The other Turing machine

B. E. Carpenter* and R. W. Dorant

Department of Computer Science, Massey University, Palmerston North, New Zealand

In a little known report written in 1945, A. M. Turing made a detailed proposal for the construction
of a stored program computer. Although sharing some ideas with von Neumann’s draft report of the
same year, Turing’s proposal contained a wide range of novel and formative concepts. These include
subroutines, the stack and a micromachine architecture. This paper analyses his report in general
terms and in detail, and describes his ideas in modern terms.

(Received October 1975)

1. Introduction

In late 1945 A. M. Turing prepared a report, subsequently
placed before the Executive Committee of the National
Physical Laboratory (Great Britain), entitled ‘Proposals for
Development in the Mathematics Division of an Automatic
Computing Engine (ACE)’ (Turing, 1945). In fact, it was
presented to the Committee on 19 March 1946. This is an
extremely important document since it contains the first written
statement of many of the ideas underlying computing and
programming. Unfortunately Turing’s report is not well
known and its importance has not been widely acknowledged.

The Pilot ACE computer was publicised and well known. It
has always been an object of interest because it appeared to be
the only early computer of unconventional design, not following
the models of EDVAC or the IAS machine. The Pilot ACE was
sometimes dismissed as just another three-address machine but
as Wilkinson put it ‘this form of classification is not parti-
cularly appropriate’ (Wilkinson, 1954). Why was Pilot ACE
different ?

The reason for the difference was mentioned indirectly by
Wilkinson when he stated that the Pilot ACE was ‘based on an
earlier design by A. M. Turing’. This is the earliest published
reference to Turing’s report that we have found. The next is a
direct reference by M. Woodger in an article in Computer
Weekly (Woodger, 1969). This states that Turing’s proposal
‘even had the idea of subroutines, programs on Hollerith
punched cards . . ..’ To intrigue us even more, the report was
discussed in somewhat greater detail by R. Malik in Data
Systems (Malik, 1969).

Our interest in Turing’s work was further aroused by a paper
in Machine Intelligence 7 in which Brian Randell discusses the
special purpose electronic code breaking machines built in
Britain during the Second World War (Randell, 1972). This
paper also discusses the possible wartime meeting between
Turing and von Neumann and the probable exchange of ideas
between the two. In his book The Origins of Digital Computers
Randell further discusses the origin of the stored program
concept and mentions that Turing’s report on ACE refers to
von Neumann’s draft report on EDVAC (Randell, 1973; von
Neumann, 1945).

The purpose of this paper is to analyse Turing’s 1945 report
and describe his proposals in modern terms. At the same time
we shall compare his report with von Neumann’s and try to
show how they differ in general approach.

We shall not come to any definite conclusions as to which of
these two great inventors was the originator of any particular
concept and have no wish to cause controversy. Both were
working as part of teams, and these reports were not intended
for publication so did not contain specific references or ack-

*Present address: CERN, 1211 Geneva 23, Switzerland.

nowledgements. Goldstine’s description of the period makes it
clear how difficult it is to trace the origin of ideas within such
active development teams (Goldstine, 1972). Of course, the
originator of an idea was not necessarily the first to write i
down, and of course many of the ideas which first became
practicable in 1945 can be traced back to Babbage. 2

Although von Neumann’s report was circulated somewhg_
before Turing’s, the former’s ideas were changing contmuousl)g,
as indeed were the latter’s. Many of the comments made in the
present paper are specific to the situation in mid- or late-194
and would not even apply to 1946, by which time the matﬁ‘
direction of computing developments for at least ten years wa&
firmly set. We know (Knuth, 1970) that even before vog
Neumann’s draft report was circulated he had changed his mind
as to some of the details of his machine. Turing’s design alsg
evolved considerably (Malik, 1969). Both reports ultimately led
to the construction of computers, and although EDVAC anﬁ
Pilot ACE were substantially different from the machines of thg
reports they clearly showed their separate origins.

In the remainder of this paper we give direct quotatlons frorﬁ
the two 1945 reports; those from Turing are in italic scrlpﬁ
Page numbers refer directly to the original reports.

/EJ/OZ/GIO

2. Overall impressions
The 1945 proposals by von Neumann and Turing both describg
first attempts at computer architectures, but at different stageﬁ
of development.

Von Neumann’s paper is a draft and is unﬁmshed—fogg
example internal cross references are left blank. More impor
tantly, it is incomplete: neither the I/O mechanisms nor details
of the central control are spelled out. Knuth fills in some of thé
missing pieces, mainly from a letter written by von Neumann te
Goldstine (Knuth, 1970). N

Turing’s paper, on the other hand, is a complete description df
a computer, right down to logical circuit diagrams, with an
exhaustive thirteen page analysis of the physical properties ob
the memory, and a cost estimate of £11,200. In fact, Turing
proposal is quite possibly the first complete design of a stored
program computer architecture. He did realise that the design,
though complete, was not necessarily final and that it would
need to be modified in the light of experience. He says this
explicitly on pages 18-19. (‘LC’ and ‘CA’ together form the
control unit and an ‘instruction table’ is a program).

Although complete and workable circuits for LC and CA have
been described in this report these represent only one of a con-
siderable number of alternatives. It would be advisable to
investigate some of these before making a final decision on the
circuits. Too much time should not however be spent on this.

+Present address: Amdahl Corporation, Sunnyvale, California 94086, USA.

Volume 20 Number 3

269



We shall learn much more quickly how we want to modify the
circuits by actually using the machine. Moreover if the electronic
part is made of standard units our decisions will not be irrevocable.
We should merely have to connect the units up differently if we
wanted to try out a new type of LC and CA. . ..

The earlier stages of the making of instruction tables will have
serious repercussions on the design of LC and CA. Work on
instruction tables will therefore start almost immediately.

Note the stress placed on software development: Turing
appeared to regard the logical design as a solved and therefore
less interesting problem. In actuality the hardware design of
ACE was refined for many years before it was built—the very
delay of which Turing was afraid.

The difference which is most immediately apparent when
comparing the two proposals is one of style. Von Neumann’s
report is detailed with every step completely justified and
explained. Turing’s is divided into two sections: a ‘descriptive
account’ which is easy and fascinating to read because of the
number of ideas gathered into a mere eighteen pages; and the
‘technical proposals’. These make few concessions to the reader
and are very hard to follow. This is partly because of the
inherent complexity of control circuits in serial machines, and
partly because Turing was building on a foundation laid by
von Neumann, as he says on page 3:

The present report gives a fairly complete account of the proposed
calculator. It is recommended however that it be read in con-
Junction with J. von Neumann’s Report on the EDVAC.

However, many of Turing’s obscurities must be blamed on his
disregard for details as opposed to ideas. The technical pro-
posals are marred by many trivial errors, some of which are
clearly due to his changing his mind in the course of writing.

On reading more deeply into the reports, it is found that
von Neumann and Turing had quite different views of what a
computer is. Von Neumann regarded it as a device for per-
forming numerical computation. Although it could be used
otherwise, it was basically what we now classify as a program-
mable calculator. In his own words (page 3): ‘Since the device is
primarily a computer, it will have to perform the elementary
~ operations of arithmetics most frequently. There are addition,
subtraction, multiplication and division: +, —, x, =.” Von
Neumann spends a much larger proportion of his draft
discussing arithmetic operations than does Turing. As it
happens, von Neumann’s first program was for sorting—a
non-numerical application chosen for its complexity (Knuth,
1970).

