Table look-up (with examples in COBOL)

A. D. Wilkie

Standard Life Assurance Company, 3 George Street, Edinburgh EH2 2XZ

Some straightforward methods of table look-up are described, suitable for routine use with
moderately small tables in practical applications. Particular attention is paid to the different
circumstances in which different methods are applicable, to the methods of constructing, coding,
loading and updating of the table to be searched, and to the action to be taken when a suitably

matching entry is not found.
(Received August 1975)

In an article ‘Professional programmers ?” in Computer Bulletin
(Series 2, Number 3, March 1975, page 15), Professor D. W.
Barron referred to
‘an observation on table look-up that was made in the
course of an article about APL in Computing. The author
remarked that finding an item in a table was a frequent
requirement in commercial data processing, and was usually
‘attempted by a loop search through the table, testing each
item for equality (or less usually, but equally laborious for
the programmer, by a binary chop technique)’. Admittedly
the binary chop (logarithmic search) is more complicated to
program—perhaps eight lines of code instead of four—but
as any despised computer science graduate knows, it is
immensely superior in operation, being on average fifty
times faster on a table of 1,000 entries. (Of course, a hash
table technique can be even better, but let us not follow up
that line.) One of the characteristics of a professional in any
field should surely be a pride in doing a competent, efficient
and workmanlike job, making best use of the available tools.
Using linear search on anything but a trivial table is none
of these.’
These remarks made me realise that there was a shortage of
material on the practical aspects of table look-up, which my own
experience has shown to be a substantially more varied prob-
lem than either Professor Barron or the author in Computing
appears to recognise. The theoretical position is well discussed
by Knuth (1973) and by Brooks and Iverson (1969), but they do
not fully consider the practical convenience or applicability
of the various methods. This article is a first attempt to fill that
gap, but it cannot at this stage attempt to be comprehensive.
Table look-up is indeed frequently required in commercial
data processing—or in fact in almost any form of computing.
Input data fields may contain codes which must be checked for
validity and which may determine subsequent processing,
grouping for totals, etc. Operating systems too must look up
names of files, modules, etc. in libraries; compilers must look
up variable names in tables that are constructed as the program
proceeds, and look up reserved words in tables that are estab-
lished before the program begins. Random access systems must
use an identifying number or name—customer name or number,
policyholder, agent, part number, stock number—to look up a
file and retrieve the appropriate record. There are many uses of
table look-up and the appropriate solution (or solutions, for
there may well be several almost equally good ways of doing a
job) depends on the varied circumstances of the particular
application.
The best solution is one which, as far as one’s knowledge
permits, optimises some weighted combination of factors of
which at least the following are important:

(a) machine efficiency: run time speed
run time program size
compiling efficiency

202

(b) programmer efficiency ease and speed of writing
first-time accuracy of program
(¢) maintenance: ease of changing the table.

In my view the last of these is often the most important;

commercial systems do not remain static, and must respondo
quickly to changes in the practice of the organisation. Of course,5
changes may not be a problem in certain circumstances, as willg
be shown below. Programmer efficiency, to my mind, is next ing
importance. Getting programs right first time is vital to the=
rapid completion of a system, and this can be helped consider
ably if programmers adopt a number of standard methods for=
the solution of their problems. The more methods they have atsz
their fingertips the better, but they must be able to use themy
quickly and accurately. For programs that are required quickly:
speed of actual writing and punching is not unimportant, and3
this is one of the serious disadvantages of COBOL. Machine;
efficiency has become progressively less important, and unlesss
the solution is obviously grossly inefficient (like sequentiaB
search through a table with 1,000 entries) run time speed an
program size are definitely secondary to the convenience of
programmers. :

Let us now introduce some definitions for a simple table. A=
table consists of a number of entries, each consisting of a keyp
x, and a result, y. Each entry is identified also by an index, i>
so that to each x(i) there corresponds one y(i). Each key x(i}5
is unique, so that given an arbitrary input X it is possible, first3
to find whether or not there is a corresponding key, x(i), and>
secondly, to extract the corresponding result y(i) which become@
the output Y. The results, of course, need not be unique;’
Complex tables can also be constructed which contain alters
native keys, any of which may be used to obtain the rest of thé;
entry as the result. =

