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1. Background

Computer assisted learning, often abbreviated to CAL, is a
topic which has recently aroused considerable interest in this
country. The British Government through the National
Development Programme in Computer Assisted Learning
(Hooper, 1974) is currently spending some £2m on various
projects which aim to demonstrate the feasibility and practicality
of using computers as a teaching aid in education.

Assume an environment in which the computer as part of its
task poses questions on some particular subject matter for
students to answer. A question might appear ona VDU oron a
teletype and the student has to reply by typing an appropriate
answer. At this stage the computer must decide whether or not
the supplied answer is acceptable. It is vitally important that
appropriate action is taken. The whole credibility of a CAL
system can depend on a sensible reaction on the part of the
computer. In what follows this will be referred to as ‘the
answer recognition problem’.

Having reacted in an appropriate manner the computer can

keep track of the progress of each individual student and gauge
his speed of progress accordingly. At various moments in time
it may be appropriate to
(@) provide easier or harder examples
(b) provide more or less problems on a particular topic
(c) provide revision exercises
(d) ask a student to see his teacher for some special purpose
(e) refer a student to a book or some other material.
In sophisticated CAL systems it might happen that other audio-
visual aids are available perhaps being controlled by the
computer. In such circumstances it may be appropriate to
switch on a tape tecorder, film projector, etc. for the student to
receive some prerecorded instruction.

In this paper we shall be concerned with the theoretical
background associated with the problem of teaching mathe-
matics by means of CAL techniques. We shall look at several
aspects of secondary school and early university mathematics
and discuss the problems that arise.

2. The role of the computer

Whenever one mentions CAL one must be prepared to expect
questions about the role played by the computer. Answers
inevitably involve discussions about the ability of the computer
to:

(a) interact

(b) regulate the pace of lessons and exercises

(c) cope with several students simultaneously

(d) assess and evaluate both students and lessons and handle
large volumes of information.
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In teaching mathematics, and indeed some other subjects, one
can arrange that other facets of the computer can be utilised.
For example,

(e) using random number generators one can arrange that
parameters be suitably chosen at run time and consequently
expressions such as ax? + bx + ¢ might appear to the
student as

x2, 1 — x%, 4, x, etc.

(f) one can select one from a set of, say, functions each of
which might have parameters (the selection might again be
performed by a suitable random number generator); a
greater degree of flexibility and variety can be achieved by
the composition of several such functions (note, for example
integration by change of variable)

(g)if a suitable VDU screen is available one can show for
instance the rotation or transformation of triangles, conics,
etc. caused by changes of axes; one could also show solids,
the rotation of solids and their projection from various
angles.

3. The answer recognition problem

Even in traditional methods of teaching mathematics there are
often substantial difficulties in deciding whether or not an
answer obtained by a student is correct. It should therefore come
as no surprise that it also raises considerable problems from a
CAL point of view.

Some of the more common approaches to solving this problem
are given below together with some remarks about their merits
or otherwise. Most of these solutions can be used in appropriate
circumstances.

The reader should imagine that the answer takes the form of
some kind of expression. Most CAL programs are designed in
this way. The expressions will usually be arithmetic or alge-
braic expressions. This covers both constants or relatively
complex expressions involving perhaps several variables
together with the usual arithmetic operators and even sin, cos,
log, exp, m, square roots, etc.

But the term ‘expression’ can also include expressions
involving sets, the propositional calculus, the predicate calculus,
etc. More complicated expressions could involve a mixture of
the various types and might therefore include both quantifiers
and arithmetic expressions.

3.1. Accept only an exact sequence of characters

This simple strategy is very limited but can be of use when the
required answer itself is simple. It might be used to effect in
CAL programs designed to teach primary school arithmetic,
for example. But in more complex cases it is inadequate. In
teaching mathematics by CAL this scheme has a limited rele-
vance. Most results will take the form of expressions and this
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strategy pays no attention to the mathematical structure of
expressions.

