Automatic application program interface to a data base

W. D. Haseman* and A. B. Whinstont

As the availabilities of data base management systems become greater the need to interface already
existing programs with the data base will become important. This paper presents a technique
whereby these programs can be interfaced automatically with the data base through the use of a
query/extraction interface, thus providing the capability to retrieve, modify and use data in various
application programs without knowing the physical data structure and without using the data

manipulation language.
(Received March 1976)

1. Introduction

As the availabilities of data base management systems become
greater, the need to interface already existing programs with the
data base will become important. These programs may include
such things as standard report generators, statistical models, or
special output routines such as plots or histograms. When a
planner wishes to perform data analysis, he would like to have
a collection of programs available in a library which can be used
to process the data stored in the data base. Some of these
programs may be used many times, while others will only be
used occasionally, and in most applications, with different
elements of the data base.

This paper presents a technique whereby the planning system
(Haseman, 1975) will provide a capability for automatically
interfacing these programs with the data base through the use
of a query/extraction interface. This process will relieve the
planner from the need to write the appropriate data mani-
pulation language to perform the desired data extraction from
the data base. This extension provides the planner with the
capability to retrieve and modify data and use this data in
various application programs without knowing the physical
data structure and without using the data manipulation
language (DML). -

It should be noted that the cost for this added capability is that
the time required to fetch the data using this general approach
is greater than if specific DML was written for a specific
application program. This trade-off is similar to the trade-off
between higher level languages such as FORTRAN and the
use of assembly language. It is likely that routine programs
which will be used many times on a regular basis should be
modified to include the specific DML, rather than use this
query/extraction interface technique. If we are to assume that
the user is not a programmer, then the automatic generating of
the queries would be an important feature. With this complete
system, the user will not be involved at all with the data base-
application program interface.

The Data Management System used for this work was the
GPLAN Data Management System (Haseman, Nunamaker
and Whinston, 1975; Bonczek, Cash, Haseman, Holesapple
and Whinston, 1975) which was developed at Purdue Univer-
" sity under the sponsorship of the National Science Foundation.
The GPLAN/DMS system is a partial implementation of the
CODASYL DBTG report of 1971 (CODASYL, 1971). The
system was designed to use FORTRAN as the primary host
language, however it will also support other high level
languages. Using the GPLAN system the user defines the

logical structure with the data description language, and this
structure is analysed and stored as a schema. The application
program accesses the data base through the use of a data
manipulation language. The actual data is stored within tl%
data base. It is this interface between the application program
and the data base system that we are concerned with in tl&

[0}

paper.

wouj p

2. Interface approaches =
The real thrust of the interface problem is to replace the
Input/Output (I/O) statements in the application program with
the statements required to access the desired data from t
data base. The trade-off to be considered in this process is the
efficiency with which the data access will occur versus how dafa
structure independent the code which performs this access will
be. If the code must be regenerated every time the data base
structure is modified, the cost to perform this regeneration s
important. On the other hand, if the code is extremely inefficient,
this extra cost will occur every time the code is used. The real
resolution of this fixed versus variable cost problem is how oft¢n
the program is going to be used versus the number of times the
data structure will be modified. R
Theré exist three basic approaches by which this program dafa
interface can be performed automatically. These approaches
are:

1. Replace all input/output statements within the application
program with the appropriate data manipulation languagg.

2. Develop a separate specific program which will extract the
data through the use of DML and store it in a file suitaﬁe

for input into the application program. o

3. Develop a general program which will generate an extraction
file for each application program, through the use of dafa
description (subschema) for the program. 5

These approaches are listed in decreasing order of efficiency amd

increasing order of data structure independence. R

The first approach would involve modifying the application
program. Using this approach, the user’s program is modified
to include the specific DML, which specifies the logical struc-
ture of the data base. If the data base is later restructured, each
application program which uses that portion of the data base
which was restructured would have to be modified to account
for that restructuring. Although this approach is recommended
for those applications which will be used repeatedly between
data base modifications, it is not the best for the less often used
application programs. This is the approach which is normally

S/

*Assistant Professor of Accounting and Management Information Systems, School of Urban and Public Affairs, Carnegie-Mellon University,

Pittsburgh, Pennsylvania 15213, USA.

tProfessor of Industrial Administration and Computer Science, Krannert Graduate School, Purdue University.
This work was supported in part by Grant Number G5377-55 from the Office of Computing Activities of the National Science Foundation.

