The hardware/software interface of the ICL 2900 range

of computers

D. H. R. Huxtable and J. M. M. Pinkerton
International Computers Limited, Lovelace Road, Bracknell, Berkshire RG12 4SN

The paper aims to outline those ICL 2900 hardware features that support system software, The
treatment broadly is in terms of the instruction set and other hardware features, 2900 architecture
provides for concurrent execution of independent processes in virtual machines, so that the processes
are protected from mutual interference. The protection arrangements are outlined together with
ways of addressing the store, for which several kinds of descriptors may be used. There are both vis-
ible and invisible hardware registers; access to the latter is privileged via a so called image store
addressing mechanism. The arrangements for handling interrupts and entering procedures are out-
lined, Slave stores are provided for reducing store access demands for frequently accessed items.
Peripheral transfers are via autonomous and asynchronous controllers activated by processes
operating within a central processor. In conclusion some of the main considerations influencing design

decisions are reviewed.
(Received April 1977)

1. Introduction

The ICL 2900 range was designed with both the hardware and
the operating system software in mind; that is, with a view to
presenting an overall system to the user. This paper contains
an account of the underlying architecture with special reference
to those features of the instruction set that are designed to
support the software. It is presented as a hardware description,
but it is really a description of an interface and the implemen-
tation in actual hardware of the features described may vary
from one model in the range to another: for example some
registers may in one model be composed of bistables and in
another be simply locations in main memory that are used by
the hardware for the purpose.

At the primitive level the hardware supports:

1. A virtual memory with segmentation and paging.
2. A process stack.

3. Memory protection with a series of levels of increasing
privilege and with special features to permit the running of
diagnostic programs during normal operations.

4. A comprehensive interrupt and fault handling system closely
integrated with the procedure call mechanism.

5.Slave (buffer) stores made safe in relation to channel
transfers and multiprocessor operation by a consistent
system of hardware provision and software convention.

The above hardware interface is designed to support an
operating system that is stack oriented and provides each user
with a virtual machine of his own. The writer of subsystems on
which the ultimate high level user depends has available to him,
insofar as he requires them, similar hardware support features
to those that are available to the writer of the operating
system itself.

2. The process stack and storage access

Virtual addresses contain 32 bits of which 14 define the number
of the segment. The remaining bits are divided into page
number, word number, and byte number. In order to address
whole words only the first thirty bits are necessary.

A number of the registers listed in Appendix 1 serve the
purpose of supporting a stack of which there is one associated
with each process. The stack segment number register (SSN)
is loaded by the operating system—specifically by the
ACTIVATE instruction—with the segment number of the
stack when a process is activated. SSN contains 14 bits and

umo(

when concatenated with 16 zeros gives the virtual address of
the base of the stack. The first 14 bits of the stack front registér
(SF) and the Jlocal name base register (LNB) are identical with
those of SSN and these registers therefore contain pointers in@
the stack segment. SF, as its name implies, points to the stack
front (more exactly to the next available location) while LNE
always points to somewhere within the stack so that LNB < SE;
The convention adopted in this paper is that the abbreviatiof
may stand either for the register or its content. Conventionall§:
LNB is used by the operating system to point to the working
area of the current procedure; when a new procedure is called
the old value of LNB is recorded at the top of the stack and
LNB updated so as to point to the working area of the new
procedure. Instructions that manipulate the stack by placi%
items on it, by removing items from it, or by making an explic

adjustment to SF carry with them hardware checks that lead t&
an interrupt if the condition LNB < SF is violated. 3

The instruction set permits direct access to be made to item§
on the stack by specifying their addresses relative to LNB;
Only locations at or above that pointed to on LNB can bg
addressed in this way and the hardware checks that they arg
below SF. g

In addition to LNB there are two other registers, the extrg
name base register (XNB) and the cross-reference table basg
register (CTB). These are of the full 30 bits and while they mag,
be used to point in to the stack they are not generally so usedy
XNB may sometimes be used for keeping track of a formeg
name space when a new one has been created by a procedure
entry. Direct access to the store may be made relative to XNE.
or CTB in exactly the same way as reference is made relativ®
to LNB. Since these references are not necessarily to the stac
there can be no hardware checking at this point. However, the
checking facilities provided by the virtual storage accessing
mechanism for ensuring that accesses do not go outside segment
limits are available.

