Proposal for an interface system between the business

and data processing systems

P. Stecher

Department of Computing, London School of Economics, Houghton Street, London wcz2

This paper presents a new concept called the application controller which addresses some DPS/end
user interface problems. It is a new way to see business activities, DPS activities and user/DPS
interactions and is a proposal for a software package. The aim of the application controller is to
involve the end user in the definition and design of his application to 2 high extent and to base DPS
and user activities on a model of the application. This model accommodated in the application
controller describes the application to the user and to the DPS not only during system analysis and
design, but during the operation of the DPS as well. The application controller thus adds to the
existing modes of DPS’s, namely batch and real time, the state triggered DPS.

(Received July 1976)

1. Three levels of abstraction

An installed data processing system (DPS) is a mapping of a
particular business system (BS) in the sense that certain activities
in the BS, which previously have been accomplished manually
or by some special purpose machine (e.g. desk calculator) or
not at all due to the vastness of the activity (e.g. sales forecast
by product, country and area), are now carried out by a
computer using programs, files and a schedule of program runs.

A BS is characterised by the industry within which it operates,
by its organisation, objectives, policies and procedures. When
we talk of BS activities which we want to ‘computerise’, we
have in mind repetitive activities with a stable structure that are
carried out in a cyclic manner, e.g. calculate pay, sales per-
formance analysis, inventory level calculation, or on demand,
e.g. customer order processing, preparation of shipments of
ordered goods. We are not so much concerned with activities
that arise spontaneously and have an unstable structure, e.g.
identification of an employee, who has been with the company
for more than five years, holds a degree in aircraft engineering
and speaks Russian.

A DPS is characterised by its hardware, its mode of operation
(batch, real time, time sharing), its operating system, its
programming languages and its file support system (simple files
or DBMS). We map the BS onto the DPS by writing programs,
designing files and setting up a procedure indicating when
programs have to run (schedule in a batch system, triggering
messages in a real time system). There are of course many BS
activities which are not mapped onto the DPS for various
reasons. After the DPS has become an integral part of the BS,
we can still visualise it as a mapping of the BS in the sense
defined above.

As there is no way yet to translate BS activities directly into

programs, files and triggers, we have to do it in intermediate
steps with the help of system analysis and design techniques,
that is to say, we use an additional level between the BS level
and the DPS level. This level shall be called application level.
The application level is characterised by the procedures,
techniques and forms which are employed to describe the
business activities, the information and parts flow, and to
specify requirements and design the application, i.e. what is
carried out by a user, where the DPS comes in and of what
nature the user/DPS interactions are. The simplest application
level techniques are plain English, flowcharts and decision
-tables. By specifying requirements and designing a solution
descriptively or by flowcharts and decision tables, we have
actually done a mapping from the BS level to the application
level and constructed an application model. By translating
requirement specifications into programs, files, and triggers, we
are mapping the application model onto the DPS level.

194

It is of course feasible to introduce any number of levels

between the BS level and the DPS level to control the complexity §

of the transition, in a way similar to that suggested by Dijkstra 3
(1969) for designing operating systems, but we will confine 3
ourselves to three levels of abstraction. The highest level in the
hierarchy is the BS and the lowest one is the DPS. On each level, 5
problems of the next higher level are expressed by means of the
level.

2. Some application modelling techniques

O
=3
Q)
(D

ﬂ

3

peoe//:sdiny

Literature provides us with a large number of concepts forg
building application models. Generally speakm geach technique 5

besides project control techniques used in system analysis and 2

o

desxgn generates an application model. This applies to tech--

niques with a narrow scope, such as flowcharts and decision 3
tables, as well as to tools which address all aspects of ang
application. To the latter belong those suggested by Young and=
Kent (1958), CODASYL Development Committee (1962)
Langefors (1966), Bubenko (1973), Grindley (1966 and 1975)

3
o

o

and Teichroew (1971). The rationale put forward by these

authors has basically been to separate user requirements, the 3
BS aspects, from implementation considerations, the DPS3J
aspects. The user is to specify, elaborate and improve his 5
application without being restrained by 1mplementatlon
considerations. The system analyst on the other hand can base
the DPS design on a well defined application model.

One may ask why any of these application modelling tech-<
niques have not been incorporated on a large scale or com-
mercially exploited. Two points in particular come to mind:

1. Conditio sine qua non for an application modelling technique e
of today is that the technique involves the end user to a highS

degree in requirement specification and application design.
Some of the techniques having been developed in the nine-
teen fifties or early sixties, when user involvement was not
yet an important criterion, are of a mathematical rigour and
abstraction, which make them unattractive to end users.

2. The system analysts on the other hand seem to have dis-
regarded them, because they considered the application
model thus generated to be a mere stop on the way to the
DPS, bearing no significant benefits. For them any appli-
cation model has been a superfluous vehicle, whose con-
struction would only waste time and misdirect their attention
from the DPS. This attitude has been due to the lack of aids
which would facilitate the mapping from the application level
to the DPS level: A system analyst must develop the appli-
cation model manually by interviewing the user and then
translate it into programs, files and triggers. The latter seems
to be too complex a task to be done automatically by a

The Computer Journal

0.)

=

\

iy

(.»)

6 Ag 6

| uo 159

[¢e]

©

N

N
=

compiler and projects to develop one have apparently not
yet succeeded—for instance SODA (Nunamaker, 1971)..

