The MUS name store

R. N. Ibbett and M. A. Husband

Department of Computer Science, The University, Manchester M13 9PL

One of the most important concepts in MUS is the use of a Name Store to hold the small number
of frequently used named variables found in high level language programs.
This paper describes the implementation of this store as part of the MUS processor and presents

some results of measurements of its performance.

(Received May 1976)

1. Introduction

The MUS processor is designed around an order code which
reflects the structure of high level languages (Kilburn, Morris,
Rohl and Sumner, 1968). In these languages, operands can be
divided into two major classes (@) named operands, which can
be reals, integers, or descriptors of arrays, and (b) array
elements. Statistics taken on the Manchester University Atlas
computer have indicated that over a large range of programs
80% of operand accesses are for named operands and 209, for
array elements. Furthermore, the number of different names
used in a program is generally less than a hundred, and the
number of names declared in a routine within a program is
almost always less than 64. Thus, it is possible to keep these
named operands in a small high speed store incorporated into
the central processor and thereby avoid the long access time to
the main store for a high percentage of accesses.

If this store had to be addressed explicitly by the programmer,
it is unlikely that compilers would make full use of it and the full
speed of the processor would not be realised for programs
written in high level languages. If the store is addressed asso-
ciatively, however, and forms part of a ‘one level’ store with the
main store of the system, then it is invisible to the programmer
and can operate equally efficiently for programs written in
high level languages or coded directly. ‘

To assess the size of store which would be required, six
programs using large numbers of names were analysed and the
complete patterns of name accesses for those programs
recorded (Odeyemi, 1970). The operand access patterns were
used to investigate the performance of simulated buffers of
different sizes, and it was found that a 32 line buffer (equivalent

to 256 bytes) almost completely trapped the named operands
for these programs. This was only possible because of the
definition within the order code of named quantities. With a
more conventional order code such as that of the IBM 360,
for example, where all operand accesses must be treated alike,
and where, in fact, all store accesses for operands and instruc-
tions are treated alike, the same sort of efficiency is onlym
obtained when a buffer of 16K bytes is used, as in the ‘cache’ &

memory of the Model 85 (Liptay, 1968). In practice the MUS5 =
name store has been expanded to 52 lines (416 bytes), forB
reasons explained in the next section.

|w)
]
S
=3

2. Name store hardware
The various activities involved in executing an order in the a
MUS5 central processor are carried out by separate functional 3
units (Ibbett, 1972) Instructions are accessed by the instruction o o
buffer unit (IBU in Fig. 1) via the store access control umtv
(SAC) which is linked to the local store and to other stores via S
the exchange. The primary operand unit (PROP) accesses the 5)
operand specified directly by the instruction and sends it with 3
the function to the B-Arithmetic (modifier) unit, to PROP = =
itself for use as a variable, or to the secondary operand unit = 1
(SEOP) for use either as a descriptor specifying a secondary ®
operand (e.g. an array element) or as a variable to be used &
within the SEOP or as a variable destined for the accumulator 3
unit.

Both PROP and SEOP contain name stores. The PROP name
store contains 32 lines, four of which are reserved for the opera- ~
ting system, leaving 28 available for user programs. This name .
store deals mainly with B/D names (i.e. named quantities used 5

opeoe//:sdiy

/1122

C

[0

@

[e]

5

©

g ACC >

- g

~

o

N

~

PROP SzCP
NAME
1BU STORE 0BS
SAC
LOCAL
Fig. 1 The MUS CPU to/fror
the EXCHANGE
Volume 20 Number 3 227

LP A | BW
. 5| BW=
I
LEVEL @
Y
DECODE —
PN
VIRTUAL ADDRESS FIELD VALUE FIELD
ADDRESS (28 1ines) D, (32 lines)
IN € Lu LR ‘nes VF
20 bits 64 bits
—————————— > 8 —_—— e - — —
IR V2 VA

Fig. 2 The basic PROP name store hardware

as variables by units other than the accumulator unit, or used as
descriptors), while the 24 line name store in SEOP deals mainly
with 4 names (i.e. named quantities used as variables in the
accumulator unit). Each line in these stores may contain either
two adjacent single word operands (32 bits) or one double
word operand (64 bits). Two separate name stores were pro-
vided in an attempt to overcome the ‘Acc write back’ problem
as described below.

