A cross compiler for pocket calculators

Deane B. Blazie* and L. S. Levyt

A cross compiler producing programs for the HP-65 from source programs in BASIC is described.
Optimisation techniques are discussed in detail, and typical programs presented showing the

resultant code. Typical compilation costs are cited.

(Received November 1975)

In November of 1972, the first scientific pocket calculator was
introduced by Hewlett Packard. The model HP-35 has a full
complement of scientific functions, a storage register and an
operational stack, all in a tiny package which easily fits into a
shirt pocket. The introduction of the HP-35 marked the
beginning of a major thrust in calculator technology.

Since then, hundreds of pocket calculators have appeared on
the market, some with marked improvements over the HP-35.
The technology advanced with improvements such as multiple
storage registers, extended instructions and finally, program-
ability. While all these factors expanded the market for pocket
calculators, many purchasers of the programmable machines
know little or nothing about programming, but are willing to
learn enough about the discipline to program their calculators
to solve problems.

To program a typical pocket calculator, one must press the
appropriate keystrokes necessary to solve the problem, while
the calculator is in the program mode. These keystrokes are
equivalent to those needed to solve the problem by hand the
first time. The keystrokes are machine instructions and as such
are primitive. Programming these keystrokes can be quite
difficult to one not well versed in the art of programming.
It has been demonstrated, Dahl, Dijkstra and Hoare (1972)
and is a general fact that unless programming is done in a
systematic manner it can be difficult and frustrating. Carberry,
Kahlil, Leathrum and Levy (1976) devote a chapter of their
recent book General Computer Science to programming
pocket calculators. In it they describe a systematic approach to
programming and give programming examples.

The authors have taken this systematic approach a step further
by allowing programs to be written in a high level language,
BASIC, and then translated it into the calculator language by a
computer program, a compiler. Actually, the computer
program which accomplishes this translation is run on a
medium or large scale computer and is therefore called a cross
compiler.

The cross compiler thus reduces the problem of programming
a pocket calculator to programming in a high level language.
This reduces the programming effort considerably and because
of the optimisation techniques used in the compiler, the
calculator code generated is as efficient as that normally
produced by hand.

The object code produced is executable on the model HP-65
calculator. The HP-65 was chosen because to date it is probably
the most advanced programmable pocket calculator on the
market. Furthermore, the Hewlett Packard programmable
pocket calculators are the only ones offering conditional
branching which is necessary in solving many problems.

1. Description of the HP-65
The HP-65 is a pocket size (1” x 3" x 6”) programmable

computer. It can be used in the manual mode as a sophisticated
scientific calculator or in the automatic mode where it can
execute a stored sequence of keystrokes. The difference between
an automatically run program and a sequence of keyboard
activations is that the automatic program runs at high speed,
and eliminates potential errors. Once a program is entered into
the HP-65 program memory it can be loaded onto a " x 3"U
magnetic card for storage and subsequently reloaded into the:
HP-65.

The HP-65 has a 100 step program memory. Most keyboarc@
instructions occupy one memory location, but a few require twog’
Variable storage consists of an operational stack of fou13
registers called the X, Y, Z and T registers and nine generag
purpose storage registers, R1 through R9. All arithmetic’
operations are performed in the stack registers. Unar)?%
operations (1/X, \/ X, etc.) are performed on the X regnste%
(the displayed register). Binary operations (+, —, X, Y/ X, etc.E.
are performed using the X and Y register contents in the ordex‘ca
Y 0 X where 0 is the binary operation. The stack is auto®
matically pushed as a value is put into the X register and autos
matically popped when binary operations are performed. They
stack can also be manipulated manually by any of severak
stack instructions. The entire stack may be cleared by per-\
forming a stack clear operation. The X- Y interchange operatiorg:
effectively swaps the X and Y registers. The ENTER key&
performs a stack push operation, while two roll keys permﬂ?
the stack to be rolled up or down to relocate its elementSN
The stack is explained in more detail in the discussion om
optimisation. w

The control structures of the HP-65 calculator mclud@
sequential control, conditional and unconditional branchmgy
and nonrecursive subroutine calls. Program steps may bq;
labelled 0,1,...,90r 4, B, C, D, E. 4, BCDEareals%
subroutine names A call to the subroutine labelled 4 cause$
control to pass to the instruction labelled 4 with sequential,
control from A until a RTN instruction is encountereds
Control then returns to the instruction immediately followm}ﬁ
the call to 4.