Any technique which tries to overcome the above-mentioned
drawbacks has to provide a user interface for the application
model and establish a close link between the application model
and the DPS. The concept suggested in this paper abandons the
compilation approach and sets in its place a software system,
which accommodates the application model not only during the
analysis and design phase, but, still more important, during the
operation phase. We call this concept the application controller
(AC).

3. Goals of the AC

The AC is:

(a) a new way to see things, e.g. BS activities, DPS activities,
user/DPS interactions

(b) a proposal for a BS/DPS interface system.
The goals of the AC are:

(a) The application model generated by means of the AC
describes the application to the user and the DPS.

(b) The application model must cover all aspects of the BS
with respect to the DPS and be close to the user’s concept
of the BS.

(c) The application model must not be transient in nature,
i.e. be a stage in the system life cycle, which is left behind
when the DPS has once been set up, but must exist through-
out the system life cycle and be the reference point of all
BS and DPS activities.

(d) The user, to whose benefit the DPS is aimed, must be
heavily involved in the specification and design of his
application.

(e) Changes in the DPS ought not to affect the BS. The design
of a DPS is a multigoal effort. To solve it analytically is
almost impossible: time and costs are too high. And who
can guarantee that the data on which the design is based,
such as kind volume and frequency of user data or response
time required, is complete and accurate ? Often a clear idea
exists as to what the DPS should achieve. The AC provides
facilities to capture this idea and to develop, simulate and
adapt a DPS to meet the requirements.

(f) If changes in the BS occur, it must be easy to adjust the
application model and the DPS to the changes. This goal is
difficult to achieve. As long as there is no direct translation
from the application model to the DPS, any modification
of the BS will cause a certain workload to the user and the
analyst to modify the DPS. We can only hope to ease this
burden by defining clearly the interface between the BS
level and the application level and between the application
level and the DPS level and by limiting the interface width.

The AC is presented below in two parts: We start with an
example to illustrate the basic ideas of the application controller.
Functions and components of the AC, pinpointed in this

example, are elaborated in the second part with respect to a’

potential user and to a possible implementation.

4. The user’s view of the AC concept: how to des:gn and operate
an application

An example

We shall make the assumption here that the organisation that
intends to employ the AC is aware of what a DPS is and the
kind of support the end users can expect from it.

The first step for a user is to record activities which are
carried out by him or which are planned for implementation.
The purpose of activities is to produce outputs or to accept
inputs. Inputs and outputs are understood here not necessarily
in their DP meaning: output may be a decision to employ a

Volume 20 Number 3

Table 1 The writeup of a business process

Application: receiving goods
Functional department: receiving office
Business process: validating receipts

1. The receiving office is sent the packing slip, which accom-
panied the receipt, by the receiving bay with any comments
about the state of the goods, count variance, etc.

2. Usmg the packing slip the clerk in the receiving office assigns
a unique receipt number to the receipt and records for each
part:
part no.
part description
supplier number
quantity as indicated on the packing slip
count variance
purchase order number

3. The clerk will now decide whether to accept or refuse the
received parts. Alternatively he may hold them for some txmej
and ask the material control office for their view g

4. If the clerk accepts the receipt, files are updated. If he refuseg
the receipt, the receiving bay is informed so that the recelpﬁ
can be returned to the supplier. If he holds the receipt, &
message is sent to the material control office. Within twc?,
days this office has to reply and accordingly the clerk in tho.s“
receiving office accepts or refuses the parts.

opeoe//:s

particular person and input may be the arrival of this perso@
at a certain location and date. Let us consider the followmg
example: ‘Validating receipts’.

After a receipt of purchased goods has been identified in th§
receiving bay, the receiving office is activated: it has to update;
files, see what has to be done with the parts, check the recelpﬁ
against the purchase orders, sort out discrepancies betweerg
ordered and received parts, etc. Table 1 shows the descriptiors
of this business process ‘validating receipts’, which can b
compiled directly by a user and put into the AC via a keyboard}2
CRT/printer terminal (we assume the use of this type of ter=
minal for all communication with the AC). “

The access to the AC is controlled by employee number ol
functional department number. A user can access only thos&
parts of the AC for which he is authorised. From the descrlptlony
of the application a user can verify what his or his department s:
task is all about. He can have applications displayed using ag
multilevel index where he selects entries with a lightpen on
function keys. Hence the AC may serve as a documentatlom
and training tool. >
The writeup of an application may be supplemented by diaZ.
grams, input/output formats, decision tables, flowcharts, etc. t%
detail the activities. »

“Validating receipts’ is a so-called business process (BP). We
can visualise a BP in two distinct ways:

(a) as an action hierarchy

(b) as a state network.

An action hierarchy depicts into which activities by the user
or the ‘system’ a BP can be split. The action hierarchy for a
particular BP is not unique; much is left to the discretion and
preferences of the user and the analyst. The hierarchy may have
as many levels as it is thought convenient. A state network of a
BP depicts important states which a BP can assume and their
interrelationship.

Business process (Part 1)
All activities in an organisation can be viewed as business
processes, with the following properties:

195

Validating receipt
1

R .
Processing receipt
|

B
Holding File update Message 1o receiving

(User) (Computer) bay (Computer)
The resource in charge of the action is shown in brackets

T
Recording receipt (User)

T
Refusal
(User)

Acceptance

Message to material
(User)

control office (Computer)

Fig. 1 BP as an action hierarchy

Accepted Updated BP-end
File updato— l
(Computer)
BP-start Recorded Refused Sent 1o BP-end
' I rcccmng bay l
Recording receip Decision ab M
(User) I eccipt (User) I |ecc|vmg bay I] Accepted
(Compumr)
Held Sent to Back

material office

Message 10
Rcl'used
BP ev aluauon

material conlml
office (Comp.)
of inventory

Legend: A bar represents a state, the text between two
consecutive bars stands for the action, which leads from the
preceding ‘state to the succeeding one. The resource is
shown in brackets.