MUS5 is a highly overlapped machine with up to 12 instructions
at some stage of execution between the PROP name store and
the accumulator unit. Thus, during the execution of the follow-
ing sequence of instructions, which form the scalar product
(SCALPROD) of two vector arrays X1 and Y1 (each of length
LIM)

L1: ACC = XI1[B]
ACC * YI[B]
ACC + SCALPROD
ACC = SCALPROD
B CINC LIM :: compare B with LIM and increment B
IF <0,—- L1 ::if B< LIM, jump to L;

there are four instructions separating the order writing to the
name SCALPROD and the order wishing to read it again. If
SCALPROD were in the PROP name store, a long gap would
be created since the ADD (‘+°) order would have to wait in
PROP for its operand to be returned by the STORE (‘=)
order. By having a name store in the SEOP, the ADD order can
proceed along the pipeline until it is within two stages of the
accumulator unit before picking up its operand.

Each line of both name stores consists of two main parts, a
64-bit value register and an associatively addressed register
containing the virtual address of the operand. In the PROP
name store (Fig. 2) the address field is 20 bits wide—four bits
for the process number, 15 for the address within a segment and
one bit to distinguish the four operating system lines. The
segment address is not included since all names are in the same
segment (the name segment) within a process. The name store
in the SEOP forms part of a larger operand buffer system (OBS)
which is also used for array elements, and the 14 segment
digits are therefore included in the address field of the OBS
name store (Woods and Sumner, 1974). In addition to the

y LLBJ; papeojumoq

address and value registers in each line, three special digits ar&
used, one, line-in-use (LU), indicating whether the line contain%
valid information, the second indicating whether the content§
of the value field have been overwritten by the action of &
‘write to store’ order, line altered (LA), and the third indiggs'
cating which line of the name store is to be used when entering
a new name into it, the line pointer (LP). 4

The normal action in either name store is for the virtuaf
address of the required operand to be copied into an interrogaté
register (IN) and to be presented to the associative field. If thé-
address is identical to an address in one: of the associatives
registers, and the line is in use, an equivalence occurs and é
corresponding digit is set in the line register (LR). The digit i
the line register then accesses the appropriate register in the:
value field and the value of the operand is read out and copied®
into the value field register (VF). In parallel with this operation;
a check is made to determine whether an equivalence actuall
occurred in the associative field (this is done by OR’ing:
together the digits of the line register and testing for a ‘1’). The’
action taken if no equivalence is found depends upon the type
of order requiring the operand and the various possibilities ar&
described in Section 3. 9

In addition to the normal accessing and updating operationsz
the name stores have provision for certain special actiong
required to implement the paging system used to translate th%
process generated virtual addresses into real store addressesg
Most of these actions are controlled by means of ‘privileged
operands’ in the instruction set, i.e. a set of locations within the
processor (known as V-store) accessible only to executive and
supervisory software. The special actions occur when an order
writes to a V:line. They include resetting the name store (i.e.
setting all LU and LA bits to ‘0), purging the name store (i.e.
copying all altered lines back to local store and then setting all
LU and LA bits to °0’), and searching the address field for a
given page address. The PROP name store also incorporates a
mechanism for allowing accesses made via descriptors to the
name segment to check its contents. Descriptor addresses are
generated at a later stage on the pipeline than the PROP
name store but earlier than the OBS name store. Thus the
latter can be checked without special action, whereas the former
must be re-examined by an order which has already passed
beyond it.

