Multiway replacement selection sort with dynamic

reservoir
T. C. Ting and Y. W. Wang

School of Information and Computer Science, Georgia Institute of Technology, Atlanta,

Georgia 30332, USA

An improved multiway replacement selection sorting algorithm is proposed for generating longer
ordered strings. The method has employed both the notions of ‘degrees of freedom’ and that of
‘natural selection’. A dynamic reservoir is proposed which makes fuller use of main memory
space of the computer. Extensive simulations were conducted and the results are presented and

discussed.
(Received August 1975)

In general, two phases are involved in sorting a file whose size
is much larger than the capacity of the main memory of the
computer being used. An initial internal sorting phase produces
ordered strings of records which are externally merged during
a second sorting phase into successively larger strings until a
single output string remains.

The number of strings produced by the internal sorting phase
is one of the important factors in determining the number of
passes necessary for the external phase, which in turn is
directly related to the processing time. The external phase
uses slow peripheral memory devices, and therefore it usually
dominates in terms of total sorting time. Thus, it is desirable to
produce strings as long as possible in the internal phase, so that
a fewer number of strings are given to the external phase. The
multiway replacement selection sorting algorithm (Friend,
1956) is one method widely used for this purpose. The expected
length of the strings produced by that method approaches 2p
when the main memory of the computer used is capable of
holding p records. The idea of ‘degrees of freedom’ was
subsequently suggested to improve on replacement selection
(Dinsomore, 1965) and it uses m buffers for an m-way merge to
produce a single string from more than m pre-ordered blocks.
It starts with m blocks, and new blocks can be continually
included into a current string so long as the key value of the
first record is greater than or equal to the key value of the last
record of the just-exhausted block. More recently, a method
called the ‘natural selection sort’ was developed which employs
an external reservoir for storing dead records that can not be
included in the current string and which resulted in producing
longer sequences than the simple replacement selection algo-
rithm (Frazer and Wong, 1973). The length of the strings
produced by the method is a function of the size of the reservoir
R. For R = p, the expected length is ep, where e is the base of
natural logarithm (2-718...). For greater values of R, the
length of the string is longer. By varying the value of R, one
can expect strings of arbitrary preassigned length. This method
is an evolutionary improvement over simple replacement
selection (Knuth, 1973).

The present method has employed both the notion of ‘degrees
of freedom’ and that of ‘natural selection’ for further improving
the replacement selection method. A dynamic reservoir is
proposed to handle the buffers of the input blocks and to store
the dead records during the selection process. The method
yields longer strings and produces fewer rejected records than
does the natural selection algorithm. Furthermore, by including
only the keys of the records in a selection tree placed in high
speed main memory (thus leaving the whole records to remain
in the reservoir), the method permits full utilisation of the
main memory space of the computer for producing even longer

strings, since the size of the key is but a fraction of the whole
record. Therefore, the value of p is greatly increased since the
value of p now represents the capacity of the computer’s

memory which is capable of holding p keys instead of records. o

However, the present method does require an external reservoir
on a direct access medium and the minimum size of the reservoir o
R is equal to 2p records.

Extensive computer simulation has shown that for R = 2p=.
records the expected string length is 4-2p records when the
input data is randomly distributed. For a greater value of R, az
longer length can be expected. The expected string length X is®
a function of parameter R, and the results are expressed
graphically in Fig. 1

Description of the method

é

papeo|

-
=
o
3
>
o

QO

0"0IWapeD

The present method is an improved replacement selectionS

algorithm which takes advantage of both the idea of ‘degrees 3

of freedom’ and the concept of ‘natural selection’. It uses an
external, dynamically organised reservoir on a direct access
device for buffering m ordered mput data blocks and stormg
the dead records. A selection tree is structured in the main
memory of the computer for performing an m-way merge on the 3
buffered input data blocks. The keys and locations of the first 3
records of input blocks are included in the nodes of the tree.
The tree is arranged in a ‘heap’ which is used to facilitate an
efficient merge selection.