Turing’s view was that a computer is primarily for obeying
programs, most of which happen to involve numerical proces-
sing. He discusses at length how programs are to be written
and processed. He also gives a list of possible applications.
Along with numerical applications, Turing suggested that ACE
could be used to solve jigsaw puzzles and to play chess—even
perhaps very good chess. He pointed out that it could be used
to count the number of butchers due to be demobilised in June
1946 from cards prepared from the army records (page 16) but he
considered such tasks can and should be done with standard
Hollerith equipment.

The probable reason why Turing was so aware of the impor-
tance of programming was that he had known about it for
years. His famous paper On Computable Numbers (Turing,
1936) defined computability in terms of an abstract but plausible
machine—nowadays called a Turing machine. This was cer-
tainly thought of as being programmed in a ‘hard-wired’ way.
One program, that for a universal machine that could simulate
any other, was rather complex and definitely non-numerical.
It is reasonable to view the universal Turing machine as being

270

programmed by the description of the machine it simulates;
since this description is written on the memory tape of the
universal machine, the latter is an abstract stored program
computer.

The difference in attitude between von Neumann and Turing
is evident in how their central processors deal with instructions.
Early calculators had programs on punched tapes through
which they stepped, executing each instruction as it turned up.
Von Neumann retained this attitude in his 1945 report, for he
thought of the processor as receiving a stream of orders from
consecutive memory locations. He never explicitly mentions an
instruction address register—this was unnecessary, for the next
instruction comes from the current position in the memory tape.
Turing did have an instruction address register explicitly
containing the instruction number IN, i.e. the position of the
next instruction.

Their attitudes to branch instructions also differ. Von
Neumann considers these to be (page 85) ‘orders for CC to
transfer its own connection with M to a different point in M’,
To Turing, branch instructions (page 11) merely specify the
number of the next instruction. Similarly, he regards access to o
variables much as we do today. Von Neumann, in contrast, =
speaks of ‘transient transfers’ during which ‘the place of the 5 3
minor cycle which contained the transfer order must be2 8
remembered’ (page 88), presumably in a nascent instruction =
address register. In summary, Turing’s concept of memory was S
much closer than von Neumann’s to a random access addres- =
sable device, though of course von Neumann had firmly formed 3
this concept by 1946, for it is in his later proposals.

As assumed throughout the above discussion, both machines &
revolve around the idea of a stored program. This is often S 3
considered to be the crucial formative idea behind computers &
and there has been much interest in who originated it. Von 5 g
Neumann’s proposal was the first to describe a stored program 3
in any detail, apart from Turing’s 1936 abstract machine (from 2
which Turing derived the term ‘table’ for ‘program’). In his S
book on the history of computing (Goldstine, 1972; Chapter 7) =
Goldstine describes how the stored program concept gained &
gradual acceptance within the ENIAC team in late 1944.
However, the stored program is a many-sided concept. Firstly
there is the idea that instructions may be encoded as numbers—
a very old idea that was common knowledge in 1945. Then there
is the realisation that instructions could be stored in a memory
along with other data—surely Turing’s idea of 1936.

Next we come to the consideration that it is desirable, from a
practical viewpoint, to store instructions as numbers in the
temporary store. This is firstly so that they may be obtained
quickly and secondly so that they can be modified. The first
reason became important only when calculators went electronic.
Of course, plugboard wired programs do not give rise to the
mechanical delays of paper tape, but they are relatively difficult
to change. This problem is more pressing for a calculating
engine than for a code breaking device which would in fact
benefit more from stored data. The first suggestion of using a
stored program has been documented as due to Eckert in
January 1944 (Eckert, 1944). That speed is the main advantage
was mentioned on page 9 of von Neumann’s 1945 report and
restated in 1946 (von Neumann, 1946, page 26).

The idea of program modification has at least three aspects.
Firstly, there is modification of addresses of instructions as they
execute. Von Neumann allowed for this by distinguishing data
and instructions by a one-bit tag. A store into an instruction
could modify only the address part. This was the only means of
achieving conditional branches or array indexing in the draft
report.

The second aspect of modification is the manipulation of
instructions as if they were numbers. Von Neumann does not
take this step but Turing is clear about it, and believes it to be
necessary for conditional branching (page 11):

peoey/.s

20z Udie 0z uo ysenb Aq T796L9[/692/€/OZ/9I3

The Computer Journal



We wish to be able to arrange that the sequence of orders can
divide at various points, continuing in different ways according to
the outcome of the calculations to date . . .

These requirements can largely be met by having the instructions
on a form of erasible memory, such as the delay lines. This gives
the machine the possibility of constructing its own orders; i.e.
there is always the possibility of taking a particular minor cycle
out of storage and treating it as an order to be carried out. This
can be very powerful. Besides this we need to be able to take the
instructions in an order different from their natural order if we
are to have the flexibility we desire. This is sufficient.

Nowadays we do not regard the ability to modify instructions
‘on the fly’ as being important or desirable—after all, we have
genuine conditional branches and index registers. However, the
third aspect of modification is extremely important. This is the
ability of one program to process another, treating it as data.
This we shall see was also suggested in Turing’s proposal. As
von Neumann gave each word a nonoverrideable tag, he could
not manipulate instructions in this way. Thus what we now
regard as one of the fundamental characteristics of the von
Neumann machine was, as far as we know, suggested
independently, if not originally, by Turing.

Returning to conditional branching, both 1945 machines had
to construct a branch instruction and then execute it. Von
Neumann employed an instruction to select (on a condition)
one of two numbers which was then stored into the address
field of an unconditional branch. Four instructions were thus
needed to execute a conditional branch. Turing had a more
basic mechanism as he explains (page 11):

We must now explain in more detail how it comes about that we
can branch the sequence of instructions and arrange for sub-
sidiary operations. Let us take branching first. Suppose we wish
to arrange that at a certain point instruction 33 will be applied
if a certain digit is 0 but instruction 50 if it is 1. Then we may copy
down these two instructions and then do a little calculation
involving these two instructions and the digit D in question. One
form the calculation can take is to pretend that the instructions
were really numbers and calculate

D x Instruction 50 + (I — D) x Instruction 33 .

The result may then be stored away, let us say in a box which is
permanently labelled ‘Instruction 1°. We are then given an order
of type B saying that instruction 1 is to be followed, and the
result is that we carry out instruction 33 or 50 according to the
value of D.

In point of fact, in his examples, he chose one of two addresses
by the above mechanism and thence constructed a branch.
This took some twenty instructions. A special parallel shifting
device and logical operations on entire words were included in
the arithmetic unit and these facilitated the construction of
instructions.

The Turing branching mechanism quoted above is used in
recursive function theory, which may explain its origins. It is
strange that conditional branching was a stumbling block to
both von Neumann and Turing, especially since the program
for an abstract Turing machine is just one large decision table.

Another difference in approach between the two authors was
Turing’s decision to implement what we would now call a
micromachine, not because of its size but because of the limited
function of each instruction. Von Neumann thought of each
instruction as an operation complete in itself; Turing definitely
considered his instructions to be components of basic
operations. Programs were to be written in terms of basic
subroutines (page 29):

The majority of actual instruction tables will consist almost

Volume 20 Number 3

various points of call (page 11):

entirely of the initiation of subsidiary operations and transfers of
material.

