Worst case fragmentation of first fit and best fit storage
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The worst possible storage fragmentation is analysed for two commonly used allocation strategies.
In the case of the first fit system, fragmentation is not much worse than is inevitable but for the best
fit system, it is almost as bad as it could be for any system.
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1. Introduction

When a dynamic storage allocation system is used with limits
on the size of blocks allocated (n) and the total amount of
store busy at any time (M), the store size necessary to guarantee
against breakdown due to fragmentation is a function of M
and n.

It has been shown (Robson, 1974) that for an optimal strategy,
this function lies between $M log, n and about 0-84M log ,n
asymptotically but practical allocation strategies chosen for
their ease of implementation may require more space than this.

For the buddy system (Knowlton, 1965) it can be shown that
about 2M log, n words are sufficient (Knuth, 1973). This paper
gives results for the first fit and best fit systems.

The first fit system turns out to be not far from the optimum.
About M log, n words of store are sufficient. On the other hand
the best fit system needs about Mn words.

These results should be considered in conjunction with the
simulations of Shore (1975) which suggest that even when an
allocation system is run continuously on the brink of break-
down due to fragmentation, memory utilisation averages about
70% to 95%, for a fairly wide range of distributions of allocated
block size. Clearly the sort of catastrophic fragmentation here
shown to be possible occurs only very rarely.

2. The worst worst case

The worst fragmentation that any system can encounter
- (unless like the buddy system it can break down although a gap
large enough to meet the request exists) is, provided M > 2n,
a sequence of (M — n) single word blocks each preceded by a
gap of n — 1 words. This is illustrated in Fig. 1.

If this pattern is allowed to occur, then n(M — n) + n — 1
words will not be enough to prevent breakdown if a block of n
words is required. It may be noted that one recommended
strategy, the ‘modified first fit'" of Knuth (1973), does allow
exactly this pattern to be produced (by the allocation of
n(M — n) single word blocks of which those lying in a gap of
Fig. 1 are freed as soon as one more block has been allocated).

The analysis below of the first fit and best fit systems is a study
of how the former avoids any pattern at all like that of Fig. 1
whereas the latter can be forced into one very similar to it.

3. The first fit system
The system analysed here is the one in which any request for a
block of x words is met by using the first x words of the first
gap of x or more words.

The reason why this system avoids the catastrophic frag-
mentation of Fig. 1 is that small blocks are always allocated

Fig. 1
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near the beginning of store. It will in fact be shown inductively
that al.l blocks of size up to j inclusive will be allocated in the

first ZJ‘, Z(i) words of store where Z(i) is defined as M/(i In 2).
i=1

Thus the worst possible fragmentation when a j + 1 word
block is to be allocated consists of a sequence of areas of size
Z(i) each covered with a pattern of alternating i word blocks and

j word gaps.

Forj = 1 the assertion to be proved is trivial since Z(1) > m
Therefore suppose it proved for all values of j up to some size S
The inductive step proves it true also for j = s + 1.

The proof considers the situation where a block of s + E
words cannot be allocated in the stated area and shows that if
this is so, M — s words must already be in use.

Define D(j) as the distance from the start of the store to th
end of the last block of j words or less.
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Then D(j) < Y. Z(i) by the inductive hypothesis (1 < j <
i=1

In other words, if (j) is defined as ZJ‘, Z({) — D(j), th
i=1

3(j)=0( <j<ys)
Since no block of s + 1 words can be allocated, the number
words already in use is more than

@
geuu[woawoo

(1) (DG + 1) = DG + 1)
s+ 1 J+s+1

=1

+' ZG) = D) — (s + D)s + 1)

2s+ 1

because the store contains:

1. An area of size D(1) covered with blocks each preceded by
gap of s words or less.

2. A sequence of areas of size D(j + 1) — D(j) covered with:
blocks of at least j + 1 words each preceded by a gap of S;
words or less.
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3. An area of size ( >Z(j) — D(s)) covered with blocks of at
j=1

least s+ 1 words, each preceded by a gap of s words or less
of which the last may also be followed by a gap of less
than s + 1 words.