These definitions leave some loose ends that may vary im
different circumstances. The key that corresponds to the inpu
may be given by equality: X = x(i); or may be determined by2
subranges in an ordered sequence of x(i)s: x(i — 1) < X < x(i)g
as for instance in the calculation of stamp duty on life assuranceé2
policies, stockbrokers’ commission, or customers’ discounts,
where the method of calculation (rounding, rate, etc.) depends
on the amount of the appropriate input. In the former case it is
not essential that the keys be in any specific order in the table,
but in the latter case it is clearly necessary for the keys to be
ordered, so that: x(i) < x(i + 1) < In this case too there
is the question of the open ends. Are all values of X valid, so
that we can conveniently have an implied x(0) = low values,
and an actual x(n) = high values? Or is the valid range of X
restricted so that we have at some stage to treat X < x (low)
or X > x (high) as errors?

Next one must consider the action to be taken if X is not found
to be within the range of the table so that there is no
corresponding x(i). It may be required:

(@) to indicate simply ‘invalid X’ by, say, setting an error

oﬁeuu LD’@&U

The Computer Journal

marker, or performing an error routine

(b) to take a default action, by providing, say, an output y
(default) appropriate to non-matching inputs

(c) to insert a new entry in the table with key x (new) =
a result y (new) that corresponds appropriately.

In the last case the table has to be dynamically altered during

the run, and some quite different considerations start to apply
that are not relevant to static tables.

X and

1. The direct method
Now let us introduce a variety of methods of table look-up.
A first and simple method is to incorporate the table directly
into the program, e.g.
IF INPUT-SEX =
ELSE
IF INPUT-SEX =
ELSE
MOVE ‘X’ TO ERROR-MARK PERFORM
ERROR-ROUTINE.

Here we see the keys ‘M’, ‘F’ as literal constants in the IF-

‘M’ THEN ADD 1 TO NO-MALES,

‘F’ THEN ADD 1 TO NO-FEMALES,

conditions, the results incorporated as instructions following

the THENs and the error action following the last ELSE.
This method involves a sequential search through the res-
pective 1Fs until equality is found, and so it is unsuitable for
large tables. For very short tables it is probably the most
efficient method on all counts. At run time it is faster than a
sequential search using an indexed entry to the table, but of
course it produces a larger run time program as soon as the
number of entries gets above half a dozen or so. For tables with
more than say 25 entries a more efficient method than direct
sequential search might be wanted anyway.

Provided the IF and THEN can be restricted to a single line
of code the direct method makes for easy writing, with ditto
marks, and easy punching, by partial duplication from the
previous card. If more than one line is required, careful dupli-
cating and then interleaving of cards is possible, though less
convenient. Alternatively, the THEN statement can give the
value of an index which is used to extract the result from a
separate table organised as an array.

Altering the direct table must be done by altering and re-
compiling the program, but an alteration can be easily effected
by changing or inserting only one card or group of cards in the
appropriate sequence. There is no need to keep a note of the
table size as a constant elsewhere in the program.

The direct method is particularly advantageous if the key is of
an irregular form—perhaps where correspondence is tested for
partly by equality and partly by subrange of values of the input,
or for example, where different results apply to males, married
females and other females, and where sex and marital status
are given in two separate input fields. This sort of flexibility is
not infrequently required in practice.

2. Input of index

A second simple method of arranging table look-up is to make
the input, X, equal to the required index, i.e. x(i) = i. After
checking the input for range, so as to indicate an error for
X < i(low) or X > i(high), the required result can be extracted
directly from a table. If the valid range for / is not consecutive it
may nevertheless be convenient to make an entry in the table
of results for every value of i and include also a validity marker
as one field in the result.