The hardware is also capable of making access to the store via
a vector descriptor. Vector descriptors consist of two words
and specify a consecutive set of items in the store. The items
must all be of the same size which can be one bit, one byte, one
word, two words, or four words. Three bits in the first word of
the descriptor give the size and other bits give the length of the
vector, that is, the number of items that it contains. The second
word contains the virtual address of the base of the vector.
The accumulator (ACC) is four words long, but it may be set to
operate if desired at the shorter lengths of two words or one
word. The combined effect of these facilities is that strong

The Computer Journal

support is given for single, double and quadruple length
working.

Access to an item via a vector descriptor may be direct or
indirect. For the former kind of access to be possible there must
be a copy of the descriptor in the descriptor register (DR), it
having either been placed there by an explicit instruction or left
there as the result of a previous operation. The vector may then
be accessed using as an index (offset) either a literal in the
instruction or the content of a storage location specified
relative to one of the following: LNB, XNB, CTB, program
counter (PC). As an alternative, an indirect access may be made
via a descriptor contained in the store. The location containing
the descriptor is specified relative to one of the registers just
mentioned. The first stage of the operation is to transfer this
descriptor to DR ; a second access is then performed, the offset,
if any, being given by the number in the Index Accumulator (B).

A modifier used to give an offset to the base address given in
a descriptor is first checked against the length field and an
interrupt caused to occur if the check fails. The modifier is then
scaled according to the size given in the size field and added to
the base address. Checking and scaling will, however, not take
place if inhibit bits in the first word of the descriptor are set.

More detail about the various ways in which the store may be
addressed will be found in Appendix 2. In addition to vector
descriptors there are string descriptors, descriptor descriptors,
code descriptors, system call descriptors, and escape des-
criptors. These are all distinguishable by certain combinations
of bits in the first word.

3. Access to the image store

It is a feature of the design that all hardware registers should
be addressable by suitably privileged programs. To this end the
hardware registers are conceptually grouped together to form
what is known as the image store, in which each register has its
own address. Some registers are only accessible in this way and
are known as invisible registers. Others take part in operations
called for by nonprivileged instructions available to the ordin-
ary programmer. These are known as visible registers, the most
obvious example being the accumulator. The functions of the
most important registers in the image store will be explained
below. Appendix | contains a reference list of registers in the
image store, together with the abbreviations that stand for them.

The image store gives the appearance of being a consecutively
addressed set of 32-bit locations. Image store locations may be
addressed as such by using appropriate instructions from
the regular instruction set, with image store addresses formed in
the way described in Appendix 2. Such instructions count as
privileged instructions. Some image store locations are by their
nature read-only; for example, that corresponding to the real
time clock. Locations corresponding to the visible registers are
read-only, since these registers can be written into by using
unprivileged machine instructions.

Access to the image store is controlled by two bistables
known as PRIV and ISR. If PRIV = 1 (that is if the bistable is
set) both read and write access—where the latter is possible—
is allowed. When PRIV = 0 no writing access is permitted,
subject to an exception concerning diagnostic programs that
will be explained later. If ISR = 1 read-only access to the
image store is permitted.

PRIV is itself represented by a bit in one of the image registers
namely the program status register (PSR); other bits in this
register serve such purposes as indicating whether arithmetic
overflow has occurred, what the current size of the accumulator
is, and so on.

ISR is represented by a bit in the system status register (SSR);
other bits in this register identify the type of processor in use
(this information is wired in and therefore unalterable), mask
interrupts, control a real addressing mode that permits the

Volume 20 Number 4

segment tables to be bypassed when an initial load is being
performed, and serve other similar purposes.

It will be seen that PRIV and SSR, being themselves bits in
invisible registers, can be changed by program only when
PRIV = L. PRIV becomes set equal to 1 automatically when an
interrupt occurs or when an explicit system call is made, the
latter being equivalent to an interrupt. The system routine
entered after an interrupt thus enjoys complete privilege.
Having serviced the interrupt it will make use of an ACTIVATE
instruction to restart the interrupted process or perhaps to
restart some other previously suspended process. One of the
functions of the ACTIVATE instruction is to set PSR and SSR
so as to give the activated process its correct degree of privilege.
Thus ACTIVATE can reduce privilege but not increase it; the
same applies to an EXIT instruction used to return from a
procedure.