Such use of subroutines was old hat to Turing, who had thus
built up programs for his abstract machines (though in that case
using macros).

From the standpoint of simplicity of hardware implemen-
tation, a most important criterion at the time, the idea of a
micromachine seems to be very practical indeed. Here Turing
left the mainstream of computers, or rather anticipated it, for
it was not for many years that machines with writeable micro-
programs were produced. We cannot truly credit Turing with
the invention of microprogramming, for nowhere does he
consider the purpose of his machine to be the emulation of
another. The machine is rather considered to be structured in
layers of subroutines. However, his example programs do set
up the machine to look like another one in a manner very
suggestive of emulation.

Turing went one step further towards a micromachine. He
introduced an instruction whose sole purpose was to turn on
one of 256 control lines or valves. In the following explanation
he defines something very reminiscent of firmware (page 26;
an ITO—instruction table operation—is a subroutine): g

9

It is intended that the outputs of these valve elements should be
connected in various ways into the circuit when it is desired

try out new circuit arrangements. It is thought that they may
often provide means for doing things simply which could be dofie
lengthily as an ITO. To an extent this represents a compromise
between the new system of ‘control by paper’ and the o§1
plugboard and soldering-iron techniques.

olw

o
Since his machine was to be programmed mainly in subroutines,
much thought was needed to make this practicable. In faét
Turing had thought it right through and showed clearly hog'
programming could be efficiently organised. s

To start with there was the problem of using subroutines fro%
&
[}

/

We also wish to be able to arrange for the splitting up of operatiotis
into subsidiary operations. This should be done in such a way th@t
once we have written down how an operation is to be done we caB
use it as a subsidiary to any other operation.

G6LGL

This was to be facilitated by having all branch instructions
leave their return address in a special register; thus the majn
purpose of the branch was for calling subroutines. There was 1o
simple way to branch back to this saved address since a bran@
instruction would have to be constructed. Turing’s solution isa
model of clarity (page 12; TS is a temporary storage register}g’.

QO

When we wish to start on a subsidiary operation we need only
make a note of where we left off the major operation and the:)z)z
apply the first instruction of the subsidiary. When the subsidiary
is over we look up the note and continue with the major operation.
Each subsidiary operation can end with instructions for this
recovery of the note. How is the burying and disinterring of the
note to be done ? There are of course many ways. One is to keep
a list of these notes in one or more standard size delay lines (1 024),
with the most recent last. The position of the most recent of these
will be kept in a fixed TS, and this reference will be modified every
time a subsidiary is started or finished. The burying and dis-
interring processes are fairly elaborate, but there is fortunately no
need to repeat the instructions involved, each time, the burying
being done through a standard instruction table BURY, and the
disinterring by the table UNBURY.

Thus Turing described a software stack for subroutine linkage;
we would nowadays refer to BURY and UNBURY as PUSH

21



and POP respectively.
He thought of subroutines as being maintained in libraries as
machine instructions with symbolic addresses (page 28):

Permanent form.—The same instruction will appear in different
machine forms in different jobs, on account of the renumbering
technique as described in pp. 13, 14. Each of these machine form
instructions arises from the permanent form of the instruction.
These permanent forms are on Hollerith cards and are kept in a
sort of library.

To simplify life he thought of programs being written mainly
symbolically in what he called a popular form. Here addresses
could be coded numerically relative to a symbolic label, and
op-codes and other constants found in the permanent form
were omitted (page 28; CAO is the central arithmetic organ):

Popular form.— Besides the cards we need some form of the table
which can be easily read, i.e. is in the form of print on paper
rather than punching. This will be the popular form of the table.
It will be much more abbreviated than the machine form or the
permanent form, at any rate as regards the descriptions of the
CAO. The names of the instructions used will probably be the
same as those in the permanent form.

He assigned fields to program cards (page 13):

Columns

Genuine input 41-72
Repeat of destination 2640
Popular name of group 1-8

Detail figure (popular) 9-11
Instruction (popular) 12-25
Job number 73-77
Spare 78-80

The ‘popular name of group’ was the name or label of a
subroutine. The ‘detail figure’ was the displacement from the
preceding label. The instruction itself was always given sym-
bolically but the ‘genuine input’ of 32 digits was empty at first
and partially filled in for the permanent form. As a concrete
example, here is the popular form of a short program named
INDEXIN (page 29):

INDEXIN
Q, 0000,0100,0000,0000
TS 6-TS2
ADD ‘4
ROTATE 16
TS4-TS6
TS6-TS9
TS 27-TS 6
TS6-TS 10
OR
10 TS 8-TSo6
11 B, 1, INDEXIN 11
12 TS 6-TS 28
13 B, BURY

OGO N LA W~

Note that line 11 refers to its own address. Line 13, of course,
should be B, UNBURY. We will discuss INDEXIN in more
detail later.

Having set up his subroutine library, Turing describes the
process of assembling a complete program by externally
link-editing the required subroutines, rather than by wastefully
loading each subroutine at a fixed address (page 14):

Instead, when a new job appears we take the complete set of

272

cards involved and make a new copy of each of them; these we
sort into the order of popular group name and detail figure.
We then renumber them consecutively in the binary scale. This
number goes into the columns described as ‘repeat of destination’.
The renumbering may be done either with a relay counter attached
to a collater, or by interleaving a set of master cards with the
binary numbers in serial order. To complete the process we have
to fill in other instructions numbers in binary form into the
genuine input, e.g. if an instruction in popular form were . . . and
carry out instruction Potpan 15 the genuine input will have to
be of form “. .. and carry out instruction 001101 . .. I’ where
001101 ... 1 is the new number given to Potpan 15 in this
particular job. This is a straightforward sorting and collating
process.

It would be theoretically possible to do this rearrangement of
orders within the machine. It is thought however that this would
be unwise in the earlier stages of the use of the machine, as it
would not be easy to identify the orders in machine form and
popular form. In effect it would be necessary to take an output
from the calculator of every order in both forms.

peojumog

Here we see Turing’s recognition that programs can be pro-
cessed by other programs, as mentioned earlier. He alsol
anticipates handling difficulties by sortmg the group names andQ
suggesting an output of the program in symbolic and machme"
forms. Another practical point is possibly the first recorded
plea for adequate program documentation (page 29):

e//:sdn

In addition to these we must recognise the ‘general descrlptlon
of a table. This will contain a full description of the processg
carried out by the machine acting under orders from this table.5
It will tell us where the quantities or expressions to be operatedc
on are to be stored before the operation begins, where the ;esultsg
are to be found when it is over and what is the relation between3
them. It will also tell us other important information of a ratherS
dryer kind, such as the storages that must be left vacant before=:
the operation begins, those that will get cleared or otherw:seg
altered in the process, what checks will be made, and how vartouso
possible different outcomes of the process are to be distinguished.s N
It is intended that when we are trying to understand a table all thew
information that is needed about the subsidiaries to it should be
obtainable from their general descriptions.

q T796L9U6

He practised what he preached: here is his description of
INDEXIN (page 29):

onb A

S

INDEXIN (General Description). The minor cycle whose_
position is described in digits 17-32 of TS 27 is transferred to3
TS 28. The contents of TS 2, 3,4, 5, 6, 8, 9, 10 get altered in theS
process.