Fig. 2 BP validating receipts as a state network

1. A BP is associated with a functional department, no matter
who actually executes the BP, e.g. an inventory level
calculation can be carried out by a DPS and is nevertheless
associated with the material control office. In most BP’s more
than one resource is required to perform the actions of a BP.
The types of resources depends on the observer’s standpoint :
a user identifies a drilling machine as a resource, the AC just
regards it as another user. On the other hand, for the AC the
DPS is a resource (and the only one it can identify besides
the user), for a user the AC and the DPS are viewed as the
computer resource and ought not to be distinguished. Thus
we allow the following resources to be involved in a BP:

User

Computer

AC

DPS

Production machine.

2. A BP has a clearly defined start and end and may spread over
many intermediate states.

3. A BP is moved from one state to another by an action
involving at least one resource.

4. A BP refers to a primary object class, e.g. the BP ‘calculate
pay’ refers to the object class employee, the BP ‘inventory
level check’ to the object class part. A BP may be valid
only for a subset of the elements in the object class.

Action hierarchy (AH)

One of the objectives of the AC is to have a description of the
application in such a way as to allow a user and the DPS to act
on this description. The writeup of the application (see Table 1)
has to be formalised so that the AC can automatically access it
and operate on it.

The first step towards formalisation is to construct the action
hierarchy from the BP writeup (see Fig. 1). A user assisted by
a system analyst has a free hand to translate the writeup into
the AH. He may choose as many levels and entries as he wishes,
~“as long as he observes the following rules:

1. An action must be a piece of homogeneous work.

2. An AH depicts actions ignoring their sequence and the
conditions under which these actions can be carried out.
The sequence of actions and conditions restricting the
execution of actions does not appear on the AH. It is
accounted for by the state network of a BP as we shall see

196

below. The AH is akin to an organisational hierarchy, where
the lower levels make up the higher ones.

3. There may be only one root entry, which must be identical
to the BP name.

4. Entries on the lowest level must have assigned resources such
as computer or user. The resource to be assigned is suggested
by the kind of activity: data entry is mainly user performed,
calculation is done by the DPS, even if a user provides
parameters. For instance the action in paragraph 4 of Table 1
(File update) is a pure DPS action, the one in paragraph 2
(Assigning a receipt number and recording the receipt) is a
user action, assisted by the DPS. The purpose of assigning

a resource is to identify a resource as being in charge of

seeing an action through, thus not precluding the involvement
of any other resource.

As it is the user who provides information about activities,
we must relieve him of the burden to distinguish between
the AC and the DPS. Hence for him the only visible resources
are the ‘computer’ and the ‘user’.

5. No other level than the lowest level may have resources
assigned.

A user is free to change the writeup and the corresponding AH S
of a BP. For instance a user in the above-mentioned3
example wishes to examine the quantity of a part ordered, each S
time he records a recclpt of a part (paragraph 2 in Table 1).Z
The resulting AH is shown in Fig. 3. Please note that theZ
activity ‘recording receipt’ has dropped its resource. Thls
can be summed up by rule 6.

6. If more than one resource plays a major part in an action,
this action is represented by a neutral action entry. New©o
action entries with resources are created one level beneath

The technique described so far is similar to top-down program
development. The usual pattern of user or computer actions isg
not recorded in the application writeup or in the AH actions3
such as:

User signing on to a terminal

User requesting a BP or an action from the AC

Message format display

Syntax checking

Data validity checking

Error indication by the computer and corrective action by

a user
Authority checking.

Vahdating receipt
n

I
Recording receipt (Lser)
changes to
Validuting receipt
1z

T
Recording receipt

Data collection
(User)

Display of quantity ordered
(Computer)

Fig. 3 Extension of an action hierarchy

State network
Whole network with actions

Action hierarchy
Validating receipt corresponds to

and states

Recording receipt ' Recording receipt + state
recorded

Processing receipt ' All actions and states to the
right of the state recorded

Acceptance ’ Decision about receipt +
state accepted

Refusal ' Decision about receipt +
state refused

etc.

Fig. 4 The mapping of an action hierarchy on to a state network

The Computer Journal

peojumog

o

o
3

'O

=

peoe/

o
3.

O

C

3

=
Q

20z Indy 61 uo isenb Aq 6£91.5//¥61/€/0Z/o101E/|ulw

State network (SN)

The state network of a BP is constructed based on the BP
writeup and the AH (see Table 1 and Fig. 1 respectively). The
arcs represent state transitions (=actions) and the nodes,
states (Fig. 2). Each state transition is associated with a resource
and corresponds to an action on the lowest level of the AH. If a
BP is initiated, which is done either by a user or the AC, the
SN for the BP is entered. .

If alternative states can be reached from a particular state,
it is up to the resource to decide which one is to be selected, for
instance after the state ‘Recorded’ in Fig. 2 a user has to decide
whether to accept, refuse or hold a receipt. By constructing the
SN from the writeup and the AH we have actually done a
mapping between AH and SN (see Fig. 4). Hence we can inter-
pret a state in the SN as triggering the succeeding action or as
triggering a subnetwork which correlates to an entry in the AH.
For instance the state ‘Recorded’ triggers action ‘Decision
about receipt’ in Fig. 2 and the action ‘Processing receipt’ in
Fig. 1. It must be defined in the AH, which states in the SN
‘terminate an action on the intermediate and upper levels’.

