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A note on the Towers of Hanoi problem
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The Towers of Hanoi problem is often used in introductory programming texts to illustrate the power
of recursion. In this note, however, I shall investigate the problem a little further and show how a
rather different approach yields a very different nonrecursive solution. I shall use this example to
illustrate some vague general points about techniques of programming and the meaning of programs.
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1. Disclaimer

Everything contained herein is elementary and has almost
certainly been discovered many times before. I am writing this
note not to claim any originality, but to disseminate these
interesting facts more widely, and as an excuse to pontificate.

2. The problem and its recursive solution

There are three pegs, on one of which rests a pile of N discs of
decreasing size, the largest at the bottom. The problem is to
move all the discs from this peg to one of the other pegs, by
moving them one at a time: but subject to the constraint that
at no time shall any disc rest upon a smaller disc. No doubt the
reader is aware of the (unique) solution strategy for moving
discs. I shall, however, pretend that we have to discover the
solution anew, as I will wish later to discuss the reasoning which
leads to this discovery.

We shall begin by looking at a very simple case. It is not hard
to solve the problem for two discs. Move the smallest disc to the
third (spare) peg, move the largest disc to the target peg, replace
the smallest disc on top of the largest disc: and we are done in
three moves.

Now look at three pegs. We can move the top two (using the
above method) ‘to the spare peg, (using the target peg as
temporary spare), transfer the largest across to the target, and
move the top two onto the top of it, again using the above
method. This takes 3 + 1 + 3 = 7 moves. How about four
discs ? Well, we now know how to move three, so we can get
them out of the way onto the spare peg, move the bottom one,
then transfer the three on top of it, then we’ve done four discs
in7+4+ 1+ 7= 15moves.

And so on. The pattern is obvious. To move N discs onto the
target peg, we move N — 1 discs onto the spare peg, transfer
the biggest disc to the target, then transfer the N — 1 discs back
on top of it. (In retrospect, that even applies to the first case
N = 2, and the really trivial first case is N = 1, where we just
move the disc directly to where it wants to go. (Well, in fact,
one might say that the most trivial case of all is N = 0, where
we don’t do anything. We'll discuss this a little more below.))

It’s almost as obvious how many moves it takes. Clearly, we’re
more or less doubling the number of moves by adding a disc,
because we have to do two transfers of the original pile. So one
might guess that it takes about 2 moves. Look at the low
numbers. Two discs is three moves. Three discs is seven moves.
Clearly 2¥ — 1 is right, and the proof is immediate:

2.2 =D+ 1 =2WD |
The algorithm is (I use BCPL notation, but have stolen the
algorithm from Dijkstra (1971):

let MOVETOWER(M, 4, B, C) be
test M = | then MOVEDISC(4, C)
or $( MOVETOWER(M — 1, 4, C, B)
MOVEDISC(4, C)

MOVETOWER(M — 1, B, A4, C)
)
where A is the source peg, C the target peg, and B the spare; and
MOVEDISC is a suitable routine which actually moves a
‘disc’ in some data structure representing a state of the problem.
(Or perhaps merely prints out the move. If we wanted to be
able to print out at each stage a picture of the whole state, we
would, of course, have to have a suitable data structure.)
And this is where the matter usually rests.

3. The recursive program is not an intuitive process description
This elegant program illustrates very well the power of recursion
and the problem reduction approach to problem solving.
Whenever a problem can be reduced to a collection of similar
but simpler problems, then recursion can be used to solve it.
The recursive algorithm embodying the solution calls itself to
solve the simpler subproblems. Such a situation often arises
when the problem is to apply some function to a data structure
which itself has a heirarchical structure, and the value of the
function can be defined in some sense piecewise on the values
of the function applied to parts of the data structure, these
themselves being data structures of the same kind.

Looked at in this light, the process of discovering the solution
to the towers of Hanoi problem, outlined above, is really a
process of discovering the hierarchical structure of the problem.
Once that is clear, the algorithm is obvious.