An obvious disadvantage of this method is that it restricts
the form of the input. While it is convenient enough to code
months as 01, 02, . . ., 12 instead of JAN, FEB, . .., DEC—the
result being the number of days in the month for instance—it
is usually easier for clerical staff to remember mnemonic
letters (e.g. S, M, W, D for single, married, widowed, divorced)

Volume 20 Number3

rather than arbitrary numbers. Letters can of course be changed
into numeric equivalents, but only by using machine dependent
conversions and code.

For a table where both the key and the result can be contained
in a single byte, extraction of the result can be performed by
this method in IBM/360/370 Assembler by a single Translate
instruction.

3. Sequential search

The simple conventional method is, as the author in Computing
states, a sequential search through the table, testing each table
key for equality with the input key.

Al. MOVE1TO I

A2. 1F I GREATER THAN TABLE-LENGTH MOVE ‘X’
TO ERROR-MARK GO TO A4.
IF INPUT-X = KEY-X (I) MOVE RESULT-Y (I) TO
OUTPUT-Y GO TO A3.
ADD 1 TO L
GO TO A2

A3. Continue if found, with I and OUTPUT-Y given.

Ad4. Continue if not found.

This routine can be further simplified in other languages by
the use of a DO-loop or FOR-loop; it may be necessary
to be careful about whether the index used for incrementing
through the loop is available or not on exit from that loop.

A neater method described by Knuth (1973, page 395) is to
reserve a spare entry at the end of the table and to place the
input key in that location initially:

Al. MOVE INPUT-X TO KEY-X (ILAST)
MOVE 1 TO 1.

IF INPUT-X = KEY-X(I) GO TO A3.
ADD1TOI.

GO TO A2.

IFI = ILAST GO TO A4.

Continue if found . ..

A4. Not found

It may also be convenient to test for the end of the table by
inserting in the last entry some key which it is impossible for
the input to equal (not one which is invalid but possible); the
searching routine then does not need to know the length of the
table.

While the program for a sequential search is fairly trivial, the
construction of the table in a COBOL data division is not
(assuming that the table is to be included in the compiled
program at all—the alternatives are discussed later). The table
must be able to be accessed by index; the entries must be
inserted by value clauses. The restrictions of COBOL require
these to be inserted the right way round—values first, redefined
by an occurs clause. The obvious way to start writing such a
table is:

01 TABLE.
03 TABLE-ENTRIES-BY-VALUE.

05 ENTRY-1.
07 KEY-1 PIC X(3) VALUE ‘JAN’.
07 RESULT-1 USAGE COMP PIC S9(2) VALUE +31.

05 ENTRY-2.
07 KEY-2 PIC X(3) VALUE ‘FEB’.
07 RESULT-2 USAGE COMP PIC S9(2) VALUE +28.

A2.

A3.

03 TABLE-ENTRIES-BY-INDEX REDEFINES
TABLE-ENTRIES-BY-VALUE.
05 ENTRY OCCURS 12.
10 KEY-X PIC X(3).
10 RESULT-Y USAGE COMP PIC S9(2).
03 TABLE-LENGTH USAGE COMP PIC S9(2)
VALUE +12.

20z udy 61 U0 1s8nB Aq £591.5//202/€/0Z/31014e/|ufOS/W0d"dNo"oILLSPEDE//:SARY WO.) PAPEOUMOQ

It can readily be seen that this is appallingly laborious for
coding and punching. It is certainly worth while keeping the
result in character form, even though more work is done by the
program in converting to decimal or binary. We can then
simplify the value part to:

05 ENTRY-1 PIC X(5) VALUE ‘JAN3I’.
05 ENTRY-2 PIC X(5) VALUE ‘FEB28’.

and rewrite the appropriate line:
10 RESULT-Y PIC 9(2).
If the table is likely to remain unchanged—as perhaps in this
example—the values can be run together into one or a few long
literals:

05 ENTRIES PIC X(60) VALUE
‘JAN31FEB28 . .. DEC31’.

This, if it can be done, saves a great deal of tedious coding.
But if the table requires moderately frequent updating, per-
haps with the insertion of new entries, then at least one line for
each entry is desirable, both for clarity and to reduce errors.
The omission of a single character in a long string will put the
whole table out of step—and produce no diagnostic message.
If the values are arranged as a table on separate lines and in the
same columns, then errors are easily spotted.