It is desirable in the operation of a large computer system to
be able to test peripheral devices and the circuits associated
with them while the system is running a normal load. This is
done by inserting a diagnostic program which runs as a job
under the system. So that it should be able to perform adequatés
checks, this program must be able to write into buffer registerss
and other invisible registers associated with the device that it 1£
testing. With the system described above it would be necessaryb
for the diagnostic program to be given complete privilege andy
this is clearly undesirable. Accordingly itisarranged that access?
to registers needed for diagnostic purposes can be obtained 1%
another bit known as DGW in SSR is set, provided that a”
diagnostic allow bit associated with the register or reglsters%’
concerned is also set. This system enables diagnostic program%
to be run with a minimum of danger to system integrity.

9°dno-oiw

4. Virtual store addressing and protection
Implementation of the virtual memory makes use of segments
tables and page tables in a manner that is now familiar. TheS
base of the segment table corresponding to the currently3
operating process is held in an invisible register known as them
local segment table base register (LSTB). There is a seconds
invisible register, the public segment table base register (PSTB).>
Local segments—Ilocal, -that is, to a process, although theys
may be shared with other processes—are those in the range 0'8\0
to 8191 and public segments are those in the range 8192 to3
16383. Thus, whenever a segment is being accessed, the hard-w
ware refers to LSTB or PSTB according to the value of the mosto
significant digit in the segment number. In 2900 terminology aZ
local segment table is said to define a virtual machine; a number2
of virtual machines may share the same public segment table.
Within a virtual machine each process has its own stack. S

Each segment table entry consists of two words which, ing
addition to the effective address of the segment and the>
segment size, contain information about whether the segment--
is paged or not paged and whether it is shared or not shared. O
If the segment is shared the effective address points to the™
relevant entry in a global segment table. If the segment is not
shared, the effective address points either to the base of the
segment if it is not paged or to the base of the relevant page
table if it is paged. In order to provide information to the store
management system the hardware sets bits in the page tables of
paged segments to indicate whether pages have been read from
or written into. In the case of unpaged and unshared segments
similar bits are set in the segment table.

A nine bit field in the segment table entry is known as the
access protection field (APF) and is used for virtual store
protection. Four of these bits constitute the read access lock
(t,), four constitute the write access lock (t,), and one is the
execute permission bit (#;). When access to a segment is
attempted a check is made that #, > ACR or ¢, > ACR as the
case may be, ACR being a register containing the access key for

O

291

the domain of a process in execution. Failure of this check leads
to an interrupt. A segment may not be executed as code unless
t; = 1.

. Exceptions to the above rules are made in the case of read or
write accesses made by a process to its own stack. A local
segment may thus be given very low values of ¢, and ¢, and
thus be protected from possible corruption by procedures
running at higher levels, while yet remaining accessible to a
procedure, running at similar levels, that uses it for its stack.
This does not lead to any loss of protection, since the stack
segment is protected by the way in which it is generated and also
by certain checks that take place on stack register operations.
The stack is, in fact, largely manipulated by hardware
mechanisms.

5. The interrupt mechanism

Interrupts in the 2900 range are classified as asynchronous or
synchronous. Asynchronous interrupts come from outside,
typically from a mechanical peripheral or from a clock.
Synchronous interrupts, which in other systems are often
referred to as traps, occur during the operation of an instruc-
tion. They can arise either from some unexpected happening
such as an accumulator overflow or a program error, or they
can be deliberately provoked as, for example, in a CALL
instruction, when it is necessary for the operating system to be
entered at a high level of privilege to adjudicate on some matter
of protection. Thus, the 2900 range handles all program changes
that require the attention of the operating system in a uniform
manner whether they arise as a result of an interrupt or are
explicitly called for by the programmer.