Any label can be used in a conditional or uncondltnonal‘i
branch instruction. GTO 3 causes a transfer of control to the
instruction labelled 3. Conditional branches can occur on the
predicates X # Y, X <Y,X =Y, or X > Y, where X and Y
are the stack registers mentioned earlier. When the predicate
of a conditional instruction is true, the next two program steps
are executed, otherwise they are skipped and program execution
resumes with the third step after the predicate.

2. General description of the compiler

The compiler was designed with efficiency, ease of use, expand-
ability, adaptability and transportability as primary goals.
With only 100 program steps available, the compiled code

*US Army Human Engineering Laboratory, Aberdeen Proving Ground, Maryland, 21005, USA.
+Department of Statistics and Computer Science, University of Delaware, Newark, Delaware, 19711, USA.

Volume 20 Number 3

213

must use this memory efficiently. Since programmable cal-
culators are being bought by people who are not necessarily
programmers, the compiler should be easy to use. Since few
compilers survive without changes to improve their perfor-
mance, steps were taken in the design to facilitate expanding
the compiler. As new and different calculators are introduced,
the compiler should be easily adaptable to produce their new
machine code. Transportability, as used in this paper, refers
to the ease with which the compiler can be run at computing
centres using different machines.

The authors feel that most of these goals were best met with
the structure shown in Fig. 1. This structure separates the lexical
analyser, statement recogniser and semantic routines. Once a
statement type is recognised, a semantic routine is called to
compile codes for this statement. Each statement type has a
unique syntax directed compiling routine which produces the
output code for that statement type.

This structure facilitates the expandability and adaptability
goals. To expand the source language only requires expanding
the recogniser and adding an appropriate semantic routine.
To adapt the compiler to a different calculator requires changes

. to the semantic routines, but the lexical analyser and recogniser
need not be changed.

BASIC was chosen as the source language because BASIC is
easy to learn and easy to use. Furthermore, BASIC is taught
in most colleges and universities in introductory courses on
computers. BASIC does, however, lack some needed capabili-
ties that the calculator can perform. These shortcomings were
remedied by adding some new constructs to the language. They
are:

‘DISPLAY’ Allows an expression to be computed and the
calculator stopped while the evaluated expres-
sion is in the calculator display.

The HP-65 has a full complement of trigono-
metric functions requiring angular input. This
input can be expressed in degrees, grads, or
radians. The ‘DEGREES’ statement sets the
mode to degrees.

Similar to degrees, this statement sets the
angular mode to radians.

‘GRADS’ Sets the angular mode to grads.
‘INITIALISE’ Sets all variables in the program to zero.

Transportability could best be attained by writing the compiler
in a language which was somewhat standardised and widely
available. Whilst ANSI standard FORTRAN would have been
nearly ideal in this respect, it was felt that the lack of string
capabilities in FORTRAN would have severely compromised

‘DEGREES’

‘RADIANS’

FOR NEXT
STATEMENT

ASSIGNMENT
STATEMENT

SOURCE
PROGRAM

GO TO
STATEMENT

SEMANTIC
ROUTINES

LEXICAL
ANALYZER

STATEMENT
RECOGNIZER

I
I
I
l
I

END
STATEMENT

Fig. 1 Structure of the HP-65 cross compiler

214

the compiler’s operation in other respects. Therefore, PL/I was
chosen as the language in which to implement the compiler.
PL/I is widely available and somewhat standardised. The
authors were careful not to use PL/I constructs which were
known to be peculiar to a specific machine.

The unique feature of this compiler is its means of achieving
efficiency. The compiler structure, lexical analyser, and
recogniser are covered in detail in the referenced literature, and
will not be discussed here. The optimisation techniques, which
account for the compiler’s efficiency, are, however, of interest
and will be discussed in detail in the remainder of this paper.

3. Optimisation
In writing the cross compiler for the HP-65, three primary
limitations of the machine were considered.

1. Limited data storage (nine registers).
2. Limited program memory (100 program steps).
3. Limited stack size (four registers).

With only nine data storage registers available, a programmer
must be careful not to use the registers wastefully, and to reuse
a register whenever possible. To save program steps, a pro- 2
grammer should check to see if a value needed to evaluate an =
expression is already in the stack where it may be advantageous a
to use it. If a value in a register is just updated (that is, a recall,
an operation, and a store), the register arithmetic feature of the S
HP-65 can be used.