Note that in the example above the number of entries in the
table was included as another variable as part of the whole 01
entry. If the table may ever change in length it is obviously
convenient for the length to appear in the program as seldom
as possible, and those cases to be near one another—in this case
twice: ‘OCCURS 12’ and ‘VALUE +12’. When a change is
made there is then a better chance of both being altered
together.

4. Improved sequential search

For both the direct search method and the sequential search
through a table with N entries the average number of tests
before finding equality is N/2, assuming all keys are equally
frequent and there are no errors. Errors of course require N
tests. If errors are infrequent, and keys are not evenly distri-
buted, then two improvements are possible. First, the table
(or the program tests in the direct method) can be arranged in
Jrequency order so that the commonly occurring keys come first.
So put a table of maritial status as: Married, Single, Widowed,
Divorced, in that sequence. Put a table of life assurance policy
classes so that the frequent endowment assurances come first
and the rare multiple life cases come last. If there is
sufficient concentration in the early entries then even quite a
long table, say over 100 entries, can be satisfactorily dealt
with sequentially.

A second possible improvement is worth while if the keys are
likely to be bunched together in the input so that runs of
similar cases are found together. In life assurance a bundle of
assurances may be followed by a bundle of annuities. In other
applications a bundle of orders of a similar type may come
together. In these cases it may be worth while treating the table
dynamically; after each entry is found it moves up the table one
place, changing with the one previously just above it (unless it
was already at the top). The process is similar to that of a
squash ‘ladder’. In this way the locally frequent entry makes its
way to the first position in the table. Unless direct exchange is
possible in the language, a spare location is needed to hold a
complete table entry and the relevant bit of program is:

IF INPUT-X = KEY-X (I) THEN
MOVE ENTRY (I) TO TEMP-ENTRY
IFI =1 GO TO FOUND
ELSE MOVE ENTRY (I — 1) TO ENTRY (I)
MOVE TEMP-ENTRY TO ENTRY (I — 1)
GO TO FOUND.

Note that with this method the position of any entry in the
table changes, so the value of the index, 7, cannot be preserved
for later re-entry to the table to obtain the same result. The
whole result is extracted at once (and in this case placed in
TEMP-ENTRY, even for I = 1), and if an index is needed at a
later stage, for example for the accumulation of totals in a
totals table, then the totals index must be an explicit part of the
result.

Clearly the dynamic table method requires some additional
program on each occasion that a successful match is found, so
it is not worth while unless sufficient bunching does occur. But
even with a table of months bunching may occur for any one
run, since the input data may relate to transactions in the
current or in neighbouring months. The current months
rapidly move to the top of the table, and commonly the match-
ing month will be the first entry in the table. However, if keys
occur in some specifically cyclical pattern the dynamic method
may be less satisfactory. Consider what happens when two
keys occur alternately! If a field in the result is allocated to a
count of occurrences then alternative promotion strategies are
of course possible.

Yet a further variant really eliminates searching altogether. IfO
the input keys are sorted initially into the same sequence as the3
table, the problem becomes the different one of matching oneQ
file against the other. The table key entries must be in sequencea
and each search begins at the point where the last finished. Thisd

method is, of course, restricted to one key per program run,g
and this is normally taken as the key requiring the largestg“
‘table’ to be looked-up—such as the master policy file or\
customer file itself.

Another variant of the method, partlcularly useful if the keyscu
occur clearly in runs in sequence, is to test each key first againsts
the entry for the previous key, which is left in a fixed, andc
unindexed, location such as TEMP-ENTRY. If a match lso
found, much time is saved; if no match is found, only a 11tt1e3
time is lost. Note that the very first key may require spec1a18
treatment—such as by initialising TEMP-ENTRY either w1th5
the value of any valid table entry or with a conspicuouslys
invalid key that cannot match.

5. Binary search
When we get beyond a comparatively short table, the sequentlaB
search, even improved, becomes intolerably slow, and better\
methods must be used. The bznary search method is simple t0—\
use, but it relies on the keys in the table being in sequenccg;
(x(1) < x(2) < ... < x(N)).