Synchronous interrupts take effect as soon as they occur, a bit
in SSR being set if the current instruction is incomplete.
Asynchronous interrupts are dealt with according to an order of
_ priority depending on the class to which they belong. Various
internal interrupts, of which accumulator overflow is typical,
may be masked by setting bits in PSR. System interrupts,
including virtual store interrupts, may be masked by setting
bits in SSR.

The event pending bit (EP) in SSR enables the system pro-
grammer to arrange that a delayed interrupt shall occur, for
example, on emergence from a system procedure. If the EP bit
is set, such an interrupt occurs on the execution of any EXIT
instruction that causes ACR to be increased. The interrupt is
masked however, if the appropriate bit in SSR is set. An
interrupt can also occur in certain circumstances if the EP bit
is set when a process is reactivated by an ACTIVATE
instruction.

On receiving an interrupt, the hardware brings about a forced
entry into a procedure designed to service the interrupt, first
storing the process and program status on the stack so that it
can be restored on return. Some interrupts can be processed
using the same stack as the interrupted program; calls to the
operating system are included under this heading. Others, such
as external interrupts and virtual store interrupts, require that
a temporary switch to another stack should take place.
Interrupts are divided into classes and for each class there is an
entry in a table known as the interrupt steering table (IST), there
being one such table for each processor in a multiprocessor
system. The method of saving program and system status
depends on whether the stack has to be switched or not. The
IST has entries for each interrupt class, giving the values that
must be loaded into the relevant hardware registers for the
interrupt processing to proceed. Some details of the various
classes of interrupts are given in Appendix 3.

6. Procedure entry
There are three ways of entering a procedure. To enter a
procedure running in the same name space and in the same

292

protection environment a simple jump and link instruction may
be used; no interrupt is involved. A similar result may be
produced without an explicit jump instruction through the
operation of the escape mechanism. This occurs when, during
the course of the execution of an instruction, an escape
descriptor is found to be in, or comes to enter, DR. Execution
of the instruction is then cancelled and the computer proceeds
to execute the code pointed to by the escape descriptor. It is
possible for the code to be written in such a way that eventually
re-execution of the cancelled instruction is initiated and
execution of the original program is resumed. As an example of
the use of this mechanism, suppose that the descriptor pointing
to a segment is replaced by an escape descriptor. The effect
will be that any attempt to access the segment in question will
lead to an escape jump to a routine that might, for example,
cause diagnostic information to be printed.

The last act of the routine before returning would be to
reinstate the original segment descriptor and set a bit in PSR
indicating that the instruction on which the escape jump
occurred is to be re-entered.

The CALL instruction is used to make a full dress entry intog
a procedure using the stack. There is first a precall sequencez
executed in software; the call sequence itself is implemented ing
hardware. The CALL instruction is used in four ways. 1f the(I>
address is direct, or if it points to a vector descriptor or a code::
descrlptor a normal call takes place The contents of PSR3
remains unchanged, that is there is no change in protection or=.
privilege. If a call is made to a more trustworthy procedurem
(mward call) or to a less trustworthy procedure (outward call)m
it is necessary that the kernel of the operating system shouldQ
be entered so that the values of ACR and PRIV can be changed. 3
The address in the call instruction must therefore point to aj
system call descriptor. This has parameters which are%
interpreted by the kernel. 8

In all cases return is by means of an EXIT instruction. In the2
case of a normal call this can be via a code descriptor; the same3
is true for an inward call since the original values of ACR and_<
PRIV can be picked up from the stack and reloaded by thex
mechanism of the EXIT instruction. A check is made that thl&F
reloading will not lead to an increase in privilege or protectlonB
status; this is necessary since the values of ACR and PRIV ong
the stack may have been overwitten in error at a level ofS
privilege at which writing into the stack is permitted but not&g
into PSR. 01

In the case of an outward call return must be via a system callC>
descriptor. It is sometimes necessary for parameters to b@
passed from a higher ACR level to a lower ACR level. The%>
VALIDATE instruction may be used at the lower level to*
check their validity. This instruction takes the value of ACR3
put on the stack at call time and compares it with the value o
APF for the new segment. The result is indicated by conditions
code register (CC). N

A call instruction may also be used to implement taskmg.h
This is known as a task call and is via a system call descriptor
with parameters that are interpreted appropriately by the kernel.
Return is by means of another task call.