The scheme can be modified in several ways. One can allow
spaces to occur between characters, one can allow simple
editing in the form of corrections to mistypes, etc. but these add
little. One could also allow not just one sequence of characters
but admit any one of several such sequences. The more
sequences one admits the higher the probability that correct
replies will be recognised. Even with these modifications there is
still a considerable chance of a correct answer being marked
wrong. Moreover, the task of preparing tables of acceptable
answers can be tedious in the extreme.

3.2. Accepting an answer in arbitrary form

Consider now the possibility of allowing a student the freedom
to supply his answer in whatever manner he chooses. In the
first place note that such a degree of flexibility may not always
be desirable. In a classroom a student, when asked to differen-
tiate x2, would not be expected and probably not permitted to
supply his answer 2x in an arbitrary format. There are occasions
when a certain degree of freedom is desirable, there are
occasions when it is not.

But restrictions of another kind now come into the picture.
If a student is permitted an arbitrary degree of freedom then in
general terms the computer has the task of deciding whether
two arbitrary expressions are equivalent, i.e. yield the same
result for all values of their variables. Whether this is possible
will depend on the kind of expressions under discussion. We
shall look at this in more detail in Section 4. But if for the
moment we consider arithmetical expressions it is not possible
for the computer to decide whether two such expressions are
equivalent. In fact Richardson (1968) has shown that it is
impossible to obtain an algorithm to determine whether an
arbitrary expression from a more limited class of expressions is
identically zero. The expressions considered by Richardson are
generated from the rational numbers, the two real numbers 7
and log, 2, and the indeterminate x using:

(@) the operations of addition and multiplication
(b) the sin function

(c) the exponential function

(d) the absolute value function

(e) substitution.

Indeed since it is now known that Hilbert’s Tenth Problem
(Hilbert, 1901) is unsolvable (Davis, 1973; and Matiasevich,
1970) a result of Caviness (1967) shows that the same result
applies to the smaller class of expressions generated as above
but with log, 2 and the exponential function omitted.

Other results similar to those described above will be discussed
later in Section 4.

3.3. Algebraic manipulation techniques
At this stage there is a temptation to abandon all hope of being
able to produce a satisfactory CAL system for teaching mathe-
matics. But let us consider some further possibilities. Suppose
we try to arrange that the computer, in attempting to recognise
an answer, performs some mathematics. This will usually take
the form of arithmetic calculations or algebraic manipulation
_ but may also include logical operations, etc.

The computer-could attempt to determine the equivalence of
two arithmetic expressions by one of the following methods:

(@) evaluate both expressions using finite field arithmetic
(b) evaluate both expressions using floating point arithmetic
(c) reduce both expressions to canonical form

(d) reduce the difference of the two expressions to a standard
form which is 0 for all expressions equivalent to 0.
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In Martin (1971) these methods are examined and their relative
merits discussed. Usually the acceptability or otherwise of a
particular method will depend on the class of expressions being
used. But from our point of view the relevant observations from
Martin are as follows. ° .

Method (@) breaks down badly when elementary functions
such as sin, exp, etc. appear in expressions. Moreover there is
a possibility that the method will decide erroneously that two
nonequivalent expressions are in fact equivalent. Such an
event we shall refer to as a random match.

For method (b) to be of use it is necessary to select the points
at which evaluation has to be performed. Such problems as
overflow and dangerous rounding errors must be avoided.
Moreover, as in method (a) there is the possibility of a random
match. But perhaps worse there is also the possibility that this
method will decide that equivalent expressions are not
equivalent.