The same states can be reached through different actions, for
instance the states ‘Accepted’ and ‘Refused’ after the BP
‘Inventory evaluation at the material control office’ are
identical to the states ‘Accepted’ and ‘Refused’ after the action
‘Decision about receipt’. That is to say, the BP ‘Validating
receipt’ continues after ‘Inventory evaluation’ with either ‘File
update’ or ‘Message to receiving bay’ until the state ‘BP-end’
is attained.

When it seems convenient we may use pseudo-actions in an
SN. A pseudo-action is an action, where no resource is
assigned. In Fig. 2 the actions between states ‘Updated’ and
‘BP-end’, ‘Sent to receiving bay’ and ‘BP-end’, ‘Sent to material
office’ and ‘Back’ are all pseudo-actions.

Messages and connective entries
Fig. 2 illustrates how communication between BP’s is estab-
lished through messages. For instance a message is sent to the
material control office, telling it that a reply is expected from it.
This message gives rise to a BP ‘inventory evaluation’ at the
material control office. In the SN for ‘validating receipts’ the
BP ‘inventory evaluation’ is followed by a pseudo-action which
leads from state ‘message sent’ to the state ‘message back’. This
pseudo-action can be employed to monitor that the reply from
" the material control office happens in a certain time lapse.
~ Messages may be verbal, handwritten, typed or computer
printouts/displays. The function of messages in the AC cancept
can be further exemplified by the following:

BP: Shipment preparation BP: Shipping BP: Invoice writing
End Start End Start End
3 : 4

1 I
T T T T T

Start
+

+
Actual time

Shipment preparation, done by the customer service depart-
ment, is followed by the shipping of the assembled goods by the
shipping department. The invoice writing can start as soon as
the billing department learns about the shipping.

When a shipment has been prepared a message is sent to the
shipping department telling it that parts are due to arrive there
to be shipped. The sending of this message can be done auto-
matically by the AC: the BP ‘shipment preparation’ contains
an action reading ‘Message to shipping department’. When a
certain state is attained in the SN for the BP, the message with
all relevant data is sent by a computer action.

Let us now assume that the message points out that the ship-
ment should only be released after an advance payment has
been received from the customer. We have now at least two
distinct states, which must be reached prior to the completion
of the BP shipping:

Volume 20 Number3

1. Parts must arrive from the stock
2. An advance payment must arrive.
This situation can be dealt with as follows:

Due to the message from the customer service department, a
BP ‘shipping’ is opened, either by initiation of the AC or by a
user. State 1 is signalled by a clerk in the shipping department
who accepts the goods from stock. State 2 is attained either by

. the billing department sending a message ‘Advance payment

arrived from customer X’ or the ‘computer’ has to test user
files repeatedly for the advance payment.

The BP “shipping’ contains an action which sends a message
to the billing department reading ‘Within two days of shipping
an invoice must be produced and forwarded to the customer
X.

We can summarise: If something happens outside the view of
a resource (and a resource’s view is defined by all actions which
it is currently performing), about which the resource should be
kept informed, the resource is told about it by messages.

In Fig. 2 and the example above we have seen the objective of

messages to link BP’s together and establish communication

between them. We call an action entry in a SN, which causes
messages to be sent, a connective entry. The message which is3
actually sent may contain parameters which are employed by
the receiving resource for a subsequent action.

Business process (Part 2)

When we analyse the DP activities within a BP both datad
requirements and process requirements are relevant. The AC i sy
open for any language or procedure to describe processes and
data relations, as long as they are compatible with the ACS

<]
E

dny wouy pape

U)

Q)
O]

3

features outlined so far. Here we shall focus on one aspect of?

data requlrements only the data associations in a BP. 5

There is always a prlmary object class in a BP such as part,3
receipt or customer. The primary object class in Table 1 is the=
receipt number. There may be secondary object classes. ForS

instance a shop order has usually a part number associated. It;

is the code of that part which is produced by the shop order.5

c

o
3

3

=4

o=

The part number is a secondary object class of the BP ‘moni-g

toring shop orders’. The objective of the primary and secondary’>
object classes is to identify instances of a specific BP.

We structure the relationships between object classes in a
particular BP as follows:

LGL/v61L/€/0C/

1. We ask which object classes are directly associated with the3

primary object class. In Table 1 we find part number, arrival?

data, arrival location, etc. We state whether the relatlonshlpQ

is one to one, one to many, many to many.
2. Then we look for object classes which are associated with

uo jsen

part number, arrival date, arrival location and define the_
kind of relationship similar to above. Part number is associ->
ated with part description in a one to one, with purchase—-

order number in a one to many relationship, etc.

Thus we arrive at the following structure of object classes:
Receipt number
1

[1
Part number (1: M) Arrival date (1:1) Arrival location
1

) 1:1)
Part description (1:1) Purchase order number (1:M)

¥20c

This structure is not necessarily a hierarchy, but may be a-

network structure. It does not intend to be a data representation
of the real world but rather tries to capture the usage of data by
a particular BP, for instance on the input and output format.
As such it is close to data access paths. It is a local view of data
associations. How each data element in the object classes is
provided, is specified by the processing requirements and the
input specifications.