7. Slave stores

At the discretion of the designer of the hardware for a particular
model in the range, small high speed slave stores may be
associated with the main store so as to reduce the average
access time; these are often referred to as buffer, or cache
stores, and may work either on the associative principle, on the
1mag1ng principle, or on a combination of the two. The follow-
ing are examples of slave stores that may be found in the various
models of the 2900 series: instruction slave store; stack slave
store; operand slave store. The instruction slave store can
contain items only from the segment from which code is being

The Computer Journal

executed and the stack slave can contain items only from the
stack segment defined by the SSN register. The operand slave
store can contain items from any other segment. In addition
the paging system is provided with the usual slave store designed
to reduce the number of repeated references that must be made
to the segment and page tables.

The slave stores servicing the main memory are operated in
terms of virtual addresses rather than real addresses. It is,
therefore, necessary for them to be cleared whenever a change
occurs in the mapping from virtual addresses to real addresses,
that is on a change from one virtual machine to another. Such
clearing can be brought about as a side effect of certain
instructions and it is unnecessary to go into the details here.
An additional problem arises, however, in the case of shared
segments, since an item in the main store may be updated under
one virtual address while a slave store retains the old value
under another virtual address. A solution to this problem
would be to mark all shared segments to which writing access is
permitted with a bit in the segment table, and to design the
hardware so that items from segments so marked never find
their way into a slave store. This, however, would be somewhat
drastic and would reduce to an undesirable degree the efficiency
with which the slave stores would operate.

Instead the items are allowed to pass into the slave store in the
ordinary way, carrying with them the indicating bit, and
advantage is taken of the fact that the writer of system software
will, as a matter of course, protect any section of a shared
segment that he needs to update by means of semaphores. It is
a rule that he should make use for this purpose of the
INCREMENT AND TEST instruction and the TEST AND
DECREMENT instruction. These instructions, which are
primitives at the hardware level, have the side effect of clearing
from the slave stores items marked as coming from shared
segments. The mechanism just described is capable of handling
the problem that arises when two processors, each with its
own operand slave (which may include a write buffer), write
into the same area of memory.

A special instruction is provided for the purpose of clearing
the address translation slave store of a processor other than
that in which the instruction is executed. The specified processor
remains halted until it receives a restart signal from the
processor which halted it. This facility is available for use by the
software when a processor makes a change to a segment table
that is also being used by a process running in another
processor.

8. Control of peripheral equipment

The principle is adopted in the 2900 range of relying on auto-
nomous, asynchronous, peripheral controllers which are
subordinate to the central processor. Input and output
activities are always initiated by processes within the central
processor. Inward connection (for example, of an online
terminal) is achieved by an initial interrupt driven exchange
which results in the establishment of a process in the central
processor or the connection of the device to an existing process
(for example, to a spooling process). A single input/output
instruction is provided; the details of the required operations
and storage addresses concerned are contained in data tables
which are interpreted by the controller.

Since an input/output system cannot afford to wait while
virtual to real address translation takes place before each store
access, it is performed in the peripheral controller before the
transfer begins. In fact the translation only needs to be done
once, but clearly the main store area to or from which data is
moved must not be paged out. It is therefore locked down in
advance of initiation of I/O by the supervisor.

This it does by setting appropriate digits in the page or
segment tables concerned. Slave stores whose contents have

Volume 20 Number 4

been invalidated by a peripheral input transfer will normally
be cleared by the ACTIVATE instruction which restarts the
process waiting to access the store area concerned.

There are four kinds of peripheral controller, each capable
of driving a number of device controllers; these are:

—electromechanical
devices

General peripheral controller

Disc file controller —moving head discs

—fixed head discs or
drums

Sectored file controller

Communications peripheral controller—the communications
subsystem

Each peripheral controller is assigned a communication area
in the high speed store. This is established during system
initialisation and contains (in fixed format) descriptors pointing
to the control blocks which define the required input/output
operations for the various device controllers. The communi-
cation areas and control blocks are accessible both by the

central processor and by the controller concerned, access being

C

ontrolled by means of a semaphore located in the first word2

of the area. The communication area also provides space intoz
which termination responses are written by the controller.§
Synchronisation between the central processor and a controller=
is achieved by means of interrupts which, in the case of multi-g
processor configurations, are broadcast to all central processors.=
The interrupts may either be taken as they occur or in a groupﬁ'

a

9. Considerations underlying the design

fter a preset time interval.