Z Yaole|\

(he did overlook that register TS7, used for the control of S
shifting, had to contain 16 for INDEXIN to work).

Towards the end of this report, Turing was tiring of writing
programs in the detail required and was becoming worried by
their size. The solution he proposed was to use the machine to
help out with what appears to be runtime macro expansion. A
possible interpretation of the following passage is that he
intended a subroutine to be processed just before its first use,
but how address relocation was to be handled is unclear (page
32; CALPOL is a large example program):

144

It will be evident that the table CALPOL is somewhat wasteful
of space. Each time a subsidiary operation is required we have to
repeat B, BURY, and each time we make a transfer we have to
do it in two stages, each of which uses a whole minor cycle of
which most is wasted. It is possible to avoid this waste of space
by keeping the instruction tables in some abbreviated form, and

The Computer Journal



JUp— O ——

l i

! <1 DL 0 !

5 |

! S |

! : |

| * !

i DL 255 !

i /ﬁ— _4\ I

L P .

memory
10‘ ’ 1i

r.—.—- —————————— =. ———————— - .—..._.-!
l - |
| |
I Top  foeeeeem i
i g e !
i CA C |
) PO |

operation| result in OCA

+ I.,+Jd

CA " CA

J

- Lea-Jca

X Leaxdea

Lea’JIca

/
v NIca

1 ICA

j Jca

if OCAzo

then ICA

else JCA

e 0 S oTE U IO SO U O IS PEJE]T-SUN U oI PO PEOIUMO

b binary- i
Fig. 1 Von Neumann’s first machine design d y de Cima 1
(a) Above bus structure ) o
(b) Right operations of CA db conversion
3
&
expanding each table whenever we want it. This will require a  should be very fascinating. There need be no real danger of it evet.
table EXPAND, and will require each table to include appro-  becoming a drudge, for any processes that are quite mechanical

Dpriate references to the table EXPAND. These references will
however be put in by EXPAND itself (when working under
contract to a higher authority), just as EXPAN D will put in the
references to BURY and UNBURY.

It is clear from a reading of Turing’s report that whether or not
he originated the stored program, it is probable that he should
be regarded as the originator of programming as we now know
it. Before going into rather more detail of certain aspects of his
ideas, we quote the following farseeing comments in which
programmers may take some delight (page 18):

Instruction tables will have to be made up by mathematicians
with computing experience and perhaps a certain puzzle solving
ability. There will probably be a great deal of work of this kind
to be done, for every known process has got to be translated into
instruction table form at some stage. This work will go on whilst
the machine is being built, in order to avoid some of the delay
between the delivery of the machine and the production of results.
Delay there must be, due to the virtually inevitable snags, for up
to a point it is better to let the snags be there than to spend such
time in design that there are none (how many decades would this
course take?). This process of constructing instruction tables

Volume 20 Number3

may be turned over to the machine itself.

0Z uo 1sen

3. Turing’s micromachine
Many features and parameters of Turing’s proposal were
similar to and presumably taken over from the early plans fof
EDVAC. Both machines were to be binary, serial and use 32-bif’
words. The memory was to consist of 32-word delay lines o3
‘tanks’ bussed to the control unit. Memory locations had unique
addresses consisting of two fields, the address of the delay line
and the position of the word in the line. The two fields were
somewhat different in that a tank could be selected at random
but a particular word was available during its own minor cycle
(32 bit-periods) of the major cycle (32 word-periods). Thus some
delay could be expected before a word could be accessed. All
tanks were in step so the delay was the same for all words with
the same ‘internal’ field regardless of which tank they were in.
For many practical purposes, however, tank boundaries could
be ignored. Turing follows von Neumann in using the terms
‘minor cycle’ for a word and ‘major cycle’ for a delay line, but
unlike von Neumann he suggests ‘word’ as an alternative
(page 5).

In the details of what we now call their central processors, the
two machines are very different. Von Neumann proposed an

273



arithmetic unit with two input registers and one output
register. The unit had a complete range of operations from
direct transfers through to division and square-rooting. It
omitted the simple Boolean operations, presumably because
these were not required of a calculator.

Turing, however, organised his processor around an array of
of temporary storage registers, some used for arithmetic
operations and some purely as temporaries. Von Neumann
subsequently included similar registers (Knuth, 1970), calling
them ‘short tanks’. Turing may have known this but it seems
unlikely for he uses a different name, temporary storage, and
considers many of them to be internal to the arithmetic unit
rather than as a first level store. In von Neumann’s modified
design, instructions were to be held in short tanks but Turing
allowed this for one special register only.

The bus organisations of the two 1945 proposals are sketched
in Figs. 1 and 2. It will be noticed that at the level of detail
reached in his report, von Neumann had no instruction address
register or instruction register. Turing had both—CD and CI

(page 20):

(1) A short storage (like a TS) called current data CD. This
contains nothing but the appropriate instruction number IN,
i.e. the position of the next instruction to be carried out.

(2) A short storage called current instructions CI. This contains
the instruction being or about to be carried out.

A delay line memory causes certain design problems since it is
not truly random access. If instructions are accessed at random
then there is an average delay of half a major cycle, or 512 usec,
before each instruction. To overcome this, various tricks were
used in designing and programming machines with cyclic
memories (which include discs and drums).

As explained in Section 2, von Neumann thought of instruc-
tions streaming into the control unit at exactly the rate at which
the memory could deliver them, in the ‘octroyed temporal
sequence’ (page 76). For this to work there must be overlapping
of the execution of one instruction with the receipt of the next,
but von Neumann gives no details. Of course some instructions
took longer than one minor cycle (32 usec) to execute and then
the control unit would skip 32 cycles and start again next time
round, about one millisecond later. Instructions to access
memory would also take a whole major cycle.

The registers CI and CD in Turing’s machine were short delay
lines. Before an instruction could be executed it had to be
‘distributed’ and parts of it staticised, taking one minor cycle.
Turing therefore used a two cycle mode of instruction
execution: distribute, execute, distribute, execute, etc.

Since the minimum execution time was one minor cycle, this
meant that instructions had to be two apart in memory. To
ensure that control would not always just miss the boat (page
22) the instruction address register CD was incremented by two
during the distribution cycle. To simplify programming,
however, Turing made a masterly change in his link editing
process. Virtual addresses of form a, . . . a,5 were to be mapped
to physical addresses as a;sa, ...a;,, Where the delay line
number was now as . . . a;, and the word address a,sa,a,a;a,
(note the digits of numbers are written with the least significant
first). Thus, when a physical address was incremented by two
the corresponding virtual address was incremented by one.
The nett effect of this unusual scheme was to divide the main
memory into two interleaved halves.

An instruction could be distributed in the same cycle during
which it was fetched, so the normal two-cycle mode above can
be expressed as follows: fetch, distribute, increment; execute;
fetch, distribute, increment; execute; etc.