The relevance of methods (c) and (d) will depend on the
existence of suitable algorithms for reducing expressions to
standard or canonical form. This topic is discussed in detail in
Section 4. But note that, as a result of the work of Richardson
and others, it will in general be necessary to limit the class &f
expressions one is prepared to consider. 3

Roughly speaking this concludes Martin’s remarks. Note th§1
results obtained by using methods (@) and (b) can be improved
by performing thecalculations for several values of the variabl@.
Moreover, method (b) can be modified to allow evaluation &f
expressions using integers rather than floating point numbers m
an attempt to avoid approximations, rounding errors, etc. Bt
this is of limited applicability since it depends on the fact thgt
constants in expressions are integers, that division leading ©
real numbers is not involved, that sin (x), exp (x), etc. do not
appear, and so on. Even then overflow is still liable to ocm@'.

Methods other than (a)—(d) can also be applied. Consider: g

(e) evaluate both expressions using p-adic numbers; work 31
o

this area is being carried out by D. Y. Y. Yun at MIT. 3

(f) evaluate both expressions using interval arithmetic; woat
in this area has been carried out by Wittig (Fitch, 1973).5

Martin’s remarks were directed to the problem of determinizig
the equivalence of algebraic expressions from the point of view
of algebraic manipulation systems. We have a different point
view and therefore some further remarks should be madg.
Consider again method (a) possibly with the added ability 7]
evaluate expressions for several values of the variables.
certain branches of mathematics, e.g. topics in number theory,
this approach would be entirely relevant since one might e
teaching some aspect of the theory of finite fields. In such casgs
this provides a complete answer to the answer recognitich
problem. Consider for example the theorem (Hunter, 1964) 3

if p is a prime and if a, # 0(mod p) then the algebrﬁz
congruence ~

4

o
ax"+a,_,+x""'+...+ax+a = 0 (mod p)=
has not more than n incongruent roots modulo p.

Thus one has only to evaluate the polynomial for at most n
different values of x to test if the polynomial is identically 0.
Avoiding overflow will usually be relatively simple.

3.4. Pattern matching

One might approach the answer recognition problem by
applying pattern matching techniques. Indeed this is not
unrelated to the earlier discussion on standard and canonical
forms.

As Fateman (1972) points out there are many problems
associated with pattern matching. A pattern can be regarded as

(a) a lexical entity, as in SNOBOL for example (Farber et al.,
1964) ,
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(b) a syntactic entity, as in FORMULA ALGOL (Perlis ef al.,
1966), AMBITS (Christensen, 1965) or FAMOUS (Fenichel,
1966)

(c) a semantic entity, as in SIN (Moses, 1971b) or SAINT
(Slagle, 1961).

From our point of view the first two of these alternatives will
usually be unsatisfactory. Approach (a) might be adopted if we
were interested in arbitrary strings of characters and were not
concerned with their structure (the balanced strings of SNOBOL
help to a limited extent). The strings encountered in our
environment will be expressions with a structure and a meaning.
Again approach (b) is not entirely satisfactory since expressions
such as 0**0 are syntactically correct but semantically wrong.

Approach (c) attempts to take account of meaning as well as
structure and thus tends to be more relevant. But nasty
problems continue to appear. Does 1 match the pattern A**B?
If so what are the values of 4 and B ? Fateman (1972) discusses
this and similar points in some detail but concludes that
almost arbitrary decisions have to be made.

Pattern matching cannot theoretically provide a complete
solution to our problem as witnessed by the earlier result of
Richardson. Even in the MACSYMA system at MIT which
provides a mechanism whereby the system can be ‘taught’ new
transformations to be applied to expressions or new identities
(see Fateman again) there are severe inadequacies.

3.5. Other strategies

One of the common ways in which student answers differ from
expected answers is in the presence of extra brackets. If
brackets can be removed this difficulty can be overcome.
Reducing expressions to prefix or postfix notation will result in
a bracket-free representation of expressions. But again this
simple approach is usually inadequate.

In lessons on integration the student has usually to supply a
constant of integration. This can often appear in a variety of
ways, e.g.

3log (x* + 1) + C and log A(x* + 1)

are equivalent in the sense that they are both indefinite integrals
with respect to x of

X

x> +1
To overcome this problem one can differentiate the answer
supplied by the student thereby removing the constants of
integration (hopefully!). The result thereby obtained and the
integrand can then be tested for equivalence.