The Computer Journal

1

Data |

Base . |

|

|

v '
Generalized ! Data

Stri <4 L

Progrgm (Requirements

| b

]

& |

!

|

|

|

l

]

|

\V4 [
Application f , Data
Program (i ' Flow

Analysis

!

|

|

1

Run-time Extention During Compile Phase

Fig. 1 Generalised strip program

used for a host language data management system, which does
not include a query language capability.

The second approach would require writing the DML used
in the first approach in its own data extraction program. This
approach eliminates the need to modify the user’s program,
while also providing the capability to have several strip pro-
grams which can collect data for the same application program.
This program performs the task of preparing the input file for
the program in a manner similar to a user collecting the data
deck to be used by the program. Although it does perform these
nice extra features, the code is still data structure dependent.
Although this approach varies in physical implementation, the
first two approaches are conceptually the same.

The third approach involves determining the data require-
ments of the specific application program, and then matching
these data requirements with the data base in a runtime
environment. These data requirements can be determined prior
to runtime and stored in the data base. They correspond to an
extension of the subschema concept as proposed in the
CODASYL DBTG Report. The subschema section of a
DBTG program describes the logical portion of the data base
that will be used by the program, and performs any renaming
of item types and record types required. This description would
also include conditions for selecting actual record occurrences
within that logical structure. The diagram in Fig. 1 demonstrates
how this procedure is performed. This third approach was
selected since it provided the maximum amount of data
structure independence, an) it had not been investigated in
previous research. To determine the data requirements for a
specific program, some sort of data flow and control analysis is
required.

3. Data flow analysis

The question of looking at a program and determining its data
requirements involves trying to partition the program into
blocks and then determining the flow between these blocks. A

Volume 20 Number3

lot of the early work in trying to optimise code generated by a
compiler looked at this problem of determining blocks of code.
The classic paper in this area was written by Fran Allen (1969)
and was based in part from work by Lowery and Medlock
(1967) and Prosser (1959). This work was concerned with
separating a program into blocks, determining the loops formed
by those blocks, and then performing local code optimisations
as part of the compiling process. A recent dissertation by
Nylin (1972) looked at the question of combining two program
modules together by using some of the techniques presented by
Fran Allen. None of these works were concerned with the
question of the data requirements for the I/O statements, and
in most studies, it was assumed that I/O statements were
nonexistent. The following, then, is the approach we developed
to determine the specific data requirements of a program.
The first step in the process involved analysing the program

to determine the various blocks of code. A block of code as
defined by Lowery and Medlock is:

A block consists of a sequence of statements with the

following properties:

1. Program control can only enter the sequence at the first

statement ;
2. Only the last statement of the sequence can contain a
conditional or unconditional transfer of control.

The example in Fig. 2 shows how a program would be divided
into these blocks. Each immediate successor of a block is
recorded, and this information is used to construct an incidence
matrix. Using the following algorithm, this incidence matrix
can be used to determine all the closed loops or paths within the
program:
1.An n x n Boolean connectivity matrix C is constructed

C;; = 1if block j is an immediate successor of block i, zero

otherwise.