These are optimisation techniques considered when one is G
programming by hand, and they should also be considered by >
the compiler if efficient code is to be produced. The compiler &-
must also assure it does not over extend the machine by, for g
example, assigning more than nine registers or by assigning too &
many labels. An even more subtle precaution arises from the £ £
stack limit of four. The HP-65 evaluates expressions in reverse 8
Polish form and automatically pushes and pops the stack as 3
required. However, an arbitrary expression may not fit into 8
the limited stack of four. If this happens, a programmer will =
usually break up the expression into intermediate results, and &
use a register to store these results while the rest of the expres-
sion is evaluated. Finally, the intermediate results are combined
to obtain the evaluated expression. Alternatively, Carberry, 2
Kabhlil, Leathrum and Levy (1976) show how an expression can A
be manipulated in such a way that it makes more efficient use of < 3
the four reglster stack without using intermediate storage. This >
technique is used in the cross compiler in a limited, but g
advantageous, way to increase code efficiency.

sdpy woulj pape

aplu

/0C

4. Register and storage optimisation

The cross compiler makes efficient use of registers and stack
space by modelling the nine general purpose registers and the
four stack registers, keeping track of what is in each. For
example, as variables are encountered in the source program, a
register is assigned to each variable. Consider the statement in
the BASIC language:

20 A = 3-5%SIN (37-5) .
It computes a value for 4 by executing the HP-65 code:
35
ENTER
37-5
SIN

*

20z Indy 60 U0 3senb Aq ¢

The result will now be in the X register. Then the compiler will
search for an empty register and execute a STO Ra, where Ra
is the empty register now assigned to the variable 4. Now if the
statement:

30B=A=%2715
is executed, the compiler will recognise that the value for 4 is in

The Computer Journal

the X register; so it will not recall it, but will output the
following code:

2:715

*
STO Rb

where Rb is the register assigned to B.
This is accomplished by maintaining the arrays:

REGISTER (9)
STACK (4)
REGBACKUP (9)
STKBACKUP (4)
STKFREZ (4)

REGISTER (/) is equal to zero if register I is not in use, or
equal to the token associated with the variable using register I.

STACK (I) is similar, but represents the X, ¥, Z and T
registers for I = 1, 2, 3 and 4, respectively.

REGBACKUP (/) is a flag which is set when the variable
using register [is also in the stack. That is, it is backed up in the
stack. If all nine registers are in use and one more is needed, it
may be possible to use a register, the contents of which are

backed up in the stack.

STKBACKUP is similar; it is needed when a variable must be
pushed through the bottom of the stack and then lost. However,
if it is available in a register, there is no need to save it, and no
sacrifice in losing it.

STKFREZ (1) is an array used when an expression is evalu-
ated. A given expression is converted to reverse Polish form and
evaluated on the stack by pushing variables onto the stack and
operating on them. When a variable is needed, it is looked for
in the X and Y stack registers first and accessed there, rather
than calling it up from a storage register. However, as the
variables are pushed onto the stack, they must not be disturbed
until the expression has been evaluated; disturbing them would
change their order, and the expression would be evaluated
incorrectly.

As an example of the use of STKFREZ, consider the two-line

program:

I10A=2
20B=Ax*5

The compiled code will look like this:

START

INPUT INFIX
EXPRESSION
I=Il

v

CONVERT TO
REVERSE , ,
POLISH IN 'E

TRANSFORM |YES
EXPRESSION

L

STKFREZ=0

OUTPUT
*X-Y
INTERCHANGE

QUTPUT,
ENTER

OUTPUT "RCL’
PRECEDENCE
(E(T))

NO E(T)=

CONSTANT

STK LIFT= lq NO
TRUE

202 udy 60 U0 188n6 Aq $891G//€1.2/€/0Z/31014e/|ufL00/W0d"dNo"oILLSPEDE//:SARY W) PAPEo|UMOQ

Fig. 2 Algorithm to evaluate expressions.

RETURN
OUTPUT
OUTPUT 'PRINT ENTER’
IMAGE E(T)’
) U¥
POP ves ~E(T STK LIFT= OUTPUT
PRINT IMA
STACK OPERAT FALSE s
NO
PUSH STACK
I=I+I

Volume 20 Number 3

215

2 Puts 2 into the X register
STO 1 Stores X register into register 1

5 Puts 5 into the X register and moves 2 up into the
Y register
* Multiplies 4 by 5

STO 2 Stores B in register 2.