JlWBpeoe//:s

The 2900 series was designed against a background of fallmg
costs of hardware relative to software. The provision of hard-U
ware features designed to support software could therefore beg

C

ontemplated without mlsglvmgs It was felt that the adoptlonB

of a stack architecture in the particular form described in thisS

paper would,

in addition to providing automatic dynamlc—

allocation of workspace and local name space, facilitate them

provision of the following features.
1.

2.

Although in any particular model of the range the exact use

Hardware support for a procedure call and parameter
passing mechanism.

Treatment of procedure calls and interrupts in a uniform
manner as forced procedure entries which could be largely S
handled within the current stack and reglster envxronment,\‘
thus avoiding the unnecessary suspension and reactivation g
of processes.

GE€6€/062/¥/0/31PH

enﬁ A

that is made of slave stores is at the designer’s discretion, slaveo
stores had a definite place in the conception of the architecture. 3
The architecture allows for the provision of local slavesZ
fulfilling special functions in various places and indeed relics%
upon such slaves being provided for its efficient implemen-gQ

=

tation. For example, it has been common practice in the past to
provide the processor with a number of internal registers
(accumulators, pointer registers, index registers), primarily to
reduce the number of main storage access cycles needed below
what would otherwise be necessary and thus increase the
operating speed. The 2900 processor, on the other hand,
contains a minimum of such registers, since an equivalent
reduction in storage access time can be obtained by the pro-
vision of efficient slave stores. The reduction in the number of
internal processor registers simplifies the task of the writer of
compilers, since he is spared the problem of optimising their
use.

The use of separate slave stores for separate functions enables
any loss of efficiency occasioned by forced clearing of the slaves
to be kept to a minimum. For example, the slave associated
with the stack need only be cleared when the stack is switched.

293

Certain instructions in the instruction set have the side effect of
bringing about the selective clearing of slave stores.

The protection system follows recently introduced practice
of having a number of levels with efficient means provided for
switching from one to the other. The hardware supports
execute-only access as well as the more usual read-only and
read-write access. Consideration was given to a more general
protection system of the capability type, but it was felt that the
benefits (aside from software and other problems involved in
using such a system) were not sufficiently well established to
justify its adoption. A conscious attempt has been made to
provide a comprehensive set of internal interrupts some of
which bring about the switching of the stack and some do not.

On the basis of this it has proved possible to design software
that is tolerant of the occurrence of error conditions and other
unscheduled events.

Acknowledgements
Whilst making no claim to have put forward any of the features
outlined, the authors wish to record that the architecture was
developed by many individuals over a period from proposals
originally made by (amongst others): J. W. Bowthorpe, J. K.
Buckle, J. Connett, (the late) R. D. Feather, D. Howarth,
B. J. Moore, V. Pasquali, M. R. Patel, C. B. Taylor and M. R.
Wetherfield.

They wish particularly to thank Professor M. V. Wilkes for his
help and advice in the preparation of this paper. Finally, they
record their thanks to ICL for permission to publish it.

Appendix 1 Registers in the image store
The number of bits in each register is given in brackets.

Visible registers

ACC Accumulator (32, 64, or 128)

B Index accumulator (32)

DR Descriptor register (64)

LNB Local name base register (16)

CTB Cross-reference table base register (30)
PC Program counter (31)

RTC Real time clock (64)

SF Stack front pointer register (16)

Invisible registers

IC Instruction counter (24) (counts down by 1 for each
instruction executed)
(counts down by 1 each n
microseconds, wheren < 16
is given in the hardware
manual for the model
concerned)

Local segment table base register (29)

Program status register (24); principal components
are:

ACR access control register (4)

PRIV Privilege (1)

OV Overflow (1)

PM Program interrupt mask (8)

ACS Accumulator size (2)