2. Successive powers, k, (1 < k < n) are taken. If Ck =1
there is a path of length k containing i.

3. In order to separate out the closed paths imbedded in a given

1 DIMENSION CITY (5)

2 10 READ (5, 100) STATE,NOCITY

DO 201 = 1, NOCITY
3 READ (5, 200) CITY
WRITE (6, 300) CITY, STATE

4 20 CONTINUE
5 IF (STATE.NE.“WYOMING”) | GOTO 10 | 6
STOP
7 END
1 2 3 4 5 6 7
1 0 1 0 0 0 0 0
2 0 0 1 0 0 0 0
3 0 0 0 1 0 0 0
4 0 0 1 0 1 0 0
5 0 0 0 0 0 1 1
6 0 1 0 0 0 0 0
7 0 0 0 0 0 0 0

Fig. 2 Example program with incidence matrix (a) Blocks for program
(b) Incidence matrix

20 udy 61 U0 1s8n6 Aq L6915 //22Z/€/0Z/310M4e/|ufL00/W0d"dNo"oILSPEDE//:SARY W) PAPEOUMOQ

C*, an integer distance matrix D, is kept. D;; contains the
length of the shortest path from block i to block j. Whenever
Ct = 1and D;; = 0, then D is set to k.

4. A possible path, PP, is constructed whenever CX = 1 by
(a) Setting PP; = 1
(b) For all i* in PP
(i) forallj#i*(l <j<n)
if D # 0 and Dji‘ #* 0 then Dl"j + Dj,'- < k
then PP =1
where z* is all those i currently 1 in PP.

5. PP is added to the list of paths P if it is unique. Step 4 is then
repeated for all i.

6. Steps 2 through 5 are repeated for each power of k.

NOTE: A reasonably fast method of raising C* to C*** can
be developed as follows:

1. C**! is initially zero.

2. For each entry i in C* and for each immediate successor
Jjto i, then C¥*! = Ck*'v C}.

Since i and j are integer indices of the table, the ORing is
fast. The number of operations is a linear function of the
number of branches in a program. A theorem proving this
method was presented by Warshall (1962).

An application of this algorithm to the program presented in
Fig. 2 is shown in Fig. 3. As can be seen, the two closed paths
that were determined are 3-4 and 2-3-4-5-6. Although this
technique is effective for small graphs (n < 25), the computation
time grows rapidly as the number of paths and the number of
nodes grow large. In one such example, where the number of
nodes was 110, and the number of paths was greater than 300,
the CPU time required on the CDC 6500 was about 20 minutes.
In light of this, the following are two alternatives which could
be used to lessen the required CPU time.

The first alternative is to try to eliminate the number of nodes
in the network by eliminating those nodes which are not
directly related to the I/O portion of the program. In most
applications, the program inputs the required data in one
section of the program, performs the calculation in the second
portion, and generates the output in the final section. The
section of the network which performs the calculation could
be removed since it would not have any effect on the data
requirements of the program.

The second alternative involves collapsing the network as
various loops are detected. When a closed loop is detected, the
entire loop can be replaced by a single node, assuming that this
loop has the property of only one external entry and exit point.
Using this approach, the network shown in Fig. 3 would first
reduce by forming node o which contains node 3-4, and then by
combining node 2-3-4-5-6 forming node f. This approach
would rapidly reduce the size of the problem being solved as
the various nodes would be combined.

4. Subschema generation
During the process of determining the various blocks of code,
it is necessary to generate tables for the various statement
numbers and variables used in the program. In fact, the
program which performs this analysis is equivalent to the first
pass of a two pass compiler. The only portion that is absent
from this process is the actual machine language code gen-
eration. In light of this, although this process of data flow
analysis appears to be time consuming, the same process is
normally performed by an optimising compiler every time a
program is compiled. It would therefore cost very little to add
the necessary features to an already existing compiler to satisfy
the requirements of the data flow analysis.