In the third step, the compiler examines the array STACK and
finds A4 already in the X register, so it goes on to enter 5 and
multiply.
Now consider a modification to this program:
I10A =2
20B=A=x*A

The compiled code for this program would be;

2

STO 1
ENTER
*

STO 2

Now at the third step, 4 will be in the X register, but the next
operand is also 4 and—though it is already in the X register—
it is needed there and must be pushed into the Y register by the
next operand. That is, the first 4 is frozen ; must not be removed.
The array STKFREZ is used for this purpose. When an
expression is evaluated, each time an operand is pushed onto
the stack, STKFREZ (1) is set to indicate that that operand is
frozen. Thus in step 3 of the target code above, the compiler
knows that 4 is in the X register; but it also knows that
STKFREZ (1) is set, and consequently, that it must perform
an ENTER operation to enter 4 in both the X and Y registers.

The algorithm used to optimise the expression evaluation, as
shown in the example, is flowcharted in Fig. 2. The following
paragraphs will explain how it operates. Initially, all variables
are set to zero. The algorithm then starts with step 1.

1. Transform the expression in infix form to an equivalent
expression in reverse Polish form (postfix), and place the
tokens in a linear array E(I), where the evaluation will
begin with the smallest / first. If the expression requires
more than four stack levels, transform it (see Stack level
optimisation) before proceeding with Step 2. I = 1.

2. If E(I) is an operator, go to step 7; otherwise continue with
step 3.

3.1f STACK (1) # E({I), then go to step 4; otherwise, if
STKFREZ (1) = 0, go to step 8, or else output ‘ENTER’
and then go to step 8.

4. If STACK (2) # E(I) or STKFREZ (2) # 0, go to step 5;
or else output ‘X-Y Interchange’ and go to step 8.

5.1f E(I) is of type constant, then go to step 6; or else the
value must be recalled from a register. Output the code
‘RCL’ and the value of the variable PRECEDENCE (E(])).
PRECEDENCE (token) contains the register number
where the value of the token is stored.

6. If STKLIFT = .TRUE. then output ‘ENTER’ and output
the print image of the constant. Set STKLIFT = .TRUE.
and go to step 9.

7. Output the operator corresponding to the token E(I). If
E(I) is a binary operator, then perform a stack POP
operation. In either case set / = I + 1 and, if / is greater
than the length of the expression, go to step 10; otherwise
g0 to step 2.

8. STKLIFT = .FALSE. (stack does not need lifting).
9. Perform a stack PUSH operation, set / = I + 1, and go to
step 2.

10. STKFREZ = 0 (unfreeze the entire stack). The evaluated
expression is in the X register.

216

3. Perform the following operations:

A stack PUSH is defined by:
{var) (4) = (var) (3)
(var) (3) = (var) (2)
{var) (2) = (var) (1)
where (var) ::= STACK, STKBACKUP, STKFREZ and
STACK (1) = E(I)
STKFREZ =1

Similarly, a stack POP is defined as:

{var) (2) = (var) (3)
(var) (3) = (var) (4)
STACK (1) = —STACK (1) (to denote an intermediate
result)
STKBACKUP (1) = —STKBACKUP (1)
STKFREZ (1) = 1

where (var) is defined as above.

With the expression evaluated, the X register contains the
numerical result. If the compiler is processing a DISPLAY
statement, or part of a FOR statement, the result need not be
stored ; however, if it is compiling an assignment statement, the
result must be stored in a register. o

The algonthm which performs the register assignment 1§
flowcharted in Fig. 3. The following three steps explain 1ts<>
operation.

1. If PRECEDENCE ({var)) = 0, then the variable has been—h

previously assigned; go to step 2. Otherwise CALL FETCHS
REGISTER, a procedure which finds an available reglsterj
and assigns it to the variable.

2. Output ‘STO’ and ‘PRECEDENCE ({var))’ to store theO

value of the variable in the assigned register.

REGISTER(PRECEDENCE({var))) = var
REGBACKUP(PRECEDENCE((var>)) = 0 (the register:
contents are also available in the stack).

STACK (1) = var

STKBACKUP(I) = 0 (the X register contents are als
saved in a register).