Most instructions would be transfers within temporary storage
and would fit into this pattern. However, even the fastest
arithmetic instruction would take two cycles. This was because

214

Turing dealt with double length numbers, requiring 64 bit-
periods, whereas von Neumann always rounded to 32 bits.
In order that instruction fetches would not get behind, the
following sequence was possible: fetch, distribute, increment;
execute; execute, fetch; distribute, increment; execute, fetch;
etc.
" To enable this, as shown in Fig. 2, Turing had two memory
output buses, one for instructions and one for data. If two
arithmetic operations occurred in the same sequence then the
processor would miss a fetch, but most sequences of instruc-
tions were to consist of transfers into registers, a single oper-
ation, and the distribution of results. Turing’s scheme was
therefore a very effective method of minimum access coding.
Branch instructions needed no execute cycle so they had the
effect of guaranteeing a return to the normal sequence. If a
slow operation such as multiplication (16 cycles) were followed
immediately by a suitable branch, which would be fetched
during the multiplication, then there would be no delay
afterwards. This degree of optimisation would, however,
require virtuoso programmers. 9
In both von Neumann’s and Turing’s design, data words weré,
to be binary two s-complement numbers. Von Neumanp
regarded them as fractions in the range (—-1 1) whereas t@
Turing they were whole numbers, though in exactly the samey
form. However, Turing did not consider these to be other thars
parts of more comphcated numbers. =
As mentioned in Section 2, von Neumann distinguished datw
from instructions with a one bit tag. However, a data wor@
encountered among instructions was treated as an ‘immediate>
(page 89) load instruction. There were three other forms o
instruction. The first was the unconditional branch and thg
second was to load the contents of some addressed location
This he considered to be a form of temporary branch o§

=3
Q
)
3
2
=
DL 1 e
main i Q
memory ' @
delay H N
lines i 4
[ } @
DL 1024 N
o))
©
. =
input _ZE output a
device = device ey
3 ©
o o
N
X g
«Q
®
[
TS 2 +2 —
=J °
=]
N
5
— a <
o ) [
- = I
Bk >
‘ot 3
o o §
TS -5
temporary
storage L L,
registers | 15 6
TS 7
Note. Registers TS 1 to 12
are used for special
purposes by the control
unit.
i
1
1
]
i
— wu

Fig. 2 Bus structure of Turing’s machine

The Computer Journal



‘transient transfer’ of the point of connection of control to
memory.

The third and major group of instructions combined an
arithmetic operation (see Fig. 1) with a specification of what to
do with the result. It could be left in O,, or stored in a specified
address, in the next instruction position or back into /,. For
each destination, O, could be optionally cleared.

Turing’s machine, in contrast, had more instructions which in
general did less. The two main types are branches, which alter
CD, and others which increment it as well as carrying out a
specified operation. For branches, bits CD18-CD32 specified
the address of the next instruction, but if CD17 was on then
the next instruction was to be taken instead from register TS6.
Nonbranch instructions cleared CD17 to prevent indefinite
looping in TS6.

We now consider the instructions in order. As indicated in
Fig. 2, register TS6 plays a central role in all transfers.

Type B Notation: B, address
Branch instruction.
Load CD17-CD32 from corresponding bits of instruction.

Type K TS6-DL x, y
Store TS6 in main memory

Type L DL x, y-TS6
Load TS6 from main memory

Type M TSx-TS6
Load TS6 from temporary storage

Type N TS6-TSx
Store TS6 to temporary storage

Type O
Punch a card, as twelve 32 bit bmary numbers from the first
twelve words of a specified delay line

Type P
Read a card, as twelve 32 bit binary numbers into the first
twelve words of a specified delay line

Type Q@ Q, data
Load TS6 with data in last 16 bits of instruction

Type R

Set TS8 to the specified logical combination of TS9 and TS10.
Options available were A, v, @, 71TS10 and zeros. (The
mnemonic OR was used for v and AND for A)

Type S
Arithmetic operations

Type T
Instructions to turn on one of a set of 64 gates (as described in §
the last section) 2
o
[V
The arithmetic operations need some further explanation. &
Registers TS2-TS5, TS7, TS11 and TS12 were connected to the =
arithmetic circuit shown in Fig. 3. Rather than performmg as
complete operation the arithmetic circuit was set in motion by 2
twelve lines corresponding to bits in the instruction. This couldg
result in a complete operation but in many cases a number of
steps would be required.
Basically the arithmetic unit could, in two cycles, add to the 3.
double length value in TS4 and TS5 the product of the multi- 9
plicand (usually TS3) and four bits of the multiplier (usually S

pe

speo

Q
o
3
g
SELF POS CANCEL 3
s e N -
’ ' . ! \; =
: I N ] TS5 [ TS4 —e— ] &
{ ! i i ) '_ ROTATE 3
! ! | i {rotator) 2.9
| | i i TSI m M e -4 ROTATES?®
. H i ! ‘/ add multiplicand x 4 \ >
' | l | b dlg}_tf_O_f._m_u_]_:t_].Pller ! ! ©
, ! i I ¢ clear Y . ; N | R
' | : “"\partial Sum:‘ 7 4 adders } TS7 | >
. H b} ! _________ . et e e e e ” : ' (&)
[ ! | ! .f | | =
H | i ! e ! g
' : e e e e ey 1 invertery ——-—-—+—-— -t —-—ALG Q
' ! i L . 3
] ] H ' Py 4 4 } : —-
' /-J--—- -~\\ antend N 75 ]_ ’..-'-‘ X TTTTTTT TN ' g
select / extend se ect ' vl '
-rr—1 aAnd N
: TS3 \multiplicand/ \Sign dlglts/ " start ”‘mverter " Jo 1 g
R I \———:-- —-’ P g - - -y N
(Y maeiiudiid nai ~N ! 5 Mo = —-f - -} - . 2
N B b i | : S
i : \X u’, ! : : current 4 digits ' §
Yoy 7I7 multiplication ! i : of multiplier d , I
U ! control ! . H !
' ' i !
| . ; ' ' H .
i ' i
l i TS12 -'----—-—-—----L-—-—-—-—---’-'---. next 4 digits ;
\ ! H . I of multiplier
I i ' i TS2 |
: H I ol ~ ' i l 1
v . X U4 : H - e am, I |
Pt ! M i : O select ™\ (" select TS :
H \,___'"_‘_‘_'11:':_"_‘ == ___J memrmrmememrooes \U digit fleld,'—\multlpller"_" 11 ;
: I Sl Sl Sl SO ool fod =i
| ! i L R i
i i T A I S o
\ i HE S | ! ! 3!
cmmmmm e b e e e e e e e e ee e — b T et —_
AUTO DIFF ERRj NOR ERR GIV
Fig. 3 Turing’s arithmetic unit
Volume 20 Number3 275



reset

Ts7 L} l [ [
>
P13 P14 Pis P16 PuT
a [ ~
2 2 2 Z
: 2 2 2 2 DLIG 2
data data‘
input output
e btk |
H [}
|  Turing's I Meaning !
| notation ! {
———————— }—— —— —— —-.——_.

Fig. 4 Turing’s rotater (DL16 is 16 unit delays)

'
'
|
r===-""---"" -r :
. a ¢ | a '
] 1 < .
. b, ] b .
1 | '
o ——mmom- —— e - m - m oo
' ' .
L —p— | unit delay !

TS2). In this case there would be no delay in accessing the next
instruction. Various modifier bits in the instruction had the
following effects:
NOR multiplier to be bits 1-4 of TS2
ERR & ERRI multiplier to be bits

10-13 of TSI11

ERR & ERR2 multiplier to be bits
14-17 of TS11

for error calculation

GIv multiplier to be bits 24-27 of instruction*

ALG multiplier to be 2’s complement (otherwise
absolute)

POS negate multiplicand

SELF use TS4 and TS5 as multiplicand (otherwise
TS3)

CANCEL cancel previous content of TS4 and TS5.

