 1 do

yli] := d[i] + gamma x y[i + 1];
d[1] := y[1];
for i := 2step 1 until n — 1 do

d[i] := y[i] + beta x d[i — 1];
d[n] := res;

goto exit;
special : suml := d[1];
for i := 2 step 1 until n do

suml := suml — (—1)1i x i x d[i];
sum2 ;= (—1) T n x suml/(n + 1);
yln + 1] := —sum?2;

for i := n step — 1 until 1 do

yli] :=d[i] — y[i + 1];

d[1] := y[1];

for i := 2 step 1 until n — 1 do

d[i] := y[i] — d[i — 1];

d[n] := y(n + 1);

exit: end of tridiagsolv;

6. Conclusions

Fast algorithmic solutions to the implicit difference equations of
both initial and boundary value problems have been demon-
strated to be feasible for equations with time varying constants
or if frequent changes in the time step of integration is neces-
sary. Further work is underway to increase the applicability of
these ideas to problems involving more general boundary
conditions. The manner in which they can be implemented has
been briefly discussed previously by Evans (1966).
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