197

(4) User (5)
Environaendy

[}
AC Status File (1) | c/a hana;;L () C/A File
2) (3) 1 J

(4)] (e)

User Data &
DFS Message File - Processor

Legend: The C/A handler polls the C/A file and status file to identify
actions which are due and resources which have to carry them out (1).
The BSR is then chained to the resource queue (2). Messages which
link BP’s together are inserted to the pertinent BP queue (3). User
and DPS actions which are due for execution are transmitted to the
user and DPS respectively (4). If a user wishes to learn what his task
is all about, he gets the desired information from the C/A file (5).
Data and messages which are relevant to the AC must be intercepted
from the flow of data between the DPS and the BS (6). DP programs
which are behind DPS actions can be inquired in the function
dictionary (7) and called (8).

‘Fig. 5 The AC as an interface between the BS and the DPS

Function

Dictionary

(8)

Function
Library

When we develop file structures later, we shall base this
process on all local views and arrive at a total view of data
relations. Doing so it may be necessary to alter one specific
local view, as it may collide with the data associations of another
BP. This anticipates the readiness of the user to accept another
data association. In this sense the local view of our example is a
preliminary view. How the total view is finally implemented by
files is the task of the DPS builder, who has to take into account
additional criteria such as performance requirements, volume,
frequency and security.

We could assign to each data association a name, as it has
been suggested by Langefors (1966) and others. It seems,
however, we can do without it: if we allowed each user to select
the names on his own, we should end up with such a variety of
names, that they would become meaningless. If we restricted
the selection of names to one person, the Data Base Admini-
strator, he would not be helped either, as he must know the
kind of relationship (in addition to the correspondence men-
tioned above, the correspondence in the reverse direction,
occurrence and most important of all the semantics of the
association), which requires interpretative description rather
than a name.

Each action in a state network uses the object class elements,
updates them or creates them. All elements are kept in a logical
record, the business status record (BSR), which exists as long
as the instance of the BP, to which it belongs. The BSR contains
also all states which the instance of the BP has assumed.

An action in a state network is usually triggered by a state.
Similar to this property of an action, we can visualise a BP as
requiring certain states before it can be initiated. In the example
in the previous section, a message is sent to the billing depart-
ment reading ‘Within two days of shipping, an invoice must be
produced and forwarded to customer X’. This message relates
an ‘action’ (in reality a BP), namely production of invoice, to
a state, namely within two days of shipping. It is sometimes

convenient to regard a BP as an abstract action with the result-
ing state ‘completion of BP’. The transition from action to BP
is somewhat fluid: If two BP’s are put together, the result is a
BP. If two actions are put together, the result may be an action
or a BP.

The building of the application model in the AC concept can
be divided into two major parts:

1. Production of local views in the form of BP’s.

2. Development of a total view, which we exemplified by data
association above.

For a user it is sufficient to be aware of the local views. The
task of the analyst is to build a total view, which is compatible
with all local views. It may be necessary to alter a particular
local view to improve the consistency or performance of the
model.

5. The AC components
The AC has three major components (see Fig. 5):

(a) C/A file (C/A meaning condition/action)
(b) Status file
(c) C/A handler.

The C/A file consists of the text for each BP, provided by &
user and the formalisation of the BP in the shape of the actiort;
hlerarchy and the state network. The C/A file is able to answe@
queries like ‘What processes can occur in our organisation?z
‘What is the task of a user and of the computer therefore ?” and;
‘Where can the computer assist a user in carrym g out his task 7’5

The status file contains all instances of a BP in the form of the
business status record (BSR) and messages. It therefore carfy
reply to questions like ‘How far have things proceeded in our’
organisation?’.

The C/A handler initiates and advances BP instances in ordee
to keep the DPS in pace with the business. It furthermoré
monitors states to identify undesirable states as soon as poss1bl§

eojumoqg

and to ensure that actions have been carried out in time. =

=
C/A file &
The C/A file describes what states can be reached in a BP andS

what actions have subsequently to follow. The C/A file has>
three chapters:

1. Application writeup
2. Action hierarchy
3. State network.

We shall elaborate on the state network structure only.

As the AC is presented here as an interface machine, system=
components such as the state network have to be represented3
in a way which allows automatic processing.

The state network (SN) for a specific BP can be viewed as &
table. Each entry in the table relates to a state S;, the argu-m
ment, a functionvalue ({S;,,}, R;, 4;), where S,ﬂ,, p= 1'\>
2, ... is a finite number of immediately successive states of
S;; R, is the resource in charge of moving S; to one or more
of the states S;, ,; 4; is the action, by which R; moves S; to
Siip

Th’é characteristic of the AC is, that all states and function-
values can be represented in such a way as to enable the AC to
perform operations on them automatically. This is to say, the
AC does not need any semantic help, once the SN has been
constructed. This is due to the fact that to the AC:

(a) state values are provided by resources, i.e. user or DPS,
as the result of an action. State values are symbols such as
ACCEPTED, S10. The only constraint for the symbols is
their uniqueness within a particular BP,

(b) resources are user identifiers, e.g. employee number,
computer number,

senb Aq 6£9152/v61

The Computer Journal

(c) actions are again symbols: they require meaning only for
the resource which carries them out and not for the AC.
Thus the intelligence of the AC is reduced to table look-up.
States can become predicates. All Boolean expressions are
allowed among states. The simplest case of the S; — ({S;+,},
R,, A)) relationship is that S; just triggers 4, i.e. S; is a sufficient
condition for A4; e.g. the state ‘receipt accepted’ triggers
‘apdating files’ in Fig. 2. States may, however, have additional
properties, two of which are:

1. A state can be not only a sufficient condition, but also a
necessary one for an action.

2. A certain state must be reached by a point in time.

For instance the BP “daily sales summary’ may only be initiated
if all sales offices have transmitted their daily sales records.
A user who tries to initiate the BP, oblivious of this condition,
is made aware of it by the AC. This is catered for by the C/A
file, where an action 4 is specified as requiring a necessary state
S.