*In some places, Turing says bits 23-26 instead.

For full multiplication, eight double cycles were required,
choosing groups of four bits of the multiplier in sequence and
shifting the multiplicand appropriately. This was done by
initialising TS12 to zero except for a one in bit 1. When modi-
fier bit DIFF was on, the multiplier digits were the four
starting at the current position of the solitary bit in TS12 (bit
1 being the least significant). When modifier bit AUTO was on,
TS3 and TS12 were shifted right by four bits each double cycle,
and the arithmetic unit kept going for sixteen cycles, the
position of the bit in TS12 being used to stop it.

The arithmetic circuit included a ‘parallel’ shift network.
When modifier bit ROTATE was on, this shifted TS4, TSS to
the right (delayed it) by a quantity given somewhere in TS7.
(The text specifies bits 1-5 of TS7, and the drawing shows bits
13-17, but since ROTATE was bit 19 of the instruction one
would expect the relevant bits of TS7 to be later.) The rotation

276

e o' !
wob/woo dno olwepeoe//:sdiy Woly papeojuMo(]

is not shown in the circuit diagrams).

Turing gave some examples of specific instructions, amon
them:

1. Addition, with POS GIV and value 1 in bits 24-27. i.

TS4,5 « TS4,5 + TS3 x 1

2. Short multiplication, with POS GIV CANCEL SELF ang

constant in bits 24-27 i.e. TS4, S « TS4, 5 x constant.

3. Long multiplication with addition, with POS NOR AUTQ

DIFF ie. TS4,5 « TS4,5 + TS3 x TS2 (assumes TSI
contains a 1 in bit 1). §

Turing used the mnemonics ROTATE to mean ROTATE2 ang;

ADD ‘A’ for an addition with cancel, i.e. TS5 « TS3. He di&

not propose hardware division or squarerooting, but did

provide double precision, using four adders to acceleratg,

multiplication. §
The reader should now be able to follow the program

INDEXIN given in Section 2. The first ten lines construct an

instruction in TS6 to load the word addressed by TS27. This

is then executed and the result stored in TS8. There are three
points to note:

(a) line 13 should be B, UNBURY.

(b) the program assumes that TS7 contains 16 in bits 13-17 to
control the shift. It is unclear how this could be arranged
since only a shift could get them there in the first place. If
the shift count had been taken from bits 17-21, Turing
could have used Q,0000 1000 0000 0000; TS6-TS7.

(¢) the first line, which loads the opcode for ‘load into T6’ into
the right half of T6 should probably be Q0000, 0101, 0000,
0000.

It is difficult to comment on the originality of Turing’s logical

@8/310!

162/88z/</

q¥

The Computer Journal



design and electronic techniques. It is noteworthy that a large
section of his report concerns engineering matters. There is a
discussion of automatic error checking including the following
(page 17):

There are three chief functions to be performed by the checking.
It must eliminate the possibility of error, help to diagnose faults,
and inspire confidence. We have not yet spoken at all of this last
requirement. It would clearly not be satisfactory if the checking
system in fact prevented all errors, but nobody had any confidence
in the results. The device would come to no better end than
Cassandra.

According to Malik (1969), by the end of the second world war
Turing was an experienced, if amateur, electronics engineer,
quite capable of discussing things in ‘the style of a genuine
four-in-the-morning system kicker’. It is now clear that Turing
gained exposure to electronics. while working on wartime
cryptanalysis (Randell, 1976).

The discussion of the design of valve elements and delay lines
is particularly detailed and mathematical—even to the level of
recommending the use of 6SN7 valves! The impression gained
is that the machine could readily be built, after sorting out
Turing’s minor inconsistencies. This is confirmed by the speed
witn which other delay line machines were constructed, using
the same technology but different architectures.

Turing used a consistent set of symbols for describing his
circuits at the logical level. His notation is derived from that of
McCulloch and Pitts (1943) though apparently based on von
Neumann’s modifications—von Neumann, for example, used
circles for logical elements. Turing extended the notation
considerably, introducing a special symbol for a flip/flop. In his
1949 book Calculating Instruments and Machines Hartree uses
Turing’s notation and credits him with its origin (Hartree, 1949,
p- 97, p. 102).

As an example of Turing’s logical design, Fig. 4 is his Fig. 33,
the rotater. We do not know whether this is original but we
have not seen it mentioned elsewhere. The idea of this circuit
underlies a modern parallel shifting network. It was intended
to be used over two cycles; when the instruction was distri-
buted, the shift count in TS7 was staticised (as shown, from
bits 13-17, but this must be incorrect as mentioned above). The
shift took place over the following two cycles. (We have
corrected a few minor ommissions in Fig. 4).

4. Example programs

It was tempting to entitle this section ‘Turing’s virtual machine’
but this is perhaps a grandiose description of his small set of
example programs, which he described as (page 28) incomplete
and crude because the whole project as yet exists only in
imagination.

However, rather than giving examples directly in machine
language Turing went about building a set of basic subroutines
in terms of which more complicated programs could be written.
These subroutines were related in such a way that, in fact, a
virtual machine was created.

The virtual machine operated primarily on floating point
numbers of the following two-word form

1-9 10-17 18-23 24-32

m X n t

The first word was the mantissa, a two’s complement integer
in the form handled directly by the underlying computer. The

Volume 20 Number 3

first field of the second word was an excess-256 exponent
m:(—256 < m < 255). The number represented was f x 2™.
The second and third fields, both positive integers, were used to
represent the known error in the number as +x.2™ x 210-n
The fourth field was to hold identifying information for
unspecified purposes.

Turing listed nine basic subroutines, describing their overall
effects (summarised in Table 1). Only INDEXIN was given in
its entirety. The subroutines used various temporary storage
registers for specific purposes. TS27 was a sort of index register.
INDEXIN could be used to load TS28 with the word addressed
by TS27 and PLUSIND added one to this register.

Table 1 Turing’s example basic subroutines

INDEXIN TS28 « M[TS27]

DISCRIM TS24 « if TS8 = 0 then TS16 else TS15

PLUSIND TS27 « TS27 + 1

TRANS45 TS20, 21 « TS22, 23

BURY M[TS31] « TSI + 1; TS31 « TS31 + I;

go to M[TSI1]

UNBURY go to M[TS31 « TS31 — 1]

MULTIP  TS22,23 « TSI8, 19 x TS20, 21 9

ADD TS22, 23 « TSI18, 19 + TS20, 21 S

BINDEC Convert TS22, 23 to card image in DLI11 g
[0}

Registers TSI8 to TS23 formed a virtual arithmetic unit;
MULTIP performed multiplication, ADD addition ang
TRANS45 a straight transfer. Operands were floating pointz
Note the parallel with registers /s, Jca and Oc, of voﬁ
Neumann’s design.

TS31 was to be the return address stack pointer, apparentl&
always pointing one ‘above’ the stack top. BURY would sav§
the return address of the next subroutine branch. UNBUR$
retrieved the last saved address and branched to it. C

To choose one of two words Turing used a routine DI SCRlMg
Depending on the contents of TS8 (the output of the ‘loglfi
unit’) one of TS9 or TS10 was to be transferred to TS24; thxg
parallels von Neumann’s instruction ‘sd’.