The Computer Journal

3
|
FILE DISC STORE le—> OTHER PROCESSORS
| |
[|
g
c
| K [« FIXED-HEAD DISC STORE
N |
| o I
]
MASS STORE *—’1 ’
| |
| |
| r_. LOCAL STORE
L_

T

STORE ACCESS CONTROE UNTT v—]

———————

l CURRENT PAGE REGISTERS I

l
|
|
| |
|
l

OBS NAME STORE
0BS VECTOR STORE

PROP NAME STORE

Fig. 3 The MUS storage hierarchy

3. One level storage
The ‘one level storage’ concept developed for the Atlas
Computer (Kilburn, Edwards, Lanigan and Sumner, 1962) has
been extended in MUS5 to cover four levels of real storage—
the integrated circuit name stores, the 260 nsec. cycle time
plated wire local store, a 2-5 usec. ferrite core mass store, and a
fixed head disc store (Fig. 3). Operand accesses for names are
initially made to the name stores; if the required operand is not
found, the name store must be updated by bringing a new word
into it and discarding an old one. An access is therefore made,
via a set of current page registers (CPRs) contained in SAC, to
the local store. The CPRs translate the virtual address of the
operand into the local store real address. If the CPRs indicate
that the required operand is either not in the local store or is not
currently accessible via a CPR (CPR #), then an interrupt is
generated and the appropriate software is entered to update the
CPRs and to organise the transfer of a page of information via
the exchange between the mass or disc stores and the local
store. Clearly, it would be inefficient to enter software to
organise a one word transfer between the local store and a
name store, so these transfers are organised by hardware alone.
In organising such a transfer, the hardware must decide which
line to replace and must take into account the effects of store
orders. To maintain the speed advantage of the name stores,
store orders update the value of an operand in a name store
but not that in the local store (¢f ‘store-through’ in the IBM
cache stores where both the buffer and the main store are
updated together). Thus the new word required for one name
store may already be in the other name store (and have a differ-
ent value from the copy in the local store), and the old word

Volume 20 Number 3

may have to be written back to the local store before it is
discarded. The decision concerning which line to replace
requires the use of a replacement algorithm, and the effects of
various replacement algorithms have been studied by simulation
(Section 4). The algorithm actually incorporated is a simple
cyclic one, implemented because it uses a minimum of
additional hardware.

The detailed actions which take place when a non-equivalence
(NEQ) is detected depend upon whether the order is destined
for the accumulator unit or not and whether the required
operand is already in the ‘wrong’ name store. If names were to
be exchanged between name stores on each possible occasion,
this would lead to inefficiencies. (Although a particular variable
may not need to move between stores, a 32-bit variable used
mainly by the B-arithmetic unit may be contained within the
same 64-bit word as a variable used mainly by the accumulator
unit, and the full word could be exchanged many times.)
The number of occasions on which the exchanges are made
is reduced by only allowing them to occur for orders which
write to the operand concerned.

Thus for an accumulator order the normal situation is for z«g
non-equivalence to occur in the PROP name store and ars
equivalence to occur in the OBS name store. If equxvalenccg
occurs in the PROP name store, however, then for a ‘load’ (i. em
non-store) order the operand is carried through from the:~
PROP name store as if it were a literal, and no access is made
to the OBS name store. If equivalence occurs for a store ordeé
the normal action of the PROP pipeline is inhibited and an
hardware routine is entered which deletes the entry for thcg
operand in the PROP name store, writing it back to the locaﬁ
store if necessary, i.e. if it has been altered by a prev1ous stor8
order whilst in the PROP name store. The pipeline is therb
restarted and when the order reaches OBS an access to 1t$:
name store is made. This produces a non-equivalence and the

operand is therefore accessed from the local store and wnttem
into the OBS name store. 3

When a PROP name store non-equivalence occurs for a non=
accumulator order, the OBS name store must be checke
before the operand is accessed from the local store. Th@
non-equivalence is detected when the order has reached thé>
value field register and the operand address is in the virtuafs
address reglster (VA in Fig. 2). The normal action of thel
PROP pipeline is inhibited and a special order is created aheads
of the order finding the non-equivalence. This order leaves:
PROP for SEOP and causes the OBS to access its name store>
If the operand is not in this store then OBS makes an access tq;
the local store via SAC on behalf of PROP, so that thé
operand, when available, will be returned d1rect1y to PROP. g

If the operand is in the OBS name store it is returned to.
PROP via the normal internal highway used for operandéﬁ
returning to PROP from SEOP. For a ‘load’ order the operanc.
is simply aligned with the order in PROP and the pipeline ig3
restarted. For a ‘store’ order OBS deletes the entry in its name
store and PROP updates its name store as for an order which
found non-equivalence in the OBS name store.