Obvious, that is, to one familiar with the use of recursion.
Algorithms like this are often very surprising to students
beginning to program. They understand what it means, but
they have trouble believing that it works. And it is hard to
explain to them why it will work. One has first to give the
student faith in recursion, rather than a coherent account of
how it is implemented (although the latter might be one way to

. achieve the former). It is noticeable in many introductory texts

that a recursive algorithm is introduced rather in the manner of
a conjuror’s rabbit from a hat (see for example Dijkstra, 1971,
chapter 9).

The beginner’s feeling of mystification when faced with a
recursive program like MOVETOWER is, I wish to suggest,
rooted in something deeper than mere unfamiliarity with the
subject. There is something odd about elegant programs like
this.

The main oddity is that it is very difficult to see what solution
process it describes. The solution process is a sequence of
moves of discs, and while this is of course determined by the
program (by running it), it’s not easy to mentally generate the
sequence. For example, what is the first move? To run the
program requires a stack, and rather a lot of procedure calls
and parameter passing before the first move gets made.

Again suppose some call of MOVEDISC generated an error
and halted: where could we locate the error in the main pro-
gram? There’s hardly anywhere to locate it (only three lines).
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Obviously, we would have to refer to the stack trace of calls of
MOVETOWER to identify the ‘place’ where the error occurred.
And this entity—the stack—is not mentioned in the program.

Both of these properties contrast markedly with iterative
programs, which wear, as it were, their control structure on
their sleeve.

Again, there are an awful lot of calls of MOVETOWER. To
move a tower of N discs takes 2V — 1 calls of MOVEDISC,
and each such call is textually enclosed in a unique call of
MOVETOWER, so there must be that many calls of MOVE-
TOWER. Is all this stack machinery really necessary? If we
had a physical model of the towers of Hanoi, would we really
need to keep track of all this information (calls of MOVE-
TOWER, with- associated parameters) in order to solve the
problem?

In spite of its elegance, then, MOVETOWER might
reasonably be thought a fairly mystifying and perhaps ineffic-
ient program. As though to rub it in, one can make it even more
elegant, probably more mystifying, and certainly more ineffic-
ient, by taking advantage of the earlier remark that the case
N = 0is really the most trivial ‘bottom’ case, giving the lovely
program:

let MOVESTEEPLE (M, A, B, C) be
unless M = 0 do
$( MOVESTEEPLE (M — 1, 4, C, B)
MOVEDISC(4, C)
MOVESTEEPLE(M — 1, B, A4, C)
$)

I leave it as an exercise for the reader to verify that MOVE-
STEEPLE does about 50% more work to achieve the same
result as MOVETOWER.

The MOVETOWER program specifies how to solve the
problem in terms of how to solve its subproblems. Running it,
one would know from the text of the program exactly which
subproblem one was tackling at each stage. One would be able
to answer the question—‘why are you moving that disc?’, at
every stage of the solution process. It is exactly this problem-
subproblem structure which one needs a stack to keep track
of.

But our original brief was to solve the problem, not to explain
the solution. Perhaps there is another way. Instead of con-
centrating on the structure of the problem, let us look at the
structure of the solution.

4. Another approach leads to a finite state solution

Any solution is a sequence of moves of discs, and at some
typical intermediate point we can expect that all three pegs will
have discs on them. Let us examine the moves which are
possible.

First, the smallest disc must be on top of one peg or other.
Call this peg A. Of the other two, one must have a smaller disc
on the top of it than the other has—call them respectively B and
C. Now there aren’t many moves which are possible. We can
MOVEDISC(B, C), or we can move the smallest disc:
MOVEDISC(4, B) or MOVEDISC(4, C). Any other move
would result in an illegal position, with a larger disc on top of
a smaller disc.

Suppose we moved the small disc. Then at the next move we
are apparently faced with a similar choice of moves. But in fact
only one makes sense. For if we move the small disc again this
time, then either we put it back to its former position, or else
we move it to a peg where we could have put it directly in the
first move. Either way, a move is wasted. It doesn’t make sense
to move the small disc twice in succession.

