Algorithms Supplement

Note by the Editor

An algorithm by L. J. Hazlewood of the The Computer Centre,
University of Aston in Birmingham, has been accepted for pub-
lication in The Computer Journal. The title is ‘An algorithm for
cautious adaptive quadrature’. As an associated paper is to appear
in the Journal of the Institute of Mathematics and its Applications,
publication of the algorithm is being delayed so that it can appear
at approximately the same time.

Algorithm 94
HANDLING DATES ON SMALL COMPUTERS
: 1. D. Hill
Clinical Research Centre
Harrow, Middlesex
HA1 3UJ
Author’s note
The most convenient way of handling dates in computers is as
integers representing the number of days since some fixed date.
However a computer with 16-bit words has a maximum integer of
32,767—Iless than the number of days in 90 years, and thus in-
adequate. While the range of integers can be doubled by using the
negative integers as well as the positive ones, this leads to difficulties
in operations such as finding the day of the week (by finding the
remainder on dividing by 7), and is not recommended.

It therefore becomes preferable, on such machines, to use integral
valued ‘real’ numbers instead, but it is necessary to take care against
rounding errors since using two words (32 bits) for floating point
representation gives only about 7 decimal accuracy.

The routines presented are based on the method of Tantzen (1963)
and are believed to be proof against all rounding errors. They refer
to the Gregorian calendar only. Day 1 is taken as 14 September
1752 on which date Britain adopted this calendar. On this scale
Day 1,000,000 will not be reached until 10 August 4490, so 7 decimal
accuracy should be adequate for awhile yet.

FUNCTION DAY makes no test that its arguments are possible,
and will accept the 34th day of the 15th month for example. If a test
is needed the most convenient technique is as follows:

A = DAY(ID, IM, 1Y)

CALL DATT(A, JD, JM, JY)
IF (ID .NE. JD .OR. IM ,NE. JM) CALL FAULT

FUNCTION DAY (IDAY, MONTH, IYEAR)

c
c CONVERTS A GREGORIAN CALENDAR DATE TO THE
c NUMBER OF DAYS SINCE 13TH SEPTEMBER 1752
c
I = IYEAR
M = MONTH - 3
IF (M .GE. 0) GOTO 10
M=M+12
I1=1-1
10K =1 /100 - 16
I = MOD(I, 100)
DAY = 36524.0 * FLOAT(K) + 365.0 * FLOAT(I) +
* FLOAT(K /4 +1I /4 + (153 * M + 2) / 5 + IDAY) - 55714.0
RETURN
END
c
SUBROUTINE DATT (D, IDAY, MONTH, IYEAR)
c
c CONVERTS D, WHICH SHOULD BE POSITIVE AND INTEGRAL,
c TO THE CORRESPONDING GREGORIAN DATE
c

DD = D + 445711.0 / 8.0
K = INT((4.0 * DD) / 146097.0)
DD = DD - 36524.0 * FLOAT(K) - FLOAT(K / 4)
INT((4.0 * DD) / 1461.0)
D = DD - 365.0 * FLOAT(I) - FLOAT(I / 4)
100 * (K + 16) + 1
INT(5.0 * DD - 1.875)
K / 153
(K-153 *M +5) /5
IF (M .GT. 9) GOTO 10
MONTH =M + 3
GOTO 20
10 MONTH =M ~ 9
I1=1+1"
20 IYEAR = 1
IDAY = K
RETURN
END

RERHO -

Reference
TanTzEN, R. G. (1963). Algorithm 199, conversions between
calendar date and Julian day number, CACM, Vol. 8, p. 444.

Algorithm 95
GENERATING A PARITY TESTING TABLE
A. Colin Day
Computer Centre
University College London
London
Author’s Note
What is the fastest way of testing the parity of a character (i.e. the
number of bits set to 1 in it)? Given sufficient space, the answer is
surely to use the character as an index to a table in which values
such as 0 and 1 are stored to indicate even and odd parity respec-
tively. Such a table will have the values 0, 1,1,0,1,0,0, 1, 1, o,...
(starting from the character with the binary value 0). Filling the
table with its values is somewhat of a chore, as the pattern is rather
subtle. An algorithm to construct the table may seem a trivial thing,
but it may save time and aid accuracy.

The following ALGOL 60 procedure constructs a parity testing
table in integer array par[0:n], using O to represent even parity and 1
for odd. par[0] is first initialised to zero. The remaining values are
inserted in sequence from 1 to . For any value i, the highest order bit
set to 1 is stripped off by subtracting power, which always contains
the appropriate power of 2. This leaves a value (sayj) whose parity is
already in the table. The parity of i is then the reverse of the parity of
Jj, because of the bit which was stripped off. The reverse of a parity k
is given by 1 — k.