On the other hand, the subschema generation, which uses the

224

Closed Paths

3-4 g

2-3-4-5-6 3

Fig. 3 Paths for example program §_
[0}

NAME TYPE SIZESTART FINISH INCR‘;;

RECORD A

ITEM STATE REAL 1

ITEM NOCITY INTEGER 1

RECORD B

ITEM CITY REAL 5

QUERY C

RECORD A

*GROUP 1 NOCITY 1
RECORD B

*END

Fig. 4 Subschema for sample program

johue/ulwoo/woo dno-olwspese;/:sdpy ul

data flow analysis as input, is not presently performed by
compilers. This process involves determining which nodes or3
blocks of code contain I/O statements, and which closed paths3

.or loops contain those blocks of code. By analysing these I/O0%

statements and the conditional statements which determine the!
number of times a particular loop is executed, an explicit datad
requirement of the program can be generated.

There are two basic components of the subschema for thc:
program. This subschema is designed to closely resemble thdg
subschema discussed in the CODASYL Report (DBTG, 1971)::
The major difference is that information describing the loops is:
included. The subschema therefore appears much like the data>
description language used to describe the data base. The first.
component of the language describes the record structure%
Since this analysis was performed on FORTRAN programs;~
each READ statement generated its own record description.
As can be seen in Fig. 4, the record description includes the
item name, its type, and its size (an array). It should also be
noted that when an implied DO is used in conjunction with the
READ statement this has the effect of creating a group variable.
The program must then record the range of this DO loop to
determine the required works of input. The information
concerned with the type and size of the variable can be fetched
from the tables generated by the compiler.

The second component of the subschema describes the control
flow information which is used to determine the number of
times a particular block containing an I/O statement is
executed. This component also describes the order in which the
various I/O statements will be executed. It should be noted that
the control information for both this component, as well as the

The Computer Journal

control information for the implied DO in the I/O statements,
may itself contain a data variable which will actually be input.
from the data base. This is why this subschema can only be
satisfied at run time, since the data requirements may depend
on the actual values of the data being input.

Once this subschema is generated, the data base adminis-
trator must supply the appropriate data variable matching
between the names used in the program and its associated name
in the data base, if there exists a one-to-one mapping. For
some applications, for example, a regression model, this
mapping is not actually performed until the program is actually
requested for execution. In this case, the data base adminis-
trator defines the item types as being dummy variables, and
the system will request the data base names at execution time.

All of this subschema information is stored in the data base.
The system owns a collection of program descriptions which
contains the program name and the names of any dummy
variables required to execute that program. Each program in
turn owns a collection of set descriptions which contain the
information in the second portion of the subschema. Each of
these, then, in turn contains a collection of the record des-
criptions they control. The only data base dependent relation-
ship contained in this description is the actual item type names
that have been matched with the program variable names.

5. Data extraction

The final step in the process of automatically interfacing the
application program to the data base involves constructing a
group of queries which will extract the data required for the
program. These queries can be completely constructed from
the subschema information stored in the data base. These
queries can then be processed by the GPLAN query system
(Fig. 5) described in Haseman, Lieberman and Whinston,
(1974) and Haseman and Whinston (1975). It should be noted
that this query description is data structure independent, in
that it does not specify any of the data base record types or the
data base set types.

6. Conclusion

The automatic interface program described in this paper was

implemented to process FORTRAN 1V programs and deter-
mine its input requirements. A simple extension of these
techniques would be required to analyse the output require-
ments so that the program could store its results in the data
base. The program which performed the subschema analysis
was applied to several FORTRAN application programs, and
was able to complete the analysis in every case. Although the

oproaches mentioned to decrease CPU time required to
determine loops in the code were not implemented, they would
probably be required in a production type of environment.

An overall view of this process of automatic program interface
is shown in Fig. 6. Only the processes shown in the dotted lines
are actually performed in the run time environment. In actual
practice, the response time for an application program which is
interfaced using this procedure is not noticeably longer than if
the program was interfaced using the DML commands. This
difference in time, however, does become larger as the amount
of data required becomes larger.