By means of multiple choice techniques one can attempt to
deal with the answer recognition problem. Apart from the
difficulties involved in preparing suitable sets of possible
answers there are substantial dangers associated with this
approach. In teaching integration for instance a student can
reply correctly if he can differentiate each of the expressions
from which he has to select an answer.

4. Theoretical results
Partial solutions to the answer recognition problem would
appear to lie in the appropriate use of the methods discussed
above. With this in mind we now look at theoretical results
which might aid in the development of CAL material. In
particular these will include results that have been obtained in
the area of standard or canonical forms.

We begin by giving results involving arithmetic and algebraic
expressions. We conclude by mentioning some relevant results
from mathematical logic.

4.1. On canonical forms
Fitch (1973) discusses some results involving canonical forms.
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He shows that

the class of constants formed by the addition, subtraction,

multiplication and division of rational powers of rational

numbers has a canonical form ‘
and

the class of expressions formed by the addition, subtraction,

multiplication and division of rational powers of polynomials

in n variables with rational coefficients has a canonical form.
The canonical forms are given and algorithms provided for
determining whether or not two constants or expressions of the
type mentioned are identical. Fitch’s paper ends with a result.
that

the class of expressions formed by the addition, subtraction,

multiplication and division of rational powers of polynomials

in x and x* with rational coefficients has a canonical form.
Results of a different nature are obtained by Caviness (1967,
1970). He defines a class of expressions, his FOE or first order
exponentials, as follows. These are generated from

(a) the rationals

(b) the complex number I

(¢) the variables x;. x5, . . ., X,

using the operations of addition, multiplication and restricted
composition and the exponential function. The composition is

restricted in that nested exponentials are not allowed (hence
first order). Caviness’ canonical form is

P, exp (S,) + P,exp(Sy) + ... + Pcexp (Sy)

where each P; and S; is in canonical form, each P; is non-zero
and the S;’s are ordered in some sense. As a result of this, of
course, Caviness is able to state results involving the trigono-
metric and hyperbolic functions. With the introduction of
division further slight extensions are possible.

In the same work Caviness considers another class of
expressions, his radical expressions. These are obtained from:

(a) the rationals
(b) the variable x

using the operations of addition, subtraction, multiplication and
division and raising expressions to rational powers (these may
not be nested). Again Caviness shows that these can be ex-
pressed in canonical form. However his algorithm is impractic-
able. More recently Fateman (1972) improved on Caviness’
result by producing a practical result and extending the work
to include the possibility of several variables.

4.2. Conjectured results
Many results on algebraic simplification have been proved
subject to some as yet unproved conjectures. These conjectures
tend to be of a similar nature in that they relate to the linear
dependence or independence of a set of constants.

Brown (1969) defines a class of expressions, the REX or
regular exponential expressions. These are obtained from

(a) the rational integers

(b) the complex number i and
(c) the variables x;, x5, . . ., X,
(d) the exponential function exp

using the rational operations, i.e. +, —, X and /, and sub-
stitution. Note that these involve the trigonometric and
hyperbolic functions. In his paper Brown gives a method of
simplifying REX expressions. Provided the conjecture given
below is true Brown proves that the only simplified REX
expression equivalent to 0 is O itself. Brown’s conjecture is:
Let py, ps, - - -, P be non-zero rational exponential expres-
sions such that the set {py, P, . - -» Py im} is linearly inde-
pendent over the rationals. Then the set {exp (P1)s -«
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exp (pu), X1, X3, . - -, X, 7} is algebraically independent over
the rationals.
Moses (1971a) discusses Brown’s algorithm at some length.
Subject to another similar conjecture Caviness (1970) describes
a simplification algorithm for his class of exponential

expressions. These are obtained from
(a) the rational numbers

(b) the complex number i

(c) the variable x

(d) the exponential function

using the operations of addition and multiplication and
unrestricted composition.