00" dnoojwape

ueu&wo:)/w

The fetch register algorithm finds an empty register if there 1s$
one, or ‘steals’ one if all registers are in use. The procedure,o
shown in Fig. 4, works in the following way:

1. Look at all nine elements of REGISTER(/). If one is zero,

VALUE IS IN
THE X-REGISTER

CALL FETCH]
REGISTER

20z udy 60 U0 1s9nb Aq $891G/7ELZ/E/

—Q

T STO'|
CEDENCE
<VAR))

y

REGISTER
(REG)= kvaRA

Fig. 3 Algorithm to save a variable in an assignment statement

The Computer Journal

PRECEDENCE
(<VAR>)=1

S

STK BACKURN)
TACK (N)

PRECEDENCE

(<VAR>)*T

Fig. 4 Algorithm to get an available register.

then return this register number. Otherwise perform step 2.

2.For I =1to 9 find a REGBACKUP(/) = 0 such that, for
some N, STACK(N) = REGISTER(J). This [is a register
whose contents are in the stack element N. Set
STKBACKUP(N) = STACK(N) to indicate that this stack
element is no longer backed up in a register. Return 7 as the
register available. If step 2 fails, the program has exceeded
the storage capability of the calculator; and output an error
message.

5. Stack level optimisation

As noted earlier in this paper, the HP-65 has a four register
stack for evaluating arithmetic expressions in reverse Polish
form. The expression

3x4EXP (5 + 6)
would be evaluated by the following HP-65 keystrokes.

3 Put 3 in the X register

ENTER Push stack operation (see above)

4 Put 4 in the X register

ENTER Push stack

5 Put 5 on the stack

ENTER Push stack

6 Put 6 on the stack

+ Add X to Y (register contents) and pop stack
EXP Raise X to Y power

* Multiply X by Y

At the point just after 6 is entered from the keyboard, the stack
contains:

T 3
Z 4
Y §
X 6
Executing a ‘+’ operation leaves the stack as:
T 3
Z 3
Y 4
X 11

Volume 20 Number 3

The EXP operation produces:

T 3
Z 3
Y 3
X 4EXP(11)
And the last operation ‘*’ leaves:
T 3
Z 3
Y 3

X 3x4EXP(11)
Now consider the expression:
3x4EXP(5+6=*7).
And in reverse Polish:
34567 + EXP *
One may write the HP-65 code as:

3
ENTER
4
ENTER
5
ENTER
6
ENTER
7

*

+

EXP

*

Note the problem encountered when the fourth ‘ENTER’
command is performed. The stack was already full with four
entries, and an ENTER would cause the top element, ‘3’ in the
T register, to be lost because the stack is only four deep.

One solution to this problem is fractionation: calculating part
of the expression, storing the results, then calculating the rest
of the expression, and combining the results. In the example, we
could eliminate the necessity for intermediate storage by
computing the equivalent expression

(AQEXP(5+ 6*7) 3.

I=1
(START WiTH
THE ROOT]

OF NODES
COMMUTE
I=X+) NODES(I)
STK
commuTE | NO_“eevep <
NODES(I) STK Us
YES
STK USE = Yeg] INSERT'CHS'
NODES(X)=
STK NEEDED --(‘ ! TREE
NO
JYES [TiNSERT 17X"
NODEXT)= OPERATOR INTY)
’ TREE
NC
NO STK YES
<4

EXPRESSION
CANNOT
BE REDUCED

Fig. 5 Algorithm to reduce expression.

217

202 udy 60 U0 189n6 Aq $891G//€1.2/€/0Z/1014e/|uf00/W0d"dNo"oILLSPEDE//:SARY W) PAPEOUMOQ

During the process of commuting the multiplication operation,
we have reduced the required stack level to four.

This technique is employed in the cross compiler to reduce an
expression so that a four level stack can store it. This procedure
can best be explained by looking at the expression in tree form.
The example just cited can be drawn as the following tree:

37N /EXP\

5 / \7
The cross compiler’s algorithm for commute operations first
commutes the root of the tree to get:

*\
E){
. / \+\
5 / *\
6/ 7
Evaluating this new tree requires a stack of level 4. Had the new
tree not improved the stack efficiency, the old tree would have
been reconstructed and the next commutable operation down
the tree would have been commuted. The EXP node could not
be commuted because exponentiation is not commutable, so
the compiler would move down the tree until a commutable
node is found.