Before a new value may be written into either name store, a
line must be selected for the new operand. The actions taken in
PROP and OBS are slightly different in this respect due to the
different ways in which the two units access operands from
local store: OBS must always have one free line in its name
store while PROP is able to free a line during the time it is
waiting for an operand to be returned from either OBS or SAC.
The actions taken to free a line in the PROP name store and to
bring in a new operand are described briefly below.

When a PROP non-equivalence is detected, the address of the
operand causing the non-equivalence is in VA (Fig. 2), whilst
the two succeeding orders have their addresses in VQ and NQ.
The content of VA is therefore sent off to OBS and the content
of the line pointer (LP) is copied into LR in order to select a

229

line for deletion. If this line is the target line for an outstanding
‘B =’ order (LR = BW), the content of LR is copied, with a
one digit shift, into LP and back into LR to select the next line,
whilst if the line selected has already been altered (as indicated
by LA) the address and value are read out and used to update
the local store. When the new operand is received by PROP, its
address and value are written into their respective fields, the
corresponding LU bit is set to ‘1’ and the corresponding LA bit
is set to ‘0’ or ‘1’ as appropriate. The content of LR is then
copied back into LP, and, after the pipeline has been restored
to its former state by recycling the contents of VQ and NQ
through IN, the normal instruction execution sequence is
restarted.

If all instructions find their operands in the correct name
stores they may proceed, in the absence of other hold-ups, at
the maximum rate of one instruction every 50 nsec. When a
PROP name store non-equivalence occurs, however, a delay
of about 1,200 nsec is introduced. Thus it is very important that
a high hit rate be obtained in the PROP name store.

4. Replacement algorithms

In addition to software investigations carried out to assess the
size of name stores required, software simulation of the affects
of different replacement algorithms was also carried out
(Khaja, 1972). A number of algorithms were tried and assessed
using the following criteria:

(a) the replacement algorithm for PROP must be able to select
a line for replacement within the time required to return the
operand from OBS or SAC

(b) the replacement algorithm should use a minimum of
hardware for its implementation

(c) the replacement algorithm should provide a greater increase
in performance than that which would be gained by using the
same amount of hardware to increase the size of the store.

Some of the algorithms studied were cyclic, random, current
use, least recently used, and past unwanted. The cyclic algorithm
is simplest to implement, and since it requires a minimum of
additional hardware it serves as a standard by which to compare
more complex algorithms. A random replacement algorithm
tends to be slightly better than cyclic but not enough to warrant
the extra hardware needed for its implementation. The current
use algorithm makes use of one or more bits per line to indicate
which lines are in current use. In the limit, one five bit counter
is used for each line, producing the least recently used algorithm.
Every time a line is used all counters are incremented and that
for the currently used line is cleared. Consequently the line
with the highest count is the least recently used, or conversely,
not a member of the currently used set, and is therefore a
candidate for replacement. Although this algorithm is sig-
nificantly better than cyclic, it would have been so costly to
implement in MUS technology that a greater gain could have
been achieved for the same cost by doubling the size of the

Table 1 Average values for name store hit rates and interactions

In either name store 96-1%
In correct name store 86%
B/D Name accesses
NEQs 8:0%
SAC. access 2:9%
OBS. read 3-3%
OBS. delete 1-8%
A Name accesses
NEQs 56%
SAC. access " 1:0%
PROP. read 2-8%
PROP. delete 1-8%

PROP name store. In the past unwanted algorithm a currently
unwanted register is used to record which lines were unwanted
during an interval ‘z’. At the end of this interval, this register
is copied into the past unwanted register and all lines not
wanted in either interval are candidates for replacement.

This algorithm is not too costly to implement and, when ‘¢’ is
chosen carefully, possibly dynamically, it yields significant
improvement over a cyclic algorithm. Due to space limitations,
however, a simple cyclic algorithm was implemented, but some
appreciation of gains and costs of other algorithms was
obtained.