The point in time, by which a state must be reached can be
formulated as an absolute time or as a relative time, €.g. two
days after shipment. If a state in a SN has a time constraint
attached to it, e.g. it must be reached by 5 p.m., we may intro-
duce progress checks on states prior to the crucial one. These
aspects of states are taken care of by the polling list in the C/A
handler, as we shall see.

Business status record
If a BP is carried out, we speak of an instance of the BP. When
a BP instance is initiated, a BSR is created. It exists as long as
the pertinent BP instance. Every BSR has an identifier, object
classes and values, and state values. The BSR is a logical record.
Its elements are derived from physical files through computation
or are copied from physical files through a mapping process.
The BSR’s identifier indicates what kind of BP it represents,
for instance the BP ‘validating receipts’. A BSR contains all
object classes and their values which are relevant to the par-
ticular BP instance, thus in Table 1 we have

Object class Value

Receipt number ~

Part number

Part description ~

Supplier number ~

etc.
A structure of the object classes can be recognised as noted in
the section on Business process (Part 2).

If a BSR has been initiated by a user, the user’s employee
number is inserted. If it has been initiated by the AC auto-
matically, the condition which gave rise to it is indicated, for
instance a message from a certain department. The resource
which carries forward a BP instance by an action is responsible
for signalling the state after the action has been terminated.
For instance a user who accepts a receipt makes the AC insert

the state ‘accepted’ in the BSR. The AC takes care of the inser- '

tion through the C/A handler, a user merely selects the option
‘accepted’ on his CRT terminal with a lightpen or function key.

Actions which are triggered by a state are not indicated in the
BSR, but in the C/A file. The C/A handler determines the next
action(s), based on the states as recorded in the BSR. This
gives us the greatest liberty of changing a BP without being
obliged to change any action entries in the BSR’s for the BP.

A user has normally no direct access to a BSR, because he is
not interested in the BSR as such, but has its content displayed
through queries like ‘Where are the goods with receipt number

. . at this moment ?’. Each DP program knows how to interpret
the identifier, object classes and state indicators in a BSR. This
is due to the environmental knowledge which programs have
by their very nature.

Volume 20 Number 3

If a BP instance is completed, the BSR ceases to exist. There
are, however, means of recreatmg BSR data, e.g. using physical
files.

Range of the BSR

The BSR is composed of user data and state values. If a BP
assumes only ‘few’ states, its BSR is distorted to a user data
file or is even negligible. When does this happen ? Generally we
can say:

1. If there is little or no interaction between resources, be it
different end users or user and DPS, and

2. The BP can be carried out in a continuous time period. For
instance in the case of:
(a) pure computational programs like statistical analysis
(b) field research like interviewing customers utilising forms
(c) report generation.

The BSR may also be distorted to a state file, i.e. no user data
may be present; for instance the AC can be employed to moni-
tor a productlon machine on the shop floor. Each time theg
machine is affected by an unplanned stop, a restart procedures
is entered, e.g. the shop supervisor is notified.

} Papeoju

Status file
The C/A file deals with the general case of a BP in the form of3
an application writeup, action hierarchy and state network, the:
status file on the other hand looks after the individual case of am
BP in the form of the BSR and messages.

BSR’s and messages join queues in the status file. Queues mayg>
exist for each:

1. Resource, be it employee, department or computer umt.o
This queue is mainly used by messages, if the BP is not knowm

.

og//:

olws

to the AC. %
2. BP, for instance ‘validating receipts’. This queue is forg
messages. %
3. State within a particular BP, for instance the state recorded’a;T
in the BP ‘validating receipts’ has a queue. This type of queu e
is for BSR’s or messages, e.g. ‘message back’. N
4. Action. For BSR’s only. Q@
Resource, BP, state and action form a three level hierarchy oft

queues:

Resource

BP

State Action

C/A handler
To investigate the role which the C/A handler plays in the AC,
concept, we shall consider the initiation of a BP instance.
A BP can be initiated either by a user or the AC:

1. A user initiates a BP instance on the grounds of messages heS
has received. A message indicates for example that parts have™
arrived in the receiving bay. These messages can be verbal,
handwritten or computer generated. Computer messages of
this kind are chained by the C/A handler to a resource queue
or to a BP queue. The user in the department inquires from
time to time what messages have arrived.

Z udy g1*uo 3sanb Aq 6£9152

2. The AC can initiate a BP instance on its own. The C/A

handler prompted by its polling list, polls first the C/A file
and is led from here to corresponding BP queues in the status
file, where messages may be ‘waiting’.

In both cases the C/A handler proceeds by creating a BSR and
identifying the first action and its resource in the SN for the
particular BP. It then passes the BSR together with the action
due to the resource. These information elements join the
resource/action queue. If the queue is under the control of a

199

user, it is up to him to inquire for any entries. The AC may
‘hint’ the kind and number of actions due, but must not take
the initiative. To ensure, however, that actions are carried out
at all, the C/A handler can monitor queues. If actions have not
been carried out in a certain time interval, the user’s supervisor
is notified. If the queue is under the control of the DPS, the
action entries join the job queue of the DPS to be scheduled for
execution. Whichever resource is in charge the action is
executed and one or more of the states S;, , is attained. A BP
instance is returned to the C/A handler by making the BSR and
the new states S, , available to the C/A handler. It inserts the
symbols representing the states to the BSR and chains the
BSR to the S;,, queue(s). For instance when a user in Fig. 2
has made a decision about the receipt, one of the states
‘accepted’, ‘refused’, ‘held’ is forwarded to the C/A handler.
The C/A handler updates the states in the BSR and chains the
BSR to one of the state queues. The next action after the state is
not initiated immediately, as the C/A handler has to follow its
polling list.