While division and subtraction are not commutable
operations, the expression can be modified to allow them to be
commuted by inserting unary operators of the proper type that
are available on the HP-65. For example the expression:

A—- B

can be written as:

—B+ A4

where the unary minus operator is CHS, or ‘change sign’, on

the HP-65. Similarly the expression:

A/B
can be written as:
(1/B)x A

where 1/B can be performed by the unary operation ‘1/X’ on

the HP-65. Thus the binary operations of addition, subtraction,

multiplication and division can be commuted in attempts to

reduce expressions to a stack level of 4.

The algorithm just discussed is shown in Fig. 5. It involves the
following six steps:

1. Convert the expression into tree form, with the array
NODES containing pointers to the nodes of the tree.
NODES(1) points to the root. STKUSE is the level of stack
required.

2.1=1

3. If NODES(J) is a commutable node (+, —, *, /), then com-
mute it. Otherwise go to step 5.

4. Check stack needed. If it is less than STKUSE, go to step 6.
Otherwise commute NODE(/) again to restore it to its
previous form.

5.1 = I + 1. If Iis greater than the last node, the tree cannot

218

be reduced, return and output an error message. Otherwise
go to step 3.

6. If the commuted node was subtraction or division, insert
unary operator ‘CHS’ or ‘1/X’ into proper branch of the
expression tree. Go to step 3.

Expressions can be written which require arbitrary levels of

stack use, even after applying this technique. Nevertheless,

many practical examples have been tested, and none were
flagged by the compiler as irreducible.

5. Performance, goals and achievements
Repeating the goals outlined in the design philosophy, the
compiler was designed to be:

1. Efficient

2. Easy to use

3. Expandable

4. Adaptable to other machines

5. Transportable

Performance in terms of these goals is of interest.

peojumoq

Efficiency:
Techniques to insure efficiency were a major topic in this paper<I>
Tests with a variety of sample problems establish that the-.
compiler is quite efficient. Problem 2 was taken directly frong
the Hewlett Packard HP-65 STANDARD PAC. Designated=
STD-02A in the STANDARD PAC, it calculates basi¢:
statistics of a set of data points. The program in then
STANDARD PAC requires 81 program memory locatlonsjl
while the equivalent code generated by the compller requlreg
only 79 locations. This difference, though slight, is in favour of,
the compiler. It is quite surprising because, obviously, a skilleds
programmer could generate code as efficiently as the compiler—3
or even more efficiently, since he could make numerou

optimisation passes over the code. However, the compiler carg
produce consistently good code in much less time, and the
option still exists for a programmer to optimise the complled%
code further. The cost of running the compiler for the sam%
problem on the Burroughs B6700 computer at the University og
Delaware Computing Centre was 26 cents. While the cost og
generating the code by hand is not known, the author feels thag;
ten times as long is a very conservative estimate.

q 891G/

Ease of use:
No attempt was made to compare the ease with which programs

can be generated using the compiler versus generatmg the codg
by hand, but few would argue that programmmg in BASIC i§
at all comparable to the difficulty of programmmg in machmé
language. Certainly the number of compllers in use today
substantiates the fact that programming in a high level languagg
is much easier than programming at the machine level.

1ZAAL A

Expandability:

Since the compiler was designed and implemented, only one
additional source language statement was added. Early in the
testing phase, it became apparent that the use of the register
and the stack clear operations were not available to the user,
and that users needed a construct to make them available. The
INITIALISE statement, which does this, was added without
difficulty; it merely required additions to the compiler, with no
changes ordeletions in other semantic routines. The addition of
this new construct established the ease with which the compiler
can be expanded.

Adaptability to other machines:
No attempt has been made to adapt the compiler to a machine
other than the HP-65, but this adaptation would only require
changing the semantic routines.

The Computer Journal

Transportability :

It was mentioned earlier that the compiler was implemented in
a standard subset of PL/I so it may be easily moved to other
machines. While the PL/I program has, to date, not been
transported to any other machine, the design was transferred
into an HP-9830 calculator in the language BASIC.

While this does not substantiate total portability to all
machines, it does show that the design is transportable to
another language and, hence, to other machines.

Thus far, the compiler design philosophy has been described,
the block diagram of its structure given, and the optimisation
techniques used on the output code explained in some detail.
We now wish to give some examples of problems which have
been solved using the compiler.

The appendix contains the results of the sample problems, in
_the order in which they are presented below.