5. Performance evaluation

A system performance monitor (M. A. Husband et al., 1976)
has been used to measure the efficiencies of the two name stores
and the interactions between them for a set of 95 programs.
This set of programs contains both FORTRAN and ALGOL
jobs ranging in complexity from simple student jobs to large
scientific programs. For most programs it is found that 807,
(+5%) of operand accesses are for named variables, that fewer
than 120 names are used in each of the programs, and that i insy
every program 95% of name accesses are to fewer than 3575
of the names used. These figures confirm the earlier Atlasn
results and suggest that high name store hit rates should bti-'i
obtained. In fact, it is found that over 96%; of name accessess
find their operands in one or other name store. Table 1 show53
the average hit rates obtained as well as indications of the degreég
of interactions between the two name stores. It can be seern’
from this table, however, that although 96-1% of name accesses
find their operands in one or other name store, only 869 of
these accesses find their. operands in the correct name storez.
Of the remainder, 3-9% require an access via SAC to the locab
store (2:9% + 1%), whilst 6:1% of accesses (3:3% + 2-8%EF
require the operand to be read from the wrong name storeg
and 3-6% of accesses (1:8% + 1-8%) require their operandgy
to be deleted from one name store and transferred to the other=.

Thus the performance of the processor as a whole is not as;
high as anticipated due to the comparatively high and largelys
unforeseen proportions of interactions between the two name>
stores. The main reason for this discrepancy is the way inS
which procedure calls are implemented in MUS. Parameters for3
procedures are stacked into the PROP name store and may-)
subsequently be used as OBS names. Conversely, it is also?
possible for one procedure to use a particular word in theE
address space as an OBS name and for a subsequent procedure:
to use the same addressed location as a PROP name.

It has been demonstrated, therefore, that although the use o@
two name stores does not produce individual hit rates wnthmg
each name store as high as anticipated, the name store concept
itself is viable. Furthermore, simulations of single name stores
of varying widths and numbers of lines, have been performed=:
using address traces produced on MUS (Y. L. Husband, 1976),3
and these have demonstrated that hit rates in excess of 999, are~
obtainable using a single name store of only 512 bytes. Thus
in the short term software techniques and simple hardware
modifications which will reduce the amount of interaction
between the two name stores in MUS are being investigated,
whilst in the long term it would seem that a single name store

wapee/r.

.should be used in future machine designs, instead of the two

name stores implemented in MUS, and that the ‘ACC write-
back’ problem therefore be solved by some other means. A
number of solutions are possible, each with its own advantages
and disadvantages, but further investigation is required before
any definite conclusions can be drawn.

Acknowledgements

The MUS project has been supported by the SRC and ICL.
The authors would like to thank all members of the MUS5 team
who have contributed to the work described here.

The Computer Journal

References

ODEYEMI, L. A. (1970). Experiments on Operand Buffer Stores, Ph.D. Thesis, University of Manchester.
LIpTAY, S. J. (1968). Structural Aspects of the System/360 Model 85 Part II: The Cache, IBM Systems Journal, Vol. 7, No. 1.

IsserT, R. N. (1972). The MUS Instruction Pipeline, The Computer
Computer Papers.

Woops, J. V. and SUMNER, F. H. (1974).
Technology, November 1974.

KiLBURN, T., EDWARDS, D. B. G., LANIGAN, M. J., and SUMNE
Vol. EC-11, No. 2.

KiLBURN, T., MoRris, D., RoHL, J. S., and SUMNER, F.

KHaJA, W. (1972). The Implementation of the Name
Thesis, University of Manchester.

Hussanp, M. A, IseerT, R. N., and PHILLIPS, R.
September 1976.

HusBAND, Y. L. (1976).

Journal, Vol. 15, No. 1. Reproduced in The Auerbach Annual—1973 Best
Operand Accessing in a Pipelined Computer System, IEE Conference on Computers—Systems and
R, F. H. (1962). One Level Storage System, IEE Transactions on Computers,

H. (1968). A System Design Proposal, IFIP Congress, Edinburgh, August 1968.
Store and the Associated Replacement Algorithms in the MUS Computer, Ph.D.