Contrariwise, suppose we MOVEDISC(B, C). On the next
move, we can either move the smallest disc, or we can move the
disc we just moved back to its former position (it must be
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smaller than the one which was formerly underneath it, so‘%
that one can’t be moved). But again the latter doesn’t makeg—
sense, so we have to move the smallest disc. So, small-disc>
moves must alternate with non-small-disc moves. And, as we©
have seen, moves of the latter kind are uniquely determined bygj§>
the situation. This means that if we can decide, at every smally
disc move, which of the other two pegs to move it to, then the§
entire process is determined. All we need for a solution is a
small-disc moving policy.

The reader might like at this point to work out the correct
policy herself. I found it by looking at the small number cases.
Take N = 3 for example (see Fig. 1).

The pattern seems clear: the smallest disc moves cyclically
around the pegs, if one imagines them arranged in a circle. To
move a 3-tower one step clockwise, the smallest peg must move
consistently clockwise. Obviously, if we had chosen the anti-
clockwise policy, the tower would have moved anticlockwise.

Now consider four discs. We know that to move a 4-tower
from 1 to 2, we have to move a 3-tower from 1 to 3, then from 3
to 2. These are both anticlockwise moves. So to move a 4-tower
clockwise, we have to move the smallest disc (and the 3 towers,
therefore) anticlockwise (Fig. 2). Again the pattern is obvious.
For odd N, the smallest disc rotates around the pegs in the
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same sense as the tower. For even N, in the opposite sense.
Notice that this is not an inductive definition.

Now we can almost write a program. First we must choose a
concrete data structure to represent the pegs and discs. This is
necessary now because this program, unlike MOVETOWER,
has to look at the data structure from time to time to decide
what to do. A vector of three lists of integers seems suitable, so
that for example the size of the top disc on peg 3 is
head(peg[3]). The routine MOVEDISC can now be defined:

let MOVEDISC(4, B) be
$( peg[B] : = cons(head(peg[4]), peg[B])
5 peg[A4] := tail(peg[4])
and the program for moving a tower from peg | to peg 2 as
follows:
let HANOI(N) be
$( let PARITY = (EVEN(N) —» DECR, INCR)
//anticlockwise or clockwise
let SMALLPEG = 1|
$( let DESTINATION = PARITY(SMALLPEG)
let A, B = SMALLPEG,
6—SMALLPEG — DESTINATION
//destination of the small disc, and the other two
//pegs
MOVEDISC(SMALLPEG, DESTINATION)
SMALLPEG := DESTINATION
if peg[A] = peg[B] then return // they must both be
//NIL
test head(peg[A4]) > head(peg[B])
then MOVEDISC(B, A)
or MOVEDISC(4, B)
$) repeat
$)
and DECR(X) = ((X + I)REM 3+ 1)
and INCR(X) = (XREM 3 + 1)

This program is less elegant than MOVETOWER: but also
less mystifying and rather more efficient, both in time and
memory requirements. It isn’t recursive, doesn’t need a stack.

5. How different can equivalent programs be?

MOVETOWER and HANOI are about as different as two
programs can get. One is irreducibly recursive, the other needs
no extra memory. From the former it is obvious (for example)
that the number of moves is 2¥ — 1, but not from the latter:
while from the latter, but not the former, it is obvious (for
example) that the smallest disc is moved first and that every
alternate move is a small disc move. One requires some rather
peculiar-looking base-3 arithmetic functions, the other doesn’t.

One needs to inspect the pegs to decide what to do, the other
doesn’t.

The processes by which they were discovered were also quite
different. MOVETOWER is suggested by an inductive des-
cription of the problem in terms of subproblems of the same
kind. HANOI is suggested by an analysis of the structure of
possible move sequences, that is of possible solutions to the
problem.