The approach discussed in this paper does have some limi-
tations. The first limitation involves the program which inputs

References
ALLEN, F. E. (1969).

USER

Query System

(GPLAN/QS)

T e

Extrac-

Application 1 Output

tion
i
File File

Control

v

*

Data Manage-
 ment System

(GPLAN/DNS)

: :
'

Data Base .

Preparation ' Data Base
.

Application 2 >

Application N

@)
@)
COMPTLER
PROGRAM 3
O
Q
Q
[¢)
o
=
o
3
DATA FLOW =
©
ANALYSIS 2
o
Q
Q
Q.
[]
3
S
SUB-SCHEMA PROGRAM 2
©
GENERATION LIBRARY 8
a;—— 3
Q
M ! Y - 5
' 5
' QUERY , CONTROL =
DATA BASE - [=3
PROGRAM PROGIRAM Q
' S
0 / @
| [N
N
| A+ g
| &)l
| >
| USER K
o
| <
«
I 5
a
Fig. 6 View of automatic program interface 9

data from the card reader as well as the data base (i.e. possiblyx
an update program). There is no possible way to predict=.
required data requirements a priori, for this reason onlyo
programs which input strictly from the data base can be used. R
A second problem deals with programs which because of their
structure contain certain logic which cannot be analysed and
completely defined prior to execution. An example might be a
program which solves problems using data in an interactive or
recursive nature. Fortunately most application programs do not
fit into the above mentioned areas. however these limitations
are not insignificant.

Program Optimization, Annual Review in Automatic Programming, Vol. 5, Pergammon, New York, pp. 239-307.
Bonczek, R. H., CasH, J., HASEMAN, W. D., HoLESAPPLE, C., and WHINSTON, A. B. (1975).

Generalized Planning System|Data Management

System (GPLAN|DMS) User’s Manual, Version 2.0, Krannert Graduate School of Industrial Administration, August 1975.

CODASYL CoMMITTEE. (1971).
Haseman, W. D. (1975).
HaAseMAN, W. D., LIEBERMAN, A. Z., and WHINSTON, A. B. (1974).

Data Base Task Group Report, Association for Computing Machinery, April 1971.
Framework for a Planning Information System, Ph.D. dissertation, Purdue University.
Generalized Planning System|Query System (GPLAN[QS) User’s Manual,

Krannert Graduate School of Industrial Administration, November 1974.

Volume 20 Number 3

225

HaseMAN, W. D., NUNAMAKER, J. F., and WHINSTON, A. B. (1975). A Partial Implementation of the CODASYL DBTG Report as an
Extension to FORTRAN, Management Datamatics, October 1975.

HaseMAN, W. D. and WHINSTON, A. B. (1975). A Data Base for Non-Programmers, Datamation, May 1975, pp. 101-107.

Lowery, E. S. and MepLock, C. W. (1967). Object Code Optimization, CACM, Vol. 12 No. 1.

NyLiN, W. C. (1972). Structural Reorganization of Multipass Computer Programs, Ph.D. Dissertation, Purdue University.

PRrOSSER, R. T. (1959). Applications of Boolean Matrices to the Analysis of Flow Diagrams, 1959 Proceedings of the Eastern Joint Computer
Conference, No. 16, pp. 113-138.

WARSHALL, S. (1962). A Theorem on Boolean Matrices, JACM, Vol. 9, January 1962, pp. 11-12.

Book review

Quantitative Methods for Business Decisions, by L. Lapin, 1976; Science Committee. The book was published in 1975; the papers

770 pages. (Harcourt Brace Jovanovitch, £9-15) were given in six sections; Special theories of choice (7 papers);

Prescriptive and descriptive choice (2); Practical determination of

The Role and Effectiveness of Theories of Decision in Practice, edited preferences, values and uncertainties (6); Information and decision
by D. J. White and K. C. Bowen, 1976; 419 pages. (Hodder and (7); Problem formulation (1); and Choice of models and techmquesU

Stoughton, £15-00) (8).