(1976). The MUS Computer Monitoring System, The European Computing Congress,

Operand Buffering in High Speed Computers, Ph.D. Thesis, University of Manchester.

Book reviews

Content Addressable Parallel Processors, by Caxton C. Foster, 1976;
233 pages. (Van Nostrand Reinhold, £8-40)

This title arouses interest since it implies a high performance
processor structure which is not conventional. Comments on the
loose cover further encourage this view, but in reality the book deals
with the basic structure, mode of operation and application of small
content addressable 'memories (CAM). The first two areas are
reasonably well presented, Chapters 2, 4 and 7 relating mainly to
structure and Chapter 5 to algorithms for performing a variety of
search, arithmetic and array operations. The chapter on applications
tries to cover too wide a field and more detail on a smaller number of
significantly different applications would have provided a more
convincing story.

The two chapters discussing systems which have been designed and
built are also disappointing in that no factual comparison in respect
of performance or programming with a conventional machine has
been provided. Some description of their structure is necessary but
most of one chapter is cluttered with irrelevant detail such as the bit
allocation for fields in the instruction word. Finally, the author’s
design featured in the last chapter is mainly concerned with the basic
structure of a CAM and there is only a minimal attempt to relate it
to a computer system, thus no useful system design criteria emerge.

Despite this criticism the book would be useful to computer
scientists, computer engineers and users wishing to acquire some

knowledge of CAM’s.
B. G. EDwaRrDs (Manchester)

Modern Factor Analysis, 3rd Edition, by H. H. Harman, 1976;
487 pages. (University of Chicago Press, £12-60)

Harman’s well known book on factor analysis now appears in a
third, revised, edition. Compared with the second edition there have
been considerable changes. In his preface the author states that the
basic material remains essentially unchanged. To accommodate the
new material two new chapters have been introduced and there has
been considerable revision of the structure and content of the other
chapters. In all, eight of the sixteen chapters contain new material.
The extensive bibliography has been updated from the second edition
and is very comprehensive. In particular, this reviewer applauds the

Volume 20 Number3

change in the style of citation of the references in the main text from g
numerical to author date. The overall length has been kept to that of 2
the second edition by some useful pruning; for example most of the
hand calculations have been eliminated.

These changes have made a significant improvement on the second
edition and this new edition should maintain the high reputation of
Harman’s book. It is perhaps inevitable that the text is not quite as
up to date as the references and one might feel that the approach to
numerical techniques is a little dated although appropriate references
are made.

The mathematically inclined reader might prefer a more concise
treatment. These are minor shortcomings and this book will be g
invaluable to anyone interested in factor analysis. It is pleasant to &'
report that even the price does not seem too unreasonable for a book 2
of such wide coverage and usefulness.

0o

peoe//:sdny wouy pepeoju

G. J. JANACEK (Norwich)

Automata, by David Hopkin and Barbara Moss, 1976; 170 pages.
(Macmillan Press, £8-95 hard cover, £3-95 paper)

10Z/2101e/|ulwoo/woo"d

This slim volume covers the field of automata from finite state
machines to Turing machines. It is liberally supplied with worked &
examples and exercises (but no solutions). I did not note any obvious 3
typographical errors except for a glaring transposition (page 74) of 5
nearly half a paragraph from a subsequent page.
The topics covered are nearly the same as those discussed in Marvin X
Minsky’s Computation—Finite and Infinite Machines, but the general &
approach to the subject and style of presentation is very different.
This book is an honours course text, compact and formal in style,
where Minsky’s book is much more suited to the solo reader. 2’
The appendix on logic will enhance the value of the book as a =
work of reference for students who have followed the course, but ©
mainly as an aide-mémoire, since 20 pages from truth tables to.Z
existential quantifiers is fairly compressed. =
A second appendix with potted biographies of leading names §
mentioned in the text, adds a nice human touch. For example even &
though an alumnus of QCC, I never knew until now that George
Boole died in Cork in 1864 as a result of lecturing in wet clothes.
H. R. A. TownsenD (Edinburgh)

231