The final instruction BINDEC was to be used for outpug
The number in the ‘accumulator’ TS22, 23 was converted to 12
binary words in DL11 (the output buffer) which when puncheg
on a card would give a decimal representation of the numbq
in a Hollerith code. Von Neumann did not specify his opem
ations ‘db’ and ‘bd’ but it is clear from Knuth (1970) that hen
intended a BCD representation of decimal numbers rather thag
standard card code. g

Having set up the above basic subroutines, Turing gave ai
example of a larger program, CALPOL. This was to evaluai@
a degree 15 polynomial whose coefficients are glven as double
words in DL3, with the value of the variable in TS13, 14 ana
the result appearmg in TS25, 26.

The version given by Turing (Fig. 5) is perhaps a little har§
to follow. He has introduced abbreviations for transfers vig
TS6 but it is nevertheless quite complex. In Fig. 6 we give
structured version of the same program with italicised
comments and minor corrections. The coefficients are treated
as pairs of words a;, a;,, with i ranging from 1 by 2 to 31.
We conclude with some further notes on Fig. 6.

(a) TS20, 21 and TS22, 23 both hold the sum at different stages.
We use the mnemonics suml and sum2. Turing does not
specify how to clear TS20, 21 (in fact he says clear TS22, 23
in error) but we could use Q, 0; TS6-TS20; TS6-TS21.

(b) TS27 the index register is being loaded with the address
DL3, 1 which was set up in DLI1, 14. In fact Turing at this
stage decided to place a load instruction in TS27 rather than
just an address. This would make INDEXIN a lot simpler,
but he does not mention this elsewhere.

(c) DL1, 15 which is placed into TS6 can be thought of as
containing the address of the last element. The 1st element

271



was at 10000, 11, i.e. 1, 3 and the limit address 00000, 11,
i.e. 32, 3. In fact Turing used 00000, 10 as the stopping value
and tests by anding rather than by ‘less than’.

(d) All labels like CALPOLS8 are symbolic, not relative,
though whether Turing intended this is unclear.

(e) We have switched these two instructions with the next to
improve readability.

(f) We have changed TS2, 3 to TS9, 10—this reflects a change
in Turing’s design. Note that the limit value 32, 3 will give
a zero result when anded with 1, 4 but not with the coefficient
addresses 1, 3 through 31, 3.

(g) CALPOLA40 has been changed to CALPOL50.

(h) Here Turing either leaves out a section of code to construct
a branch instruction in TS6 or has changed the meaning of
DISCRIM so that it does this. We have included code for
this, assuming that TS7 contains a shift value of 16.

Table 2 Formative ideas in Turing’s report

o page(s)
1. Binary implementation using standardised throughout
electronic logic elements*
2. Complete notation for combinational* and  throughout
sequential circuits
3. Memory—Control—Arithmetic Unit— throughout
I/O architecture*
4. Stored program* throughout
5. Conditional branch instructions (clumsy)* 11, 12 etc.
6. Address mapping 22
7. Instruction address register and instruction 20 etc.
register
8. Multiple fast registers in CPU, for data and 3 etc.
addressing
9. Microcode; hierarchical architecture throughout
10. Whole-card I/O operations (almost DMA) 12, 24, 25
11. Complete set of arithmetic, logical and rotate 23 etc.
orders
12. Built in error detection and margin tests 16, 17
13. Floating point arithmetic 6,7
14. Hardware bootstrap loader (initial program 13, 25
load)
15. Subroutine stack 12 etc.
16. Modular programming; subroutine library 28 etc.
17. Documentation standards 28 etc.
. 18. Link editor; symbolic addresses; programs 13, 14 etc.
treated as data ‘
19. Run time systems (I/O conversions; macro 32 etc.
expansion ??)
20. Nonnumerical applications 10
21. Artificial intelligence 10

*Also found in von Neumann’s report

5. Conclusions

In Table 2 we list the formative ideas which can be identified in
Turing’s 1945 report. By no means all of these were original,
but to find them all within some 50 pages of typescript at that
early date is startling.

Turing left the NPL in 1949, and was in fact out of touch with
the ACE design team for some time before then. ACE changed
quite drastically more than once before the pilot version was
built. Many of Turing’s ideas were not implemented. The
microcontrol was replaced by complete arithmetic operations.
The saving of the return address and the return address stack

278

CALPOL.

CALPOL 1. Clear TS 22,23; DL 1, 14-TS 27; DL 1, 15-TS 29.
CALPOL 8

CALPOL 8. B, BURY ; B. INDEXIN; TS 28-TS 18; B, BURY ;
B, PLUSIND; B, BURY; B, INDEXIN; TS 28-TS19;
B, BURY; B, ADD; B, BURY; B, PLUSIND; TS 27-TS 2;
TS 29-TS 3; AND; Q, CALPOL 40; TS 6-TS 15; Q, CALPOL
37; TS 6-TS 16; B, BURY; B, DISCRIM; B, 1

CALPOL 37. TS 13-TS 18; TS 14-TS 19; B, BURY; B,
TRANS 45; B, BURY; B, MULTIP; B, BURY; B, TRANS
45. CALPOL 49.

CALPOL 49. B, CALPOL 8.

CALPOL 50. TS 22-TS 25; TS 23-TS 26; B, UNBURY.

Fig. 5. Turing’s example program

initialise
0 — suml Clear TS20, 21; (a)
= DLI, 14-TS27; (b)
32 - limit DLI, 15-TS26; (c)
repeat CALPOL 8. (d)

aa;,, + suml - sum2; i + 2 - i;
aa; ., >t i+2-1i

B, BURY; B, INDEXIN; TS28-TSIS;
B, BURY; B, PLUSIND;

B, BURY; B, INDEXIN; TS28-TSI9
B, BURY; B, PLUSIND; (e)

t + suml — sum2
B, BURY; B, ADD;
if i > limit then exit i.e. go to CALPOL 50
(i < limit) — notdone
()

TS27-TS9; TS29-TS10; AND;
set up alternate addresses
exit address — TS16 Q, CALPOL 50; TS6-TS16; (g)
continue address — TS15 Q, CALPOL 37; TS6-TSI15;
if notdone then go to continue address else go to exit address
place selected address in TS24
B, BURY; B, DISCRIM;
create branch instruction in TS6 (h)
opcode — TS9
Q, 0010, 0000, 0000, 0000; TS6-TS2;
ADD ‘A’; ROTATE 16; TS4-TS9;
address — TS10 TS24-TS10-
OR;
TS8-TS6
branch via TS6 B, 1;
x x sum2 — suml CALPOL 37.
x =t
TS13-TS18; TS14-TS19;
sum2 — suml
B, BURY; B, TRANS45;
t X suml — sum2
B, BURY; B, MULTIP;
sum2 — suml
B, BURY; B, TRANS45;
B, CALPOL 8;
sum2 — poly CALPOL 50.
TS22-TS25; TS23-TS26;
B, UNBURY;

Fig. 6 Turing’s program structured

‘were abandoned. The instruction address register went too, so
~every instruction had to specify the delay line number and a

‘wait time’ for the next instruction, mixing absolute and
relative addressing. Turing’s random access approach to
memory was therefore diluted.