It may well happen that during 4, another resource than R,
is needed. R, has then to call the assisting resource, but remains
in overall charge of 4, and has to indicate S, p to the C/A
handler. In Fig. 2 for instance a user may need the support of a
DP program to make up his mind whether to accept, refuse or
hold a receipt. A receipt may have arrived too late to be of any
use to the company, or a certain tolerance level of quantity
variance may have been exceeded.

Polling list of the C/A handler

The polling list is a constituent part of the C/A handler.
It links C/A handler actions to time conditions to serve three
purposes:

1. To initiate and advance BP’s to keep the DPS in pace with
the BS. States are tested on a regular or irregular basis. If
they are true, actions and resources are identified and BSR’s
and messages are linked to resource queues as noted in the
previous section.

2. To monitor states to make sure that actions have been
carried out (if true, no action; if false, message to supervisor
or corrective action) or to identify undesirable states as soon
as possible (if true, message to supervisor or correctlve
action; if false, no action).

3. To make a resource determine a state. If the C/A handler on
its own is unable to determine a state, it may initiate a state
check program which is carried out by a resource. The C/A
handler is told about the result of the state check program.

Examples:

Item 1: Five times a day the BP ‘validating receipts’ is advanced.
It is checked how far BSR’s have proceeded and which actions
have to be initiated.

Item 2: A sales summary is generated daily. To be able to do
this, customer orders from sales offices throughout the
country must have been transmitted by 5 p.m. The C/A handler
therefore checks at 5 p.m. dally whether this has happened.
If it has, the BP ‘sales summary’ is initiated ; if it has not, a sales
supervisor is notified.

Item 3: The DPS may be prompted by the AC to browse
through customer files to find out whether an advance payment
has been made. If true, the shipment is released.

Initially the polling list and polling characteristics were derived
during system analysis and design: each user specifies for his
application which BP’s and states are important, by assigning
weights. Important BP’s and states are polled more frequently.
The user is free to change the weights during the operation of

his application and thereby change the polling characteristics.
Furthermore a monitoring device can check whether these
weights are reasonable, by matching the number of pollings
against the number of subsequent C/A handler actions.

The C/A file is always polled first, then the status file is
accessed. So as not to overload the C/A handler through
excessive polling, polling may be switched on/off for a particular
BP or state.

6. Benefits of the AC
The benefits of the AC can be identified :

1. The application model, generated by means of the AC
remains in existence during system analysis, design and
operation of the DPS. Thus we have avoided the main draw-
back of most application modelling methodologies, namely to
dump the application model once the DPS has been installed.
The AC provides the necessary incentive for the system
analyst to undertake the task of constructing the application
model.

2. The AC is Janus-faced, i.e. it looks to the user and the DPS.
This property bears the following advantages:

(a) it permits a user to get involved in requirement speci-
fication and application design, as the AC terms are
business oriented rather than DP oriented

(b) it improves communication between user and DP
professional during analysis and design

(¢) it provides documentation standards and enforces
documentation, as the DPS is based on the application
model and all access to the DPS is through the AC.

3. We are now able to simulate the behaviour of the DPS before
implementation and predict its performance. This can be done
by assigning consumption values to user and DP actions.
The existence of well defined states in the C/A file is ideal for
simulation. The C/A handler is the driving device in the
simulation runs, which can take place as the development
work progresses. Modification of the DPS after cutover can
be tested by the simulation capability of the AC, before they
are implemented.

4. The polling lists in the C/A handler allow easy tuning of the
application and imposing the processing rhythm of the
application on the DPS.

5. The general case of a BP is described in the C/A file, while
the individual case, i.e. the occurrence of a BP, is represented
in the status file. This distinction facilitates the comprehen-
sion of the application by a user and a system analyst.

6. It is left to a user to specify the states in a BP which he wants
to be controlled by the AC. Although it might be argued that
this liberty may disconcert a user, it is our belief that it is a
real asset in adjusting the DPS to the user’s requirements:
in a crucial application it may be wished that many states
should be tested by the AC; on the other hand, in a less
important application only a few states may be controlled
by the AC. As importance is subjective and prone to changes,
the AC allows a smooth transition from a model with few
states to one with many states and back.

7. The concept of BP is openended: this is due to the similarity
between a BP and an action. An action may be made a BP; a
BP may be enlarged by an action; two BP’s, put together,
result in a BP again. This property helps a user change his
application and reduces the number of routines which process
BP’s and actions in the AC.

8. The AC improves the synchronisation between the BS and
the DPS by pinpointing business states in the C/A file and
supervising them by the C/A handler. Through these charac-

The Computer Journal

20z udy 61 U0 159n6 Aq BEILS/ /Y6 L/E/0Z/10ME/ULOD/W0d"dNO" OIS PEDE//:SARY W) PAPEOUMOQ

teristics the AC goes beyond a real time system and
introduces a new DPS class: the state triggered DPS.