Problem 1
Consider the problem of finding the nth Fibonacci number. The
Fibonacci series is defined by the recurrence equations:

Xn+1=Xn+X—l'

The results in the Appendix give the source and compiled codes
to solve the problem.

Problem 2

This problem is program number STDO02A in the Hewlett
Packard STANDARD PAC library which is given with every
calculator: ‘MEAN, STANDARD DEVIATION, STAND-
ARD ERROR’. A BASIC program to solve the problem,
and the solution, are given in the Appendix. The program
uses the ‘INITIALISE’ statement to generate the first two
machine instructions, ‘CLR STK’ and ‘CLR REGS’. The
example also points out the use of register arithmetic in the
output code, as evidenced in instructions 11 through 13, the
compiled codes for the statement S = .S + A4. As noted above,
the code takes up two less memory locations than the manu-
facturer’s solution.

Problem 3
This problem solves the quadratic equation:
aX> +bX +c=0.

The A button allows the user to input the constants a, b and c,
then displays the discriminant D. If D is less than 0, the C
button gives the complex roots, otherwise the B button gives
the real roots.

Problem 4
As an example of solving a general recurrence equation (by
iteration since the HP-65 does not allow recursive subroutine
calls) the solution for:

Xn+1 = P(n)Xn + Q(n)Xn—l

where X, and X, are given ,
is programmed for:

X0=0; X1 =1;
Pn)=n+1
O(n) = 2n

P and Q are programmed in subroutines 4 and B and can be.

changed to any function the user wishes. The program with P
and Q defined as above requires 59 program memory locations.

Volume 20 Number 3

Appendix

Sample problem 1 Fibonacci number problem
10 INPUT N

20X1=0
30 X2 =1
40 N1 =3

50 X3 = X1 + X2
60 IF N = N1 THEN 110

70 X1 = X2
80 X2 = X3
90 N1 = N1 + 1
100 GOTO %0
110 DISP X3
120 END
Source problem 1 R/S INPUT N
2 STO 1
30
4 STO 2
51
6 STO 3
7 3
8 STO 4
9 LBL
10 2
1 RCL 2
12 RCL 3
13 +
14 STO 5
15 RCL 1
16 RCL 4
18 X=Y
19 GTO
20 1
21 RCL 3
22 STO 2
23 RCL 5
24 STO 3
25 1
26 STO
27 +
28 4
29 GTO
30 2
31 LBL
32 1
33 RCL 5
34 R/S
35 R/S
Object program
STORAGE MAP
VARIABLE REGISTER
N 1
X1 2
X2 3
N1 4
X3 5

35 PROGRAM STEPS USED

Sample problem 2 Mean, standard deviation, standard error
1 INITIALISE
10 SUBROUTINE A

20 INPUT A
30S=S+ A

40 N=N +1

5052 =952+ A*A
60 GOTO 20

100 SUBROUTINE E
110 INPUT A
120S=S - A

130 S2 =52 — AxA
140 N=N -1

150 GOTO 110
200 SUBROUTINE B

202 udy 60 U0 189n6 Aq $891G//€1.2/€/0Z/1014e/|uf00/W0d"dNo"oILLSPEDE//:SARY W) PAPEOUMOQ

219

210 X = SN

220 DISP X

300 SUBROUTINE C

310 S3 = SQRT((S2 — N * X * X)/(N — 1))
320 DISP S3

400 SUBROUTINE D

410 DISP S3/SQRT(N)

420 END

Source program 2 CLR STK
4 CLR REGS
5 LBL
6 A
7 LBL
8 1
9 R/S INPUT A
10 STO 1
11 STO

30 R/S INPUT A

45 GTO
47 LBL

49 RCL 2
50 RCL 3

52 STO 5
53 R/S
54 LBL

56 RCL
57 RCL
58 RCL

w nwh

*
60 RCL

*
63 RCL 3

68 SQRT
69 STO 6

70 R/S
71 LBL
72 D
73 RCL 6
74 RCL 3
76 SQRT
77 |
78 R/S
79 R/S
Object program
STORAGE MAP
VARIABLE REGISTER
A 1
S 2
N 3
S2 4
X 5
S 6