Al. MOVE 1 TO ILO.
COMPUTE IHI = TABLE-LENGTH + 1.

A2. COMPUTE I = (ILO + IHI)/2.
IF X = KEY-X (I) GO TO A3-FOUND.
IF I = ILO GO TO A4-NOT-FOUND.

(Since ILO was the only possibility left).

IF X LESS THAN KEY-X (I) MOVE I TO IHI,
ELSE MOVE I TO ILO. (Since X > KEY-X (I)).
GO TO A2.

A3-FOUND....

A4-NOT-FOUND.. ..

This assumes that the result of integer division is truncated,
so if ILO and IHI are only 1 apart the resulting I is equal to
ILO, and can never equal IHI.

/EJ/OZ/GIO!lJ

20z Idy 61 uo isenb Aq

6. Binary tree

Since the Kkeys in the table for a binary search must be ordered,
it is not a convenient method to use when a new key may be
inserted into the table during the course of the program. For
this a binary tree is useful. Consider a program to print the
number of occurrences of each identical word in a text, or of

The Computer Journal

policies of each specific sum assured in a file, or of orders for
each specific part number, the final print to be in alphabetic
(numeric) sequence. The number of possible keys is very large,
but the number of actual different keys in any one run is small
enough to be included in a table in core. Various ways of
organising the tree are possible; an example follows of a simple
‘right threaded’ tree. The data entry needed is:

01 TABLE.
03 TABLE-ENTRY OCCURS 1000 (say).
- 05KEY-X PIC...
05 RESULT-Y PIC... USAGE COMP.
05 IL PIC S9(4) USAGE COMP.
051IR PIC S9(4) USAGE COMP.

03 TABLE-LENGTH PIC S9(4) USAGE COMP
' VALUE + 1000.
03 INEXT PIC S9(4) USAGE COMP VALUE + 1.
03 IP PIC S9(4) USAGE COMP.
03 IQ PIC S9(4) USAGE COMP.

The table, initially empty, will become organised as a list, with
IL and IR as ‘left’ and ‘right’ or low and high pointers, in each
case containing the index to some other entry in the table (or
zero, as a null index), according to a scheme such as in Fig. 1.
x(2) < x(5) < x(1) < x(6) < x(3) < x(4), i.e. all keys down
the table to the left of any entry are lower in value, and keys to
the right are higher. Where there is no left branch the left
pointer is zero; where there is no right branch the right pointer
contains a negative pointer to the next sequential entry.

To find or insert an entry in the table we use the following
routine:

Al. IF INEXT = 1 MOVE 0 TO IQ GO TO A3.
(For first entry in table)
MOVE 1 TO IQ.

A2. MOVE IQ TO IP.
IF X = KEY-X (IP) ADD 1 TO RESULT-Y (IP)
GO TO A4. (Found).
IF X LESS THAN KEY-X (IP)
MOVE IL (IP) TO IQ
IF IQ = 0 MOVE INEXT TO IL (IP)
COMPUTE IQ = —IP
GO TO A3, (Add entry to the left)
ELSE GO TO A2. (Go down to the left)
(So now X > KEY-X (IP))
MOVE IR (IP) TO IQ
IF 1Q GREATER THAN 0 GO TO A2,
(Go down to the right)
ELSE MOVE INEXT TO IR (IP).
(Add entry to the right)

o

X Y IL IR E

SN e 2

A3. (To set up new entry).
IF INEXT GREATER THAN TABLE-LENGTH GO
TO ERROR-TABLE-FULL.
MOVE ZERO TO IL (INEXT)
MOVE IQ TO IR (INEXT)

Volume 20 Number 3

(If this entry was added to the left of IP, IQ contains — IP:
if it was added to the right, IQ contains whatever was the
previous right link of IP)

MOVE X TO KEY-X (INEXT)

MOVE 1 TO RESULT-Y (INEXT)

ADD 1 TO INEXT.

Ad. ...