Public segment table base register (29)

Stack segment number register (14)

System status register (31); principal components are:
II Instruction incomplete indicator (1)

RAM Real address node (1)

PI Processor identification (2)

EP Event pending indicator (1)

DGW Diagnostic write (1)

ISR Image store read (1)

IM System interrupt mask (12)

IT Interval timer (24)

LSTB
PSR

PSTB
SSN
SSR

Appendix 2 Operand addressing

An instruction consists of an operation code, a literal, and
certain tag bits that indicate how the physical address to be
presented to the access circuits of the store is evaluated. It will
not be necessary to explain how instructions are expressed in
binary form, but Table 1 will show what addresses may appear
in them.

DR stands for the content of the second word of the descriptor
in DR; otherwise the names of the registers stand for their
contents. N stands for the literal in the instruction. Brackets
here indicate indirection. For example, ((LNB + N) + B),
(TOS + B), and (DR + B) indicate items pointed at by
pointers in descriptors held respectively in LNB + N, at the
top of the stack, and in DR; ‘+ B’ indicates that the pointer
concerned is modified by B.

Table 1 Addresses that may appear in instructions

Access via descriptor

N(literal)* — (DR +N) g
(LNB+N)* (LNB+N))* (LNB+N)+B) (DR +(LNB+N)
(XNB+N) ((XNB+N)) (XNB+N)+B) (DR+(XNB+N)
(CTB+N) ((CTB+N)) ((CTB+N)+B) (DR+(CTB+N))&

M

(PC+N) ((PC+N)) ((PC+N)+B) (DR+(PC+N)) &
TOS (TOS) (TOS +B) (DR +TOS) :
B (DR) (DR +B) — 5

Instructions contammg addresses given in the first five lines oﬁ
the table requnre 32 bits (of which 18 are allocated to N), excepB
that if N occupies less than eight bits, those marked with a star,
may be expressed in 16 bits. Instructions with addresses givens
in the last two rows of the table require 16 bits only. Instructions3
are also provided for performing operations on strings OE
consecutive bytes, these strings being addressed by vector o

string descriptors held in DR and ACC. %
%.
Appendix 3 Interrupt classes %
The interrupt classes are tabulated as follows: =
Class Priority Masking Synch] Stack §
rules asynch switched/not 2
switched a
1. System Error 1 — A/S SW ©
2. External 2 2 A SwW o
3. Multiprocessor 3 2 A SwW 5
4. Peripheral 4 2 A SW =
5. Virtual Store 1 S SW 2
6. Interval Timer 5 2A A SwW e
7. Program Error 1 S SW =]
8. System Call 1 S N g
9. Out 1 S SW N
10. Extracodes 1 S N
11. Event Pending 3 S Sw
12. Instruction
Counter 6 2A A N

Priority: 1 is high
Masking Rule: 1. System error, if masked
2. If masked remains pending to system
2A. If masked remains pending to process
3. If masked ignored.
—Hardware detected errors and violation of
Masking rule 1.

System error

External —Interrupts from devices not having a
connection to store.
Multiprocessor ~ —Interrupts between processors sharing

the same store.

The Computer Journal

Peripheral —Interrupts from peripheral controller via
the store access controller.

—Access requested to a legitimate page or
segment which is not in virtual store.

—Interval timer.

—Interrupt due to illegal use of instructions

or data.

Virtual store

Timer
Program error

—Use of a system call descriptor in CALL
or EXIT instruction.

System call

ouT —A software generated interrupt.

Extracode —To allow the execution of selected
instructions by software.

Event pending —

Instruction counter —Interrupt when IC goes negative.

Book reviews

Introduction to Communication Command ¢»d Control Systems, by
D. J. Morris, 1977; 350 pages. (Pergamon Press, £15-00)

This book brings together the many aspects of communication
command and control in an orderly and authoritative manner. In
an easily understood and pleasing style the author introduces his
subject and gives the reader an overview of system design concepts.
We are soon aware that people are an important part of any com-
munication system whether they are the sponsors, the designers or
those responsible for the day-to-day running of the network. It is
pleasing that this is made clear early in the book and as the author
states ‘the system should be introduced in stages and not with a
sudden revolutionary change’, which has relevance to all parties
concerned with the implementation.