There were some good new features. Rather than using TS6
as a routing register, the instruction set became a two address
one and data could be transferred from a TS to any other in

The Computer Journal

20z UoSe\ 0Z uo 1s9nB Aq $5615//692/€/02/9101E/|Uloo/Wwoo"dno-oiapeoe//:Sdjy Wo.y papeojumoq



one cycle. Another neat idea was that of replacing op-codes
entirely by transfers into functional destinations; for example,
anything moved to destination 17 was added to TS16. Turing’s
complicated conditional branch mechanism was replaced by
two conditional skip instructions. A number of the changes
were, in fact, due to Turing himself (Wilkinson, 1975). All the
same, Pilot ACE retained one essential characteristic of Turing’s
proposal. This was the distributed internal nature of the
processor: an array of registers each associated with specific
functions of the machine.

Nowadays we can distinguish two levels of computer
architecture which correspond neatly to von Neumann’s and
Turing’s 1945 proposals. These are the central processor which
executes complete operations and the microprocessor designed
to emulate other machines. Often a machine of Turing’s type
emulates a von Neumann machine just as Turing proposed in
1945.

It would be pleasing to think that these two extremes have both
been with us continuously from the beginning, but this does
not appear to be the case. The Pilot ACE was followed by the
full ACE, the DEUCE, MOSAIC, and the successful Bendix
G15 but the line seems to have ended there (Bell and Newell,
1971). An inspection of the early literature reveals that Turing’s
report was referred to little if at all (we have not found a direct
reference before 1969). Early books on computers, although
referencing Turing in regard to artificial intelligence, do not
cite him as a computer designer. Of course, the 1945 proposal
for ACE was, strictly speaking, an unpublished document but
so too was the draft report on EDVAC which was widely
acknowledged.

We do not believe that it can be inferred that Turing had no
influence on the course of practical computing. That NPL was
working on the design of a computer was well publicised at the
time and, presumably, Turing’s plans were discussed, at least
in general terms, by others interested in computing in Britain

References
Burks, A. W., GoLDSTINE, H. H., and voN NEUMANN, J. (1946).

BeLL, C. G., and NEWELL, A. (1971).
EcCkERT, J. P. (1944).
June 1976.
GoLDsTINE, H. H., and voN NEUMANN, J. (1946).

Included in John von Neumann—Collected Works.
GoLDsTINE, H. H. (1972).
HARTREE, D. R. (1949).
HuskEey, H. D. (1948).
KnNuTH, D. E. (1970).
Lewis, S. H. (1956).
MaALIK, R. (1969).
McCuLLocH, W. L., and PitTs, W. (1943).

pp. 115-133.
RANDELL, B. (1972).
RANDELL, B. (1973).
RANDELL, B. (1976).
TURING, A. M. (1936).

42, pp. 230-267.
TURING, A. M. (1945).

Preliminary Discussion of the Logical Design of an Electronic Computing-
Instrument, Report to the Ordnance Department, US Army. Reprinted in John von Neumann—Collected Works.

Computer Structures, McGraw Hill.

Unpublished paper communicated by J. W. Mauchly to the Conference on the History of Computing, Los Alamo:

On the Principles of Large Scale Computing Machines, Unpublished lecture note

The Computer from Pascal to von Neumann, Princeton University Press.
Calculating Instruments and Machines, University of Illinois Press.
News—Electronic Digital Computing in England, Math Tables III, No. 23, p. 213.
Von Neumann’s First Computer Program, Computing Surveys, Vol. 2, No. 4, pp. 247-260.
The G-15 Digital Computer, Instruments and Automation, Vol. 29, pp. 1773-1779.
In the Beginning—Early Days with ACE, Data Systems, pp. 56-59, 62.
A logical calculus of the ideas immanent in nervous activity, Bull. of Math. Biophysics, Vol.

On Alan Turing and the Origins of Digital Computers, Machine Intelligence 7.

The Origins of Digital Computers—Selected Papers, Springer Verlag.

The Collossus, Conference on History of Computing, Los Alamos, June 1976.
On Computable Numbers with an Application to the Entscheidungs problem, Proc. London Math. Soc., Vol. 2, No.

and also the United States. As for Turing’s detailed plan, some
of the pioneers read it and some did not; those who did showed
a tendency to regard it as too complicated. Goldstine, in his
book (p. 218), recounts how D. R. Hartree (from Cambridge)
brought a copy of the ACE proposal to the US in 1946 and
comments—‘The logical complexity of the ACE is not sur-
prising since Turing had a preference for this type of activity to
engineering. The type of complexity Turing proposed, while
attractive in some respects, did not in the long run flourish and
selection weeded it out’.

One can readily understand this dismissal of Turing’s proposal.
Even with the hindsight of thirty years it makes difficult reading,
for he was describing a complete vision of how computers
would be. We can now read his work sympathetically because
much of his dream has been realised, but at the time it must
have seemed quite far fetched and impractical in parts. On
top of this Turing was an intruder, a mathematician in an
engineers’ domain, proposing a different approach to computing
than that arising from the successful development of electronic
machines in the United States.

Although his work did not have the immediate impact of vo&’
Neumann’s, most of Turing’s ideas have resurfaced at one timg
or another since 1945. As a source of ideas and msplratloﬁ
Turing must have had a very significant, though 1nd1recg
influence on practical computing: a contribution to progress
perhaps more important than his work on artificial mtelhgencé
and his founding of computability theory.

oe//:sdpy

Acknowledgements
We would like to thank M. Woodger, Professors A. D. Bootﬁt
and Brian Randell for helpful criticism and suggestions.
regarding this paper, Professor M. V. Wilkes and Dr. S.
Lavington for informative letters, and National Physicdi
Laboratory for permission to reproduce sections of Turing’
proposal and for providing us with copies of reports on AC

fw

/OZ/GICWJQ/Iu

716972

20z Yyoren¢Bz uo 1senb Aq y561LS

Proposals for Development in the Mathematics Division of an Automatic Computing Engine (ACE), Report E882.

Executive Committee, NPL, (Reprinted April 1972, with a foreword by D. W. Davies as NPL report, Com. Sci. 57).

. TURING, SARAH (1959).
VON NEUMANN, J. (1945).

Alan M. Turing, Heffer, Cambridge.

First draft of a report on the EDVAC (June 30, 1945), Contract No. W-670-ORD-4926. Moore School of Electrical

Engineering, University of Pennsylvania (extracts included in The Origins of Digital Computers, B. Randell).

WILKINSON, J. H. (1951).

Mathematics Division and Electronics Section, NPL.
WILKINSON, J. H. (1975).
WILKINSON, J. H. (1948).
WILKINSON, J. H. (1954).

(Reprinted in Computer Strucures by Bell and Newell).
WOODGER, M. (1951).
WOODGER, M. (1969).
WOoOODGER, M. (1958).

Automation, November 1958.

Volume 20 Number3

Report on the Pilot Model of the Automatic Computing Engine—Part II—The Logical Design of the Pilot Model,

The Pilot ACE at the National Physical Laboratory. Radio and Electronic Engineer, Vol. 45, pp. 336-340.
Progress Report on the Automatic Computing Engine, Report MA/17/1024, Mathematics Division, NPL.
The Pilot Ace in Automatic Digital Computation, Proceedings of a Symposium held at NPL March 25-29, 1953,

Automatic Computing Engine of the National Physical Laboratory, Nature, Vol. 167, p. 270.
Article on Pilot ACE, Computer Weekly, April 17th 1969, p. 8.
The History and Present Use of Digital Computers at the National Physical Laboratory, Process Control and

279