3
79 PROGRAM STEPS USED

Sample problem 3 Quadratic equation solver

5 SUBROUTINE A

10 INPUT A

20 INPUT B

30 INPUT C
S0D=(B*B—4*A*C)

60 DISP D

70 SUBROUTINE B

80 DISP (—B + SQRT(D))/(2 * A)
90 DISP (—B * SQRT(D))/(2 * A)
100 SUBROUTINE C
110 DISP —B/(2 * A)
140 END

Source problem LBL

A

R/S

STO 1
R/S
STO
R/S
STO
RCL
ENTER
*

4

RCL 1

NW N

*
RCL 3

*

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 —

18 STO 4
19 R/S

20 LBL

21 B

22 RCL 2
24 CHS

25 RCL 4
27 SQRT

28 +

29 2

30 RCL 1
31
32
33
34
36
37
39
40
41
£
43
44

INPUT A
INPUT B
INPUT C

1202 IHdy 60 UO 153nB AQ $891.52/€1Z/E/02/3101HE/|ulW00/W00"dNO"dIWepPEd.)/:SARY WOl Papeojumoq

The Computer Journal

45 R/S 11 LBL

46 LBL ’ 12 2
47 C 13 A
48 RCL 14 B
50 CHS 15 RCL 4
51 2 16 RCL 2
52 RCL 1 17 =
53 =« 18 RCL 4
54 | 19 RCL 4
55 R/S 20 =
56 RCL 4 21 +
58 CHS 22 STO 4
60 SQRT 23 X-Y
61 2 24 RCL 1
62 RCL 1 26 X=Y
63 =x 27 GTO
64 | . 28 1
65 R/S 29 RCL 2
66 R/S 30 STO 4
31 RCL 4
Object program 32 STO 2
STORAGE MAP 33 1
VARIABLE REGISTER 34 STO
A 1 35 +
B 2 36 3
C 3 37 LBL
D 4 38 1
66 PROGRAM STEPS USED 39 RCL 4
40 R/S
Sample problem 4 General recurrence equation 41 GTO
10 INITIALISE 492 2
15 INPUT N1 43 LBL
20 X1 =1 44 A
3I0N=2 45 RCL 3
40 GOSUB A 46 ENTER
50 GOSUB B 47 »
60 X2 = P1 %+ X1 + PO X0 48 1
60 X2 = P1 x X1 + PO X0 49 +
70 IF N = N1 THEN 120 50 STO 4
80 X0 = X1 51 RTN
90 X1 = X2 52 LBL
100 N=N + 1 53 B
120 DISP X2 54 RCL 3
110 GOTO 40 55 2
130 SUBROUTINE A 56 x
140 P1 = N* N + 1 57 STO 4
150 RETURN 58 RTN
160 SUBROUTINE B 59 R/S
170 PO = N2
180 RETURN Object program
200 END STORAGE MAP
VARIABLE REGISTER
Source problem 2 CLR STK N1 1
4 CLR REGS X1 2
5 R/S INPUT N1 N 3
6 STO 1 X2 4
71 P1 4
8 STO 2 PO 4
9 2 X0 4
10 STO 3 59 PROGRAM STEPS USED
References

AHO, A. V., and ULLMAN, J. D. (1972). The Theory of Parsing, Translating, and Compiling, Vols. 1 and 2, Prentice-Hall.

Brazig, D. B. (1976). A Compiler for Pocket Calculators, Masters Thesis, University of Delaware, Department of Statistics and Computer-

Science.
CARBERRY, S., KAHLIL, H., LEATHRUM, J. F., and LEvy, L. S. (1976). General Computer Science, Merril & Co.
CockE, J., and SCHWARTZ, J. T. (1970). Programming Languages and Their Compilers, New York University.
DanL, O. J., DUKSTRA, E. W., and HoArg, C. A. R. (1972). Structured Programming, London, New York, Academic Press.
ELsoN, M. (1973). Concepts of Programming Languages, Science Research Associates, Inc.
Froyp, R. W. (1963). Syntactic Analysis and Operator Precedence, JACM, Vol. 10, pp. 316-333.
Gries, D. (1971). Compiler Construction for Digital Computers, John Wiley & Sons.
Hopcoop, F. R. A. (1900). Compiling Techniques, London: MacDonald; New York: American Elsevier.
LEg, J. A. N. (1967). The Anatomy of a Compiler, Reinhold Publishing Co.

Volume 20 Number 3 221

202 udy 60 U0 158n6 Aq $891G//€1.2/€/0Z/31014e/|uf00/W0d"dNO"oILLSPEDE//:SARY W) PAPEOUMOQ