Initially, m input data blocks are entered to load the selectxon
tree and the reservoir. The ordered input data blocks are stored

(@]

S

3

=

1

(D
N}

Z/V

£6€/8

G)
U‘I

in the reservoir in the form of a linked list. The key value and:ir

the location of the first record of each input data block is 5
placed in a node of the selection tree. Thus, each node is acting =
as the header of the list. The number of input data blocks m =

normally should be equal to the size of the tree p which is the

[0

(2]
—
35

[¢e]

capacity of the main memory space. However, m may be less S

than p when the input data blocks are long and the reservoir is

filled before the tree is fully loaded. This condition may ©®

happen when the input data is partially sorted. Therefore, m
may be less than or equal to p.

A ‘heap’ is arranged after the selection tree is loaded and an
m-way merge is performed by using the tree selection method.
The node on the top of the selection tree is selected and the
record immediately linked by the node is output. The key
value and the location of the next record in the same input
data block are entered to the just-vacated node. The selection
tree is then readjusted to maintain a valid ‘heap’. The process
repeats until one of the input data blocks is exhausted.

A new input data block is read into the reservoir. If the key
value of the first record of the newly entered block is greater
than or equal to the key value of the just-output record the data

Dr. Ting is now on leave at National Science Foundation, Washington DC, and Mr. Wang is now at Chung-san Research Institute,

Taipei, Taiwan, Republic of China.

The Computer Journal

N

=

20 -

15 =

X 10
5

L T T T T 1

0 10 20 30 40 50

R

Fig. 1 Expected sequence length X as a function of parameter R

block is appended to the selection tree. Otherwise, the beginning
record of the data block is considered a dead record, and it is
linked to a list of dead records in the reservoir. The next
record is treated as the first record and it is tested to determine
whether the remaining data block can be appended to the
selection tree. The same process repeats until either the
remaining data block is appended to the tree or the entire data
block is placed on the dead record list. In the latter case,
another input data block is entered. The process continues
until the reservoir is full, and at this point the size of the selec-
tion tree is reduced by one. The selection process continues
with an (m — 1) way merge, and eventually terminates when
the selection tree is empty.

After a new data block is appended to the selection tree, if
m < p and the reservoir is not full m will be increased by one
and an additional input data block will be entered. This input
process will be continued until the m = p or the reservoir is
full. The selection process will then be continued.

During the next run, for the generation of the next string, the
records in the dead record list are used as input data until all of
them have been processed. These records either are included
in the output string or are again returned to the dead record
list. The additional input data are then read and are either
appended in the output string or rejected until the reservoir is
once again full, the selection tree is once again empty, and so on.
This process continues until finally the whole process ends
when the input data file is completely exhausted and the reser-
voir is completely empty.

Input data blocks
The file to be sorted can be regarded as a set of records in
natural sequences. There are two types of natural sequences of
records—namely, ascending and descending sequences. An
ascending sequence is a set of linearly ordered records in which
the key value of the preceding record is less than or equal to the
key value of the current record. Similarly, a descending sequence
is a set of linearly ordered records in which the preceding
record is greater than or equal to the current one. The type
of sequence is actually determined by the order of the first
two records of the sequence. A sequence is terminated when
the subsequent record indicates an order other than the
present one. The natural sequences are recognised and switched
to ascending sequences during the input function of the
method. These natural sequences are treated as input data
blocks and they are stored as linked lists in the buffer areas in
the external reservoir on a direct' access memory device. A
link reference is added at the end of each record as the link to
the next record. A null link reference is placed within the last
record as the link to no record.

The minimum length of the input data block is two records.
The length of the input data block can be long when the input

Volume 20 Number 4

data is partially sorted, and the present method takes advantage
of the phenomenon.

The structure of the selection tree

The selection tree is a ‘loser-oriented binary tree’ which can be
viewed as a priority queue of the smallest item out first
(Knuth, 1973). Each node of the tree consists of two fields, the
key and the location reference. By using the location reference,
each node can be viewed as a header of the input data block
with the key value and the location of the first record included
in the node.