There are particularly good chapters on sensor base data collection
and data transmission theory, the former perhaps better understood
as telemetry. However, these are just part of a large subject and the
author takes us by stages through the advantages and disadvantages
of various multiplexor and concentrator systems until we understand
the principle of operation.

We are given an introduction to switching centres and the facilities
they can provide and communications network heirarchy which
provides much food for thought, but needs to be taken slowly.

There is an interesting chapter on loop transmission, a more recent
approach to the design of digital data networks; some of the prob-
lems posed and the potential for increasing the data content of
transmissions. This is followed by a description of computers in
command and control systems and, quite apart from the communi-
cations aspects, this is a useful study of computer systems.

Of interest to management (and perhaps the focal point of the book)
will be the chapter on distributed computer resources, describing
how computer power, peripheral equipment, files and libraries might
be shared by many sites in a network; the centralised and distri-
butive techniques and some of the social and political problems to be
overcome.

There is a great deal more including the ever-present subjects of
secrecy, security and privacy, in fact much to interest a wider
readership than the prospective system designers and management
personnel to whom this book is directed.

The book is well organised and amply provided with clear diagrams,
references and indexes and should prove to be a useful work of
reference.

In conclusion it can be observed that we are told not only the
benefits of communication command and control, but are frequently
warned of the pitfalls along the path to successful implementation,
and for this we should be grateful.

R. W. BiLLETT (Dunstable)

Volume 20 Number 4

Queueing Systems, Volume 2: Computer Applications, by L.
Kleinrock, 1976; 549 pages. (Wiley-Interscience, £18-00)

The second volume of Professor Kleinrock’s text on queueing
systems far exceeds the image formed in this reviewer’s mind’s eye
by the spectacle of Volume 1. In essence it presents a range of re-
source allocation and sharing problems, the meat of operational

g//:sd)y Wwol) papeojumoq

Q
W)
Q.
[]
2
o

o

research, arising from the operation and design of computer systems; S

problems, moreover, which fall within the context of a queueing
theoretic approach for their formulation if not solution. The oper-
ational research student and practitioner, for whom the text is

Q
o
=

o

eminently suitable, will achieve a double benefit: he will feel on the=

one hand the challenge of problem areas, in a field with which he is
undoubtedly nominally familiar, bristling with thorny unsolved
problems; on the other he will obtain an improved understanding (in
some cases an initial understanding) of the difficulties of computer
system design not least in receiving initiation into the mysteries of
that vocabulary and symbolism which makes communication between
computer specialists and other mortals sometimes an impossibility.
For the computer scientist and systems analyst too the book has
much to offer. His problems are expounded in the possibly unfamiliar

=
)

Q
)

2
N
o
<
=
N
©
o
=
w

©
w
a

o

language of mathematics and he may be put into the position of <
realising for the first time to whom he should turn for first discussion €

and consultation in the case of certain difficulties which he may have
felt intractable.

This volume has been written in such a way as to stand alone. It is
of course expensive enough, but one does not have to buy Volume 1

D
(2]
—
o
35
N

>

as well. On the other hand an owner of Volume 1 must feel owner- S,

ship of Volume 2 to be an almost irresistible allure. Basic results in
queueing theory are collected summarily in Chapter 1. Chapter 2, of
particular interest independently of computing matters, deals with
some approximate methods, in particular with diffusion models and
the heavy traffic situation. Chapter 3, concerned with aspects of
priority systems, to which the author has made notable original
contributions, completes the introduction to the major two thirds of
the book. This contains a further three chapters; Chapter 4 deals
with time sharing and multiaccess; Chapter 5 deals with communi-
cation, network analysis and design; Chapter 6 with measurement,
flow and traps. Those concerned with the provision of computing
resources, and faced with the mounting costs of communication, will
find here not only an absorbing account of technology but material
for profound reflection.

In dealing at such a level with computer networks the book is
probably unique and derives much from the experience, enthusiasm
and involvement of the author. This is enlightening, contagious
and irresistible. This reviewer imparts a high commendation.

BriaN ConoLLy (London)

295

N
o
N
=