And yet these two programs are in a strong sense equivalent.
They certainly define the same function from data structures to
data structures (they both move the tower): but more, they
actually generate exactly the same sequence of moves: tracing
MOVEDISC would yield identical traces from the two
programs.

Should one therefore say that they have the same meaning?
This question, of what counts as the meaning of a program, has
received a lot of attention. One view is that a program is a
specification of how to solve a problem; of a solution method.
Another view is that a program is a description of a process.
It is the latter view which is probably the basis of the traditional
programmer’s intuition, and which underlies almost all 'cheo
formal semantic theories of programming languages Wthh:
have been proposed. (Including ‘mathematical semantics’ g_
when the domains used contain such entities as states of an &
underlying machine, or continuations, etc. Contrast this witha 3
semantics for a purely applicative language such as pure LISP, 3
in which function definitions denote functions on data Ob_]CCtS =
such as integers and lists.) It is the former view which is empha- &
sised by many proponents of ‘structured programming’.

Now these views really are different, I wish to suggest. It 2
really is difficult to think of MOVETOWER as a process3
descnptlon, and if one were faced with HANOI without o
previous explanation, it would be difficult to say what problem ©
it was solving. And, equa]ly clearly, both views are partly3
correct. Sometimes the first view leads to an algorithm, some- g
times the second does. Neither should be insisted upon as rhe§_
meaning of a. program, or the best way to approach pro-:’
gramming. A good programmer needs to have both ways of =
thinking (and probably many others) in his mental armoury.
Proponents of the ‘process’ view might argue at this point that
of course MOVETOWER describes a process, viz. the sequence |\>
of stack states which the interpreter would go through while © N
running the program. I want to argue against this view. I do not w
believe that, in composing programs such as MOVETOWER, &
one thinks at all about the stack evaluation mechanism. U
Languages such as POP-2 (Burstall, Collins and Popplestone, <
l97l) which have an explicit stack available for the program-
mer’s use, require quite a different style of thinking. One finds o
onseself writing such things as

speoe//:s

Z/GIO

X395 X5 > y;
to swap x and y, for example. In the normal use of recursion,
one is thinking rather about problems and subproblems and N
how to solve them. As further evidence, note the obvious fact =
that languages which allow recursion rarely have syntactic
constructs which allow one to refer to stack frames or any other
part of the recursive evaluation machinery. Languages which do
enable one to refer to such entities, such as CONNIVER
(Sussman and McDermott, 1974), have again quite a different
flavour and require quite a different style of thinking.

As an interesting exercise in such thinking, the reader might
try adapting HANOI to work without looking at the data
structure of pegs and discs. She will find that it can indeed be
done (you have to know the number of discs), but that it is
necessary to simulate the stack, probably by using a vector and
a pointer.* But then to realise that one has, in effect, painfully

|udV 6] Uo1senb

*My colleague I. R. McCallum has implemented such an algorithm in 99 steps on a Texas Instruments SR-56, using a count of the move

number to represent the stack.
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reconstituted an implementation of the recursive algorithm, is
to make a leap of insight. It’s not at all obvious; which it would
be, one supposes, if the recursive algorithm had meant such a
process all the time.

I feel that an overemphasis on the ‘problem reduction’
approach to program design—encouraged in recent years by
the structured programming crusade—may have a deleterious
effect on our students’ abilities to think in process structure
terms, rather than in problem reduction terms. The most
pernicious effect of such an overemphasis is a belief that an
elegant and economical program structure is to be equated with
an elegant and economical process structure. The contrast
between MOVESTEEPLE and HANOI would be a good
counterexample to such a belief. I am not arguing here against
structured programming, but against certain aspects of
Structured Programming.