It is then easy to extract the entries from the table in sequence,
perhaps for printing:
Bl. IF INEXT = 1 GO TO B4. (No entries in the table)
MOVE 1 TO IP.
B2. IF IL (IP) NOT = 0 MOVE IL (IP) TO IP
GO TO B2.
(Go down to left)
B3. PERFORM ... print data for entry (IP). ..
MOVE IR (IP) TO IQ.
IF IQ GREATER THAN 0 MOVE IQ TO IP
' GO TO B2.
(Go down to right)
IF IQ = 0 GO TO B4. (At the end)
COMPUTE IP = —1Q GO TO B3.
(Use a backwards thread)

B4. ..

It is not convenient to insert initial values into such a table,=
mainly because of the difficulty of getting the values of the3
pointers right, or of expecting clerical staff to understand and=
update correctly such a table. It may be useful to insert a fewz
common keys in the first few entries of the table in an intro-3
ductory paragraph; but if the table requires a large number of‘”
initial entries—perhaps values for the results—then theseB
entries should be read from an initial file and inserted by pro-3

gram into the binary tree table. If frequently occurring keys ares
inserted in the first entries in the tree this method can gain in8
speed over the pure binary search, in which the frequent keysa
may unluckily be placed in positions that occur late in theg
search. It may also be desirable to reorganise the tree from txme—
to time to keep it balanced; if, for example, input keys were:»
already in sequence, the right hand branch would build up to am
great length and the method would degenerate to a rather SIOWQ
sequential search; but reorganising a tree is not such an easy3
procedure so it is fortunate that, if the keys are tolerablym
random, the tree is likely to be fairly well balanced.

1} papeojumoq

A €6916//

7. More elaborate methods ,

When the table of entries becomes much larger then more
elaborate methods of searching become necessary. It is a150q>
generally necessary to construct the table by program rather
than by direct codlng of values. It may not be possible to hold3
the whole table in core, and we then have the problems of
accessing a random access or an indexed sequential type ofO
structured file on backing store. The methods fall into twom
general classes corresponding to some extent to these two§
access methods—though they can be used for tables wholly in
core just as well.

Hash tables are the natural means of dealing with large
random access files. They require the transformation of each
key by some randomising or hash function, f(X), such that
the transformed value can act like an index. The values of f(X)
must be integral, the range must be from 1 to some number
larger but not too much larger than the number of entries in
the table, and most values of X must produce a unique value
for f(X). The methodology of hash tables has been fully
discussed in the literature, as can be seen from almost any
recent volume of The Computer Journal. (An extensive biblio-
graphyis given by Knott(1975) and there is a useful introduction
to hash tables by Maurer and Lewis (1975) in ACM Computing
Surveys).

1t is a convenient method for larger tables—say 300 or more
entries in core, or as many as you like on disc. It has the dis-
advantage that it is impracticable to load the table except by
program, and that the table cannot readily be processed
sequentially. On the other hand, it is easy to alter the table
dynamically during the program. However, it may be necessary
to know something about the distribution of actually occurring
keys in order to choose a suitable transformation function.
Further the transformation must produce an integral result
from a key which is possibly in character form; this depends
on the internal representation of characters, and is not necess-
arily machine- or compiler-independent. Thus the method
requires more care than is desirable for routine use in varied
circumstances.

Both indexed sequential and dictionary look-up methods are
multistage ones. In both cases the result of the first table to be
entered is the location of an appropriate second table, and so
on until the level of the appropriate entry is found. The
searches of each table may be any of the previous methods—
directly indexed, sequential search, binary search—and need
not be the same at each stage. In an indexed sequential search
the whole table is partitioned into roughly equal sized subtables
and the effect is similar to a binary search in successive stages.
With a dictionary search the key is partitioned into subfields
and each subfield is used in turn as the entry for each stage of
the search—equivalent to finding a word in a dictionary by
search on each letter in turn. This may appear less efficient
than the more balanced indexed search, but it may be useful
when the separate subfields themselves are of significance, such
as British Postcodes, or a list of personnel within department,
within branch, within company say. The organisation of later
subfields may even be different for different values of the earlier
fields, so different processing may be necessary—consider STD
telephone numbers or words in an inflected language like
Latin. A dictionary search may be of use for quite a small table
in core; an indexed sequential search is really only appropriate
for a disc file—if the whole table were in core a binary search
would be simpler.