It is tempting to divide the papers crudely into the philosophical, >
At first sight these two books have nothing in common except the the computationai and the practlcal especially since the class1ﬁcat10nm
word ‘Decision’ in their titles. They are written with entirely different Wil not be subject to the rigorous scrutiny reported as dlSCUSSlOﬂ"’
objectives. Lapin is 770 pages long. It aims to provide ‘as completea after each section in the book. Much would have been lost to theg
treatment as possible of the basic management science methodology reader had the papers merely been rewritten to take account of the3
.. for the average college student with only an algebra background’. discussion. =
Subsidiary objectives appear on page 13 where the importance of a Professor Rivett provides an elegant example of the phnlosophlcal13
knowledge of quantitative methods to a manager is discussed. ‘It is in a paper entitled ‘Behavioural problems of utility theory’. ‘One is 5
very important to know enough about this subject to guide those tempted therefore to use utility as a pedagoglc device and to approachm
high-powered analysts (who often stray into a mathematical never- managers with it in the manner of missionaries approaching savages’.)
never land). As a bare minimum, any exposure to quantitative Examining nine basic axioms Rivett arrives at a modified form of5:
methods will certainly help future managers to ask the right questions utlhty which should map onto the credibility of the executive. In theo

OMO

and to recognise when outside help might be useful’. ensuing discussion doubt was expressed concerning the relevance ofU
The treatment is painstakingly thorough, leaving nothing to the a mathematically logical and tight set of axioms. 0
imagination of the reader. One gets the impression that a thoroughly Basically computational seems a fair description of the paperO

prepared course has been published; if so it would be a very good ‘Stochastic dominance: theory and applications’ by Professorg
introductory course. The book would be valuable for any student Fishburn. He reviews notions of stochastic dominance and their uses.

having difficulty with basic concepts and is better than most of this in decision analysis. In discussion he agreed that the way he had2
genre. chosen to deal with an individual’s discriminatory and perfecto
Preference is given to organising topics in increasing difficulty judgement problems was probably not the best. =
rather than for homogeneity of subject. The 23 chapters do form a ‘Choice through dominance’ is predominantly practical. WrittenS

logical progression from 1, Introduction, and 2, Probability concepts, by H. Benham of the Civil Service Department it refers to theN
to 21, Simulation, 22, Dynamic programming, and 23, Markov Location of Government Exercise. One point raised in dlscusswnN
processes. of this paper was whether the solution techniques for finding the setcn
The attempts made to compare techniques and place them in per- of nondominated strategies were as simple as the author made them°'>
spective would help the student. For example, after working the appear. One can always argue about the choice of papers but the

same case on a decision theoretical approach and also from a coverage in this case is wide. The book can be thoroughly recom-z
traditional statistical hypothesis the different results lead, on page mended to anyone with some knowledge of decision theory wh0c
424, to a fundamental comparison of the two approaches. Problems wishes to gain a real insight into the implications of using it 1n‘f’

are given at the end of each chapter with selected results at the end practice in a wide variety of situations. S
of the book, although there is no guidance for those in difficulty. An On second thoughts the books can usefully be compared by con-Z

instructor’s manual gives more detail and provides worked examples sidering what a student completing the first would make of the%>
to 300 problems. second! A number of the papers would be incomprehensible. A few=:

Your reviewer is unable to guess what proportion of English would be readily understandable and some could be read with great'\’
students would persevere to the end of the book. At some points the benefit. There is, I fear, a large gap between the end of Lapin and’®

audience addressed would find the going hard without personal the knowledge assumed in White and Bowen. Armed merely with
supervision. Lapin some trouble would be experienced ‘guiding those
White and Bowen have edited 31 papers given to a conference held high-powered analysts’.

in Luxembourg in August 1973 under the aegis of the NATO P. A. Losty (Bedford)

226 The Computer Journal