Note that there is no division and only a single variable is used.
The above expressions are similar to the FOE expressions
defined earlier but only a single variable is now permitted and
arbitrary nesting of polynomials is allowed. The defined
expressions might therefore be classified as exponential
polynomials. Caviness gives a canonical form again looking
like

Piexp(S)) + ...+ P.exp(Sy) .

The various S; are themselves distinct exponential polynomials
and the P; are non-zero polynomials. Each S; and P; is in
canonical form and the S; are ordered.

Moses (1971a) himself mentions another similar algorithm
to allow the simplification of REX expressions which do not
involve i or 7 or the nesting of exponentials. Again the result
depends on an unproved conjecture.

All the expression classes so far discussed in this paragraph
involve rational operations together with the exponential
function. Richardson (1966; 1969) defines an algorithm for a
class of expressions which differs from the REX expressions in
that it involves:

(a) no complex number i
(b) only a single variable x
(c) the logarithmic function log |x|.

Like the exponential function, the logarithmic functions can be
nested to any depth. Richardson’s algorithm will decide whether
or not an arbitrary expression from this class is equivalent to
zero. However it is necessary to know that the expressions it
manipulates are totally defined throughout the range over
which zero-equivalence is to be tested. Again Richardson’s
algorithm depends essentially on conjectures of the kind already
mentioned.

4.3. Undecidability results
Apart from the already stated undecidability results there are
other such results which are also of interest.

Wang (1974) defines G, to be the class of expressions generated
from:

(a) the rationals and =

(b) the indeterminates x;, x5, . . ., X,

using:

(a) the operations of addition and multiplication
(b) the sin function

(c¢) composition.

He then proves that the problem of deciding the existence of a
real number r with the property that

firy =10

for any fin G, is recursively undecidable. This result is then
used to prove that the problem of deciding whether

j‘ ® dx
o (2 + DfA(x)

converges is also recursively undecidable.

Richardson (1968) shows that for a certain class of expressions
the problem of deciding whether or not the expressions of that
class had integrals which could be expressed in closed form is
undecidable. (Of course, this has implications for differential
equations). The class of functions considered by Richardson is
obtained from:

(a) the elementary constants
(b) the variable x
(c) €%, sin (x) and log |x|

using the operations of addition, subtraction, multiplication
and divjsion and substitution.

The elementary constants are members of the smallest set of
real numbers which form a closed real field containing 1 and =
and are closed under the application of the functions e, sin (x)
and log |x|.

However, if the class of functions is restricted then one can
make certain assertions about the form of the integral and about
algorithms for evaluating it. See the work of Risch (1968, 1969d
1970) which is based on earlier work done by Liouville. g

The proof of the unsolvablhty of Hilbert’s Tenth Problem
(Hilbert, 1901) implies that it is not possible to produce @
algorithm to determine whether an arbltrary polynomial with
integer coefficients has integral roots. It is assumed that ti#
polynomials have arbitrarily many variables and arbltra@
degree. Similar results have been obtained for exponent@
Diophantine equations by Davis et al. (1961).

speoe//:s

4.4. Results from logic
Logical expressions can be used in answer to several types éf
mathematical questions. As a result it is of interest to look at the
possibility of dealing with such expressions in the context @f
CAL.

Expressions of the propositional calculus involve variables angd

a set of logical connectives. These connectives or operations c@x
take various forms but all of these can be expressed in terms éf
A, v and 7. Other operators include 1mpl|cat10n equivalencg,
etc. Such expressions frequently appear in set theory, booleah
algebra, switching theory and, of course, mathematical logi¢
itself. It is always possible to decide whether or not two arbis
rary expressions in the propositional calculus are identical féf
one has only to reduce them both to minterm or maxteriﬂ
canonical form and compare the results. Essentially thg
involves comparing the truth tables.

If we move from logical expressions in the proposmon@l
calculus to more complex forms of logical expressions tlﬂé
matter is not so easily resolved.