7. Final remark

Although the AC has been presented here as a system with real
time capabilities both during application design (the application
is being developed interactively) and operation (the C/A

References

handler makes the AC an abstract machine), the concept of the
AC can be ‘flattened out’ to a batch system. In this case the
states would not be tested real time, but in special batch runs.

Acknowledgement
The author wishes to thank Professor A. S. Douglas for the
many valuable discussions.

BUBENKO, J. (1973). Contributions to Formal Description, Analysis and Design of Data Processing Systems, Ph.D. Theses, Stockholm.
CODASYL DEeVELOPMENT COMMITTEE (1962). An Information Algebra, CACM, Vol. 5, No. 4, pp. 190-204.
DuksTRA, E. W. (1969). Complexity Controlled by Hierarchical Ordering of Function and Variability, in Software Engineering, ed. by

P. Naur and B. Randell, Nato Science Committee, Brussels.

GRINDLEY, C. B. B. (1966). Systematics—A Nonprogramming Language for Designing and Specifying Commercial Systems for Computers,

The Computer Journal, Vol. 9, No. 2, pp. 124-128.

GRINDLEY, K. (1975). Systematics—A New Approach to Systems Analysis, McGraw-Hill, London.

LANGEFORs, B. (1966). Theoretical Analysis of Information Systems, Studentlitteratur, Lund, Sweden.

NUNAMAKER, J. F. (1971). A Methodology for the Design and Optimization of Information Processing Systems, SJCC, AFIPS.
TeiCHROFW, D. (1971). Problem Statement Analysis: Requirements for the Problem Statement Analyzer, ISDOS Working Paper No. 43,

University of Michigan, Ann Arbor.

YOUNG, J. W, and KeNT, H. K. (1958). Abstract Formulation of Data Processing Problems, Journal of Industrial Engineering, Nov-Dec 1958.

Book review

Algorithms in SNOBOL4, by J. F. Gimpel, 1976; 487 pages.
(John Wiley, £10-60) v

J. F. Gimpel has ten years experience of programming in SNOBOL4
and was responsible for the SITBOL implementation for the PDP10.
This is an excellent book on software engineering techniques and
applications, even in comparison with Griswold’s ‘String and List
Processing in SNOBOL4,” or ‘Software Tools,” by Kernighan and
Plauger. Gimpel deals with much the same applications as both of
these, but differs from the latter in choosing SNOBOL4 as the
medium of communication for describing the algorithms.

Some knowledge of SNOBOLA4 syntax is necessary to understand
the algorithms, in spite of the copious comments. Fortunately, the
language has a simple structure, which is very easy to learn. In
theory an algorithm is independent of the particular language in
which it is expressed, but in practice the facilities available in the
language exercise an unavoidable influence on the techniques
employed. SNOBOLA4 is comparatively rich in facilities, but its forte
is pattern matching and string operations, an area in which most
other languages are weak. This makes quite a difference to the
presentation of the algorithms.

As an example of the kind of technique possible with SNOBOLA4,
take the three statement procedure for converting Arabic numerals
to Roman, which is done entirely by string manipulation and pattern
matching. Or consider the method by which a facility equivalent to
the FORTRAN statement function is added to the language; the
execution time code compilation and function definition facilities
enable this to be done in four statements.

Some techniques have not been described before. Examples are
syntax-directed compilation by means of semantic routines embedded
as unevaluated expressions in patterns, dynamic loading and com-
pilation of external functions stored in source form, and determining
the statement numbers of statements compiled at execution time.

Most of the algorithms are much more concisely expressed in
SNOBOL4 than they could be in another language. Strachey’s
general macro processor, for example, takes approximately forty

Volume 20 Number 3

//:5d11y wouy pspeojumoq

statements. It is a measure in fact of the power of SNOBOL4 that2
so much has been packed into this volume. There are functions fora
various conversions, string and array manipulations, list processing,%
document formatting, pattern construction, and input/output. It isg'
useful to have numerical functions such as SQRT and the trigono-S

metric functions. The subjects of sorting, permutations, andg
stochastic strings are also covered. One chapter deals with games,3
including a complete poker program using a previously unpublished 3
algorithm. There is also an assembler, a compiler, and a macro3.
processor.

Besides the algorithms themselves there is a discussion of thelrg
theoretical background and performance, where appropriate. Ao
whole chapter is devoted to the theory of SNOBOLA4 patterns, and™>
another to their implementation. Other aspects of SNOBOI.AO’
implementation appear in a separate chapter with functions forco
collecting timing information. There are exercises with every chapter,\l
and solutions are provided to half the questions.

The book has been machine-formatted by a sophlstlcated version of @
one of the programs it describes. Its appearance is quite acceptableg
but could have been 1mproved with computer typesetting. There areo
a number of misprints in the text, but not in the algorithms them-m
selves, which have all been tested.

SNOBOLA4 has its disadvantages, as the author himself pomts out. s
Perhaps the greatest is the lack of control structures, which is onlyLo
parily alleviated by the iteration implicit in pattern matching. And%_:?
in the present vogue for structured programming SNOBOL will not
commend itself to everyone by permitting two gotos on every,\,
statement.

Nevertheless these algorithms demonstrate that well structured
programs can be written in SNOBOL4 by adopting a modular
approach in conjunction with a disciplined use of the language.
The significance of this book lies not only in the functional building
blocks which it supplies but also in its methods of interfacing
modules, which deserve to be adopted as standard conventions by the
SNOBOLA4 programming community.

/Iu

A. SHAW (London)

201