Note that if the requirement is not for a table of parities, but for a
table giving the number of bitssetto 1(0,1,1,2,1,2,2,3,1,2,...),
this can be obtained simply by changing 1 — par[i — power] in the
last assignment into 1 + par[i — power].
procedure parity(par, n);

value n; integer n; integer array par,

begin integer i, power;

power .= 1;

par[0] := 0;

for i := 1 step 1 until #» do
begin

if i = power x 2 then power := i;
parlil := 1 — parli — power]
end

end

Algorithms supplement—Statement of Policy

A contribution to the Supplement may consist of an Algorithm, a
Note on a previous algorithm, or an item under the heading of

Correspondence.

Because the aim is to facilitate the interchange of algorithms, these
should normally be submitted in one of the standard high level
programming languages, namely ALGOL 60 (1), ALGOL 68 (2),

The Computer Journal

20z udy 61 U0 1s8n6 Aq 62615//082/€/0Z/31014€/|uf00/W0d"dNO" oIS PEDE//:SARY WO.) PAPEOUMOQ



FORTRAN (3), COBOL (4). In this case the algorithms must
conform to the appropriate standard. If algorithms are submitted in
other programming languages, the reference document for that
language must be stated.

Algorithms must be self-contained. This means that an algorithm
must consist of one or more complete segments, and that an algor-
ithm must not use any non-local identifiers other than standard
function names. COMMON areas are permitted in FORTRAN,
but their use must be clearly described.

The algorithm must be written for publication in the appropriate
reference language, and preceded by an appropriate Author’s Note.
It must be submitted in duplicate and be typewritten double-spaced.
Where material is to appear in bold face it should be underlined in
black. Where the appropriate character does not exist on a type-
writer, it should be inserted neatly by hand in black and not be
replaced by a similar composite character (e.g. < should not be
inserted as <).

An algorithm must be accompanied by a computer printout of a
driver program testing it (possibly against test data) and producing
test results. The machine, compiler and operating system used
should be indicated. A computer readable copy of the algorithm, the
test driver and any test data will be requested later, but should not be
sent in the first instance. The Author’s Note should include the theory
of the. method, with references, and also explain any tests used to
verify the algorithm.

The algorithm must be syntactically correct, produce the results
claimed and use computer resources as efficiently as possible.
Constructions whose results may depend on the compiler used
should be avoided (e.g. v := x + f(x) where f(b) is a function
which alters the value of ). Comments should be used wherever
appropriate to clarify the logic. Cases of failure should be clearly
anticipated and handled. Approximate numerical constants must be

Volume 20 Number 3

given with as much accuracy as is appropriate. Numerical labels
should be in ascending order.

Every effort is made to see that published algorithms are completely
reliable. In particular all algorithms are submitted. to independent
referees and extensively checked. However, Notes or Correspondence
which point out defects in or suggest improvements to previously
published algorithms are welcomed. To help in preventing printing
mistakes, galley proofs will be sent to authors where possible.

Whilst every effort is made to publish correct algorithms, no
liability is assumed by any contributor, the Editor or The Computer
Journal in connection therewith.

The copyright of all published algorithms remains with The
Computer Journal. Nevertheless the reproduction of algorithms is
explicitly permitted without charge provided that where the algorithm
is used in another publication, reference is made to the author and to
The Computer Journal.

In the event of the formation of a National Algorithm Library, all
algorithms which have appeared in The Computer Journal will be
made available to this Library.

References
1. PROGRAMMING LANGUAGE ALGOL, ISO/R/1538. '
2. REVISED REPORT ON THE ALGORITHMIC LANGUAGE ALGOL
68.(1976). Edited by A. van Wijngaarden et al, Springer-Verlags
3. PROGRAMMING LANGUAGE FORTRAN, ISO/R/1539. <
4. PROGRAMMING LANGUAGE COBOL, ISO/R/1989.
Documents 1, 3 and 4 above may be obtained from: British Standardg’
Institution, Sales Branch, 101 Pentonville Road, London N1.
Editors: P. A. Samet and A. C. Day, Computer Centre, Universit¥
College London, 19 Gordon Street, London WC1H 0AH. Te@
01-387 0858.

papeo

w

202 Iudy 61 uo }senb Aq 6.6152/082/€/0z/3191e/|ulliod/wod dno-olwapede;,

281