But
s—1
(1) DG+ 1) = DG+ 1)
s+1 Z jH+s+1
+EZ() = DO = G+ D+ D
2s + 1
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@G+ 1)+ 8G) — 6+ )G + 1)

_Zm) =8
T s+ 1 j+s+1
j=1
Zs+1)Kd(s)—(+D)s+ 1)
+ 25 + 1
s—1
Z(l)+Zz(j+1)(f+1)+Z(s+1)(s+l)
Zs+1 j+s+1 25 + 1
ji=1
s+ 12 . .
- 11 6(j) =
71 (since all 6(j) = 0)
s
ZG+ DG+ 1
r AT 1
>Z j+s+1 (s+1)
j=0
M 1
= — _— = 1
In 2 j+s+1 s+1)
j=0
>SM-—-(s+1)

Thus any allocation which cannot be accommodated in the
stated area is ruled out by the limit of M busy words. This
completes the proof of the inductive step.

Putting j equal to n now gives the result that a store of

1%43. ;;words is sufficient for the first fit system.
i=1

Except for n < 4, this bound is less than the M(1 + log, n)

established in (Knuth, 1973) for the buddy system with the

assumption that all block sizes are powers of 2.

4. The best fit system
The best fit system always allocates any block at the start of
the smallest gap large enough to accommodate it. This des-
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cription is imprecise in that it does not specify which gap is
used if several of the same size are available but no situations
arise in this discussion where the ambiguity is important. It will
be shown that this system needs about M(n — 2) words of
store whenever n > 5. For n < 4 the same result follows from
the lower bound given in (Robson, 1974) and for n = 5 it can
be shown by an ad hoc argument which is not given here.

The proof shows that a pattern similar to the catastrophic
fragmentation of Fig. 1 can be spread through almost M (n — 2)
words of store. The pattern consists of one-n — 2 word block
followed by any number of single word blocks each preceded
by a gap of n — 3 words. Once this pattern has been started it
can be extended by the addition of one more single word block
in the manner shown in Fig. 2 for the addition of a fourth
such block. First two n — 2 word blocks are allocated (of
which the second merely acts as a buffer) and then a sequence
of freeings and allocations transforms the first of them into a
n — 3 word gap followed by a single word block. This distorts
the pattern previously existing just to the left but this distor-
tion then moves gradually leftward and finally disappears
when it meets the initial n — 2 word block. The details of this
process are shown in Fig. 2.

Inspection of Fig. 2 will show that blocks will always be
allocated in the position shown provided 2 < n — 3 or in
other words provided n > 5. Inspection of Fig. 2 also shows
that the number of active words exceeds the initial value shown
in the first line by at most 3n — 7 so the process shown can be
repeated until M — (3n — 8) words have been used at which
point the pattern covers (M — (3n — 8) — (n — 3))(n — 2)
words.

What has been demonstrated is that the best fit system will use
at least (M — 4n + 11)(n — 2) words if a sufficiently large
store is available. The corollary that it will fail in a smaller
store does not follow immediately because in such a store the
process shown in Fig. 2 may be interrupted if a gap of 2n — 4
words or less is left at the end of the store by the initial allo-
cation of the two n — 2word blocks. To complete the proof it is
also necessary to show that 3n — 7 words may also cause the
system to fail when the residual gap after the last 1 word block
of the pattern is 4n — 8 or less. This is established by the
sequences of allocations shown in Figs. 3 and 4 which each
make impossible the allocation of a block of n — 1 words.
The sequence shown in Fig. 3 will cause breakdown unless the
residual gap was of 2n — 2, 3n — 4 or 3n — 5 words in each
of which cases the one in Fig. 4 will do so. Thus 2n — 1 words
can cause the system to fail when the residual gap is 4n — 8
words or less and 2n — 1 < 3n — 7 as required since n > 5.

This completes the proof that the best fit system needs a store
of at least (M — 4n + 11)(n — 2) words.