MOVETOWER is doubly recursive and cannot be made
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To the Editor
The Computer Journal

Comments on ‘Fitting data to nonlinear functions with uncertainties
in all measurement variables’

Recently in this Journal, W. H. Southwell (1976) presented an
expansion of an earlier paper (Southwell, 1969) dealing with the
1mportant topic of curve fitting and parameter estimation when the
function is nonlinear and when errors are assumed to be present in
both the dependent and independent variables. His expansion is,
fortunately, largely a clarification of many of the misleading state-
ments and a correction of several errors in his 1969 article (See
Powell and Macdonald, 1972). Since much of the 1976 paper appears
to be an attack on the least squares method published earlier by the
present authors (Powell and Macdonald, 1972), it is desirable that a
reply be made so that further confusion may be avoided.

1. We still claim that, contrary to Southwell’s assertion (p. 69), his
1969 method will not in general converge, for nonlinear models, to
the least squares solution. We invite details of the ‘highly
successful’ (p. 70) use of the 1969 algorithm for such models.
None has yet been given by Southwell. It is important here to
appreciate the distinction, glossed over by Southwell, between
the method he described in 1969 and that described in his 1976
paper.

2. The proof that the expressions for ‘exact’ parameter variances
given in the 1969 article were themselves approximations for all
but linear functions was supplied to Southwell by one of us
(Macdonald, private communication, 1973). Southwell’s funda-
mental error in statistical analysis is fortunately cleared up in the
recent (1976) paper.

3. Our error of 4/2 in parameter standard deviations was corrected
in print in 1974 and in 1975, apparently too late for Southwell to
acknowledge in his 1976 paper.

4. Southwell is incorrect (p. 71) in asserting that our method depends
on convergence of only the a’s. In fact, our method depends on
convergence of both the x’s and a’s, as shown by our Eqgs. 2 and 3.

5. Southwell’s wording is occasionally misleading. For example,
on p. 71, it would have been more appropriate to have said:
‘The method here described is, with one difference, equivalent
to the earlier Powell and Macdonald method.’.

6. Since Southwell has still not provided any illustrations showing
convergence to a least squares solution of his 1969 method for
functions non-linear in their parameters, it seems odd for him to
imply (pp. 70-71) that our 1972 method, which does yield such
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convergence, is essentially equivalent to the 1969 method. It 18?
not. Even his present (1976) method is not equivalent to our$
since his requires evaluation of third-order mixed parti
derivatives while ours required only second-order partials, whicks
we actually evaluate numerically. el

7.1t is true, as Southwell asserts (p. 71), that we did not use th§§
chain rule when applying our analytical method. We were, in fact;
simply indicating that such methods as described (O’Neilly
Sinclair, and Smith, 1969, and Powell, Macdonald, 19723
would not always converge without implicit mixed partials. =

8. We note that the one additional iteration required for our metho
(Southwell’s Table 2, 1976) is a small price to pay for not havmg-
to supply analytical derivatives.

9. We did not say (p. 72) that the problem f(x) = a1 + azx w1t@
uncertainties in both x and y ‘remains linear in the parameters ®

a8
We did say that the least squares condition — = 0 can be solved’l
X1

exactly, thus explicitly eliminating the x’s, when one has a modeil
which is linear in the independent variable. Southwell correctlag

san

a8
points out that there are other models for which i = 0 can bg’
x4

6L U

solved analytically.
10. We re-did Southwell’s example 3 using the Powell-Macdonald

11

method on an IBM 370 computer using partial double precisiont,
Our results are: Q
ay = 5914859 &
az = —0-6035114
az = —007996518
as = 002619385
as = —8:086482 x 104
as = — 1685054 x 104

with 28 = 0-4503256. We used the increment 4 = 104 to
calculate our numerical derivatives, and convergence was
achieved in seven iterations. It is not necessary, as Southwell
implies (p. 72), to employ full extended precision on a CDC
6600-type machine to use our estimated partial derivatives
program. The solution set obtained from our program is indeed
somewhat different from Southwell’s results, probably owing to
the relatively large parameter standard deviations found in the
quintic model. We believe that ours is as good a least squares
solution as Southwell’s.

Finally, we would like to point out that a technique’s value depends