8. Updating

The frequency and method for updating the table is of major
importance in deciding on the appropriate search method.
Allied to this is the method of constructing the table and of
loading it into the appropriate part of the program. A number
of methods will be described in roughly increasing sequence of
‘dynamicness’.

First, the values in the table may be permanently fixed—such
as the names of the months—and can therefore be an integral
part of the program, either as direct literals in program
statements or as values given by VALUE clauses in the data
division entries (or their equivalents in other languages).
Almost as static is the case where changes are sufficiently
infrequent for it to be convenient for the programmer to update
the source program and recompile.

If the table is normally unchanged from one program execution
to the next, but still changes frequently enough for it to be

References

Brooks, F. D. and Iverson, K. E. (1969).
KNotT, G. D. (1975).
KnNuTH, D. E. (1973).
MAURER, W. D. and Lewis, T. G. (1975).

worth avoiding recompilation—or perhaps because changes
can be effected by a clerical department independently of
programmers—then it may be convenient for the table values
to be coded directly in an Assembler language module and
compiled into a library ready to be overlaid into the area
defined for the table in a COBOL program. Many installations
have an overlay subroutine that can be called from a COBOL
program for this purpose. It is necessary to ensure that the
table does not become too big for the space reserved for it.
If the look-up method requires the keys in the table to be in the
correct sequence it may be necessary to check this after the
table is loaded—-an inconvenience of the binary search method.
However the overlay method is particularly useful when several
programs use the same table and it is important that they are all
updated at the same time—separately coded tables that require
independent recompilation are all too likely to become diver-
gent. It may also be more convenient to code (IBM/360/370
Assembler) DC statements than COBOL VALUE clauses
where the table entries are of varied form. And it may be easy
for a nonprogramming clerical department to code and compile
a fixed pattern of DC statements where they would not be _
allowed to alter full scale programs. '

An Assembler overlay is not the only way of effecting the same =
result. If the table entries are complex and the table rather§
long—say over 50 entries with 10 varied format fields each— =
then it may be easier to code the values on data cards and use a S
program to construct a file on disc, which in turn is-loaded into =
core at the beginning of the (COBOL) program that is to access S
it.

If the table values are likely to be altered somewhat for each g
execution of the program then the values can be held perman- & g
ently on data cards, which are altered as required and read in to &
fill the table locations at the start of the program. But card%
handling is a perpetual source of error, so if the card file is at all 5
large, if errors are costly and if the file is not changed totally 3
from one run to the next, then it may be better to hold the file S
on disc and use special updating programs to effect thes
alterations.

If the table entries are wholly different from one run to the &
next then a direct loading of the table from cards is unavoidable,
but by now the data cards have become an ordinary file of &
input data that requires verifying and processing like any other §
input data. This is almost mdlstmgunshable from the wholly 5 3
dynamic table structure which is constructed by the program g 2
from its own input data as it goes along—as a compiler does &
with the variable names of a source program. For these, the 2
binary tree or hash table techniques are convenient, since tht:‘('él>
insertion of new entries may be as important as the retrieval of
existing entries.

Finally, a program may look up a table that is a file on disc—
organised as a direct random file or an indexed sequential file—
without any responsibility for updating it; another set of _
programs deal with the updating and maintenance of that file.
The form of file is then determined externally to the program
doing the look-up. The problems of updating such a file are
beyond the scope of this article.

MO

0B/[:S

OZ/a ole/|

VZOZ JdV 6L uoj

Automatic Data Processing System/360 Edition, John Wiley.

Hashing Functions, The Computer Journal, Vol. 18, No. 3, pp. 265-278.

The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wesley.

Hash Table Methods, ACM Computing Surveys, Vol. 7, No. 1, pp. 5-19.

The Computer Journal