The first order predicate calculus is a formal system whlcg
makes use of:

(a) logical constants, values in some domain D
(b) logical variables whose values extend over D

(c) functional constants, functions whose domain is D"
whose codomain is D

(d) predicates, i.e. functions with domain D" and codomain
{true, false}

These objects are connected by means of the usual logical
symbols

=
& 20z Iudy

A, V, 71, o (implies) and = (equivalence)

together with the quantifiers V (the universal quantifier meaning
‘for all’) and 3 (the existential quantifier meaning ‘there exists’).
In the first order predicate calculus these quantifiers can qualify
only logical variables. However this is sufficient for many
purposes. For a precise definition of the predicate calculus see
Manna (1974). Unfortunately there is no decision procedure for
deciding:
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(a) whether an arbitrary expression in the predicate calculus is
always true, i.e. is valid

(b) whether two arbitrary expressions are equivalent, i.e. yield
the same value for all values of the variables.

Note that (a) and (b) above are not unrelated.

These results, of course, cause trouble from a CAL point of
view. But as with arithmetic expressions there are some escape
routes. Every first order expression can be reduced in a series
of steps to prenex normal form (either prenex conjunctive or
prenex disjunctive normal form). These forms are such that the
quantifiers V and 3 always appear at the start of an expression
and not at an arbitrary point within them. Let us call the
sequence of V’s and 3’s the prefix of the logical expression. If
the prefix happens to be of a particular kind it does become
possible to produce programs to determine the validity of first
order expressions. If we let x;, y;, z, denote the logical variables
these prefixes include

Yx, Ay, ... 3y,
Vxy...Vx,yVzy ... Vz,
Vxy...Vx, 3y, 3y, ¥z, ...Vz,
But they do not include prefixes of the form

LAx, Yy, oLV,
Vxy...Vx, 3y, 3y, Iys ¥z, ... V2, .

One can go from the first order predicate calculus to higher
orders of logic by allowing the quantifiers V and 3 to qualify not
just variables but also functions and predicates, by allowing
other operators or connectives such as equality and so on.
But such systems are even more complex and results are
correspondingly less satisfactory (Manna, 1974).

5. Consequences of theoretical results

It must be the aim of the CAL programmer to avoid the
possibility of encountering any of the theoretical limitations
discussed above. Fortunately the programmer (teacher) has the
ability to choose what questions he wishes to ask and also what
form of answer he will accept. The correct choice is no easy
matter. But at least the situation is under his control.

The results discussed in Section 4 imply, for example, that a
student cannot be allowed the freedom to ask the system to
integrate an arbitrary expression. But he could be allowed to
ask for the integral of an expression of a particular form.

It is too severe to demand of any CAL system that it should
always produce the correct response and, for example, always
mark a correct answer correct. However the proper philosophy
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would appear to be that a correct answer should never be
marked wrong. This implies that if a student responds by
typing a result which is in some sense too complex (it might
contain some ‘unknown’ functions) then the student can be
asked to simplify his answer. A more helpful response might
ask to simplify by removing functions, variables, etc. which
can be named in the computer’s message. This resembles
closely the kind of response that might be provided by a helpful
and tolerant teacher.

How should one tackle the problem of preparing lessons ? One
possible approach is to learn from the work of the pioneers "of
algebraic manipulation systems and to use this in conjunction
with the randomness provided by random number generators.
In dealing with:
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6. Conclusion
In this paper we have attempted to outline some of theory and
techniques which might underlie a CAL system for teaching
mathematics.

There is much work to be done on this area. Apart from the
fact that more theoretical results are required one of the large
tasks is the production of useful material in the form of
programs, i.e. lessons, exercises, etc. For the success of such
systems it must be possible to tax good students and yet cater
for weaker students. It should also be possible for a teacher to
prepare his own lessons with relative ease.