5. Summary
The worst possible fragmentation is considerable for all
systems and has been shown to be much worse for the best fit
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than the first fit system. This contrasts with results derived  small, roughly similar for first fit and best fit and sometimes
from simulation which show that average fragmentation is  better with best fit.

References

KNowLTON, K. (1965). A Fast Storage Allocator, CACM, Vol. 8, pp. 623-625. o

KnutH, D. E. (1973). Fundamental Algorithms, Addison-Wesley.

RoBSON, J. M. (1974). Bounds for Some Functions Concerning Dynamic Storage Allocation, JACM, Vol. 21, pp. 491-499.

SHORE, J. E. (1975). On the External Storage Fragmentation Produced by First-Fit and Best-Fit Allocation Strategies, CACM, Vol. 18,

pp. 433-440.

Foundations of Computer Science II, Parts 1 and 2, edited by K. R. (Here an HB-tree is a binary search tree in which all leaves have
Apt and J. W. de Bakker, 1976; 147 and 149 pages. (Mathe- equal depth and each node with only one son has a brother with two
matical Tracts, Dfl. 18 each) sons.)

The first two articles in Part 2 are ‘Program semantics and mech-

anized proof’ (47 pages) and ‘Models of LCF’ (19 pages) by R.

This Tract contains the notes of five of the six series of lectures given Milner. The first of these takes a very simple language and studies

at .the Second .Advanced Course on t.he Foundations of ComPUt?r its operational semantics (semantics by abstract machine, or by

Science organised by the Mathematical Centre in Amsterdam in  evaluation). Then using the work in the second paper it presents the
June 1976. ) ) ) ] . denotational semantics in the style originated by Strachey and showsg
The first (30 pages) is ‘Graphical algorithms and their complexity’  that the two semantic descriptions are equivalent in an appropriate2
by E. L. Lawler. The author says that this is not intended as a survey sense. The second paper presents the model theory of a logic of2
but as a rather arbitrary and personal selection of problems intended computable functions, proposed by Dana Scott in 1969, in the form§_
D

to serve as an introduction to the methodology of the subject area. of a typed A-calculus. 2
Problems considered are to find a ‘topological ordering’ of the nodes Next is ‘L systems, a parallel way of looking at formal languages 3’
of an acyclic digraph, to recognise whether an acyclic digraph is ~ New ideas and recent developments’ (38 pages) by A. SalomaaZ
‘series parallel’, to find a polynomial time algorithm for the iso-  This reports on recent results in the rapidly growing subject of Lg

morphism problem restricted to series parallel digraphs, to find a  systems. These were originally introduced by Lindemayer ta”
minimum cost spanning tree in an undirected graph, to generate all provide mathematical models in biology and defined as linear arrays?
maximal independent sets, to compute the chromatic number of a  of finite automata. Later they were reformulated into the frameworky

graph. ) . ) of grammar-like constructs and from then on their theory hag
The §ec<_)nd,(106 pages, also in Part 1) is “The complexity of data  developed essentially as a branch of formal language theory. &
organisation’ by J. Van Leeuwen. These concentrate on useful The last paper is ‘Three hardest problems’ by W. J. Savitch GE

©

techniques in data organisation which can bring improvements in  pages). This is an introduction to complexity theory based on three,
programs performing data manipulation. There are sections on illustrative examples: a hardest context free language, the set of3
‘Efficiency versus data representation’, ‘File-merging’, ‘Tables and  codings of threadable. mazes, the set of satisfiable Boolears
balanced trees’, ‘Path compression’, ‘Associative search structures’, expressions. 3
‘Patterx! matching’. Typif:al results are ‘The two-tape merge pro- As is to be expected from the reputation of the authors, the article%
cedure is stable and requires time linear in the length of the merged are all excellent expositions and to be recommended as introductions:
files’, ‘One can execute, find, insert, and delete instructions on an to their subject matter. &
arbitrary HB-tree with N leaves in ~ log N steps per instruction’
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