These conflicting aims together with the substantial theoretical
limitations make this a challenging field.
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Medical Images: Formation, Perception and Measurement, proceed-
ings of the Seventh L. H. Gray Conference held at the University
of Leeds, 13-15 April 1976, edited by George A. Hay, 1977;
368 pages. (The Institute of Physics and John Wiley, £12-50)

It is always difficult to review conference proceedings when one has
not been present at the conference. However, it should be said at
once that this is a well produced book containing a collection of
high quality papers. Only the statements about the papers’ origin
and the reproduction of some of the discussion discloses how they
came to be written. The handling of complex images from a wide
variety of sources has become very much part of the stock in trade
of the medical physicist from both the academic and the service
point of view. This has taken them into instrumentation technology,
pattern recognition and computing. This book provides papers on
various aspects of the present and future development of multi-
farious aspects of this complex subject and provides a ‘valuable
review of the state of the art—as one might expect from an L. H.
Gray Conference.

The main sections in the book are concerned with recent advances
in imaging devices, methods of assessment of instrument perform-
ance, the detection and perception of image formation, the quanti-
tative assessment of image processing and the extraction of numerical
information from images. The papers vary from ones dealing with
instrumentation and experimental topics to those concerned with the
mathematical analysis of system function. A wide variety of physical
systems are included from ionography, computerised transaxial
tomography, radioisotope imaging with gamma cameras, thermo-
graphy, acoustic and ultrasonic imaging.

The papers individually are up to full academic standards in
presentation, content and bibliography. The provision of the
proceedings of such a standard and within a year of the original
conference is a practice that one wishes would be more widely
followed. This book will be a valuable addition to personal and
departmental libraries.

B. BARBER (London)

Computer Science and Multiple-valued logic, edited by D. C. Rine,
1977; 548 pages. (North Holland, US$ 50.95)

Although multiple-valued logic (which admits more numerals than

The Computer Journal

ojumoq

the 0/1 alternatives of the binary system) has held the interest &f
mathematicians since the 1920’s, its relevance to computer sc1enoe
has had a rather bumpy history. In 1947 Norbert Wiener produced @
brilliant argument for the optimality of the binary system f@
storing information. There have been other arguments (in my opinio#
bogus) for the optimality of a base of e which is most closel§
approximated by 3. However, when it comes to hardware fdf
processing as opposed to storage it may be that multiple-valued
systems offer interesting and possibly even economical alternativeg

However, the author claims that the recent revival of intere@
heralded by this book is partly underpinned by the idea that
multiple-valued decisions are often made in programming (when ong
wants to branch with one or several ‘maybe’ alternatives). The
editor structured the book by inviting 26 experts to write in fous
areas: algebraic theory, logic design, ternary logic, physic@
components and applications. 5

The first, theoretical, part collates various points of view applyné
the ideas first put forward by E. L. Post in 1921 and is clearly fertile
ground for rigorously pursuing the properties of concepts such g
‘implication’ and ‘completeness’ in multiple-valued systems. Tl'fg
last paper in this section provides probably the most exhaustivg
bibliography on the subject in existence (464 citations). The sec0n§
part runs through all those topics familiar to ‘binary’ switching
theorists: minimisation, sequential machine design and computés
aided design—all, I feel, somewhat uninteresting due to a certaifi
lack of fundamentality. A brief section on ternary logic is followed
by one on electronics, oriented part on rather ingenious forms c@}'
implementation.

Possibly the most interesting paper for the computmg scientist (as
distinct from the computer engineer) is a short nine page descriptio!
of multi-valued logic in programming applications (part V of the
book). The sheer conciseness of this contribution in a rather thick,
expensive volume belies a little the author’s claim that “. . . there is
good chance that the impact of multiple-valued software consider-
ations will be at least as important as hardware considerations
on the use of fourth and fifth generation computing and data
processing systems . . . However, putting the emphasis on the ‘will
be’ in the above statement, the book could be recommended as
background to those who would like to be involved in making the
editor’s prediction come true.

I. ALEKSANDER (Uxbridge
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