The tree is allocated in consecutive main storage spaces. The
relationship between the father node and its sons are deter-
mined by the locations in storage. The father node of the node
located in L is placed at [L/2] location and the two sons of the
node at L are positioned at 2L and 2L + 1. The tree is arranged

Past Dead-
Dead-record Record
List List

RESERVOIR

Blocks

Fig. 2 The data structures of the selection tree and the reservoir

Table 1 The tabulated results

20z udy 61 U0 189n6 AQ G19EBE/B62/7/0Z/310ME/UlL00/W0d"dNO"oILSPEDE//:SARY W) PAPEOUMOQ

R X Y
1 224 0-00
2 417 0-00
3 496 0-14
4 5-55 0-51
5 592 1:23
6 631 1-56
7 676 216
8 716 274
9 7-52 3-02

10 7-96 337

11 823 379

12 8-67 411

13 891 434

14 924 4-88

15 967 568

16 9-88 594

17 1002 678

18 1042 7-14

19 1073 802

20 1097 8-89

25 1212 12:03

30 - 1321 16-47

40 14-82 24-36

50 1668 32:43

so that the key value K of the father node is always smaller
than or equal to the key values of its two sons. In other words,
the tree is organised so that

Kljl < Kjforl1 <[jl2l<j<m
where m is the size of the tree. It implies that the node with the
smallest key value appears at the root of the tree,

K, = min(K.,K,,K;,...,K,) .
It also implies that K, < K,, K, < Kj;, K, < K, K, < Kj,
.. ., etc. Initially, the keys of all first records of the input data
blocks are loaded into the nodes of the tree in sequential
manner. An efficient algorithm which was suggested by Floyd
(1964) is used to create the selection tree. A top down selection
procedure is used to perform an efficient m-way merge by
utilising the main concept suggested by Williams (1964) in his
‘heapsort’.

The organisation of the reservoir

An area of direct access storage space capable of holding at
least 2p data records is used as an external reservoir for the
method, where p is the number of keys that can be handled in
the main memory of the computer used. Initially, the entire
reservoir is organised as a list of available space.

Input data blocks are stored in linked lists with their headers
placed in the nodes of the selection tree. These linked lists
constitute the input data buffers.

Two additional lists are organised for handling the dead
records; one for storing the current dead records and one for
holding the past dead records. The list of past dead records is
used as input during the current run and it is organised in the
form of a simple list. The current dead record list is used to
accept the rejected records during the run and it is organised
in the form of a circular list. The reason for the circular list is
that it is convenient to put an entire circular list onto the past
dead record list.

The relationship between these data structures is illustrated
in Fig. 2.

The algorithm

The following flowchart was chosen to illustrate the algorithm
for the present purposes. However, it does not represent an
optimal implementation of the algorithm, since many detailed
steps have been omitted so that the main ideas can be easily
understood.

Experimental results

An extensive computer simulation was conducted for testing
the method. A large number of pseudorandom integer numbers
were used as input data. The values of m were m = 2* for
k=35, 6, 7 and the values of R were R = m, 2m, 3m, ..
20m, 25m, 30m, 40m, 50m. In each run, more than 100 output
sequences were produced. Average sequence length was
computed for the Sth through 100th sequences in order to
eliminate the effect of initial convergence to the limiting
distribution. The results are tabulated in Table 1. The expected
sequence length X = the average length/m. When R < 2m,
there are some records to be rejected more than one time before
merging into the output sequence. A count of the number of
records which are again returned to the dead record list was
kept during each run. The average number of returned records
Y is also tabulated in Table 1, and is expressed in Y equal to
average number of returned records/m. It is of interest to note
that for R < 2m, the expected length X can be approximated

X=R+2-7Y.
Conclusions
The present method is an improved replacement selection
which produces longer sorted sequences than other methods.

START fnitializatioyg

Load the
Selection
Tree

Create the
Selection
Tree (HEAP)
Joutput String
Select and Adjust ICompleted.
Output the The Tree ﬁ Link Dead-rec
Record ito Past Dead-
leec st
es
Load the Ke
& Address of o
T
the Next Rec] an;:; 2
into the Treq
nput ¥ Set Flag Move the Las Decrease
— Exh a d (No more Node Into th e Tree Size
“?'” Input) Top of the by One
Iree
No
Yes|
Reservoir
Full ?
No
Load the Key
& Address of | |

the 1lst Rec.
into the Tree]

Fig. 3 The flowchart of the algorithm

g/|ulluoo/woo dno-olwapese)/:sdny WwoJj papeojumoq

It takes advantage of the ‘degree of freedom’ concept, and it
avoids dead records by using a dynamic, external reservoir.o
However, it requires extra processing time for handling the>
additional I/O functions of the reservoir. Nevertheless, ass
direct access storage devices achieve higher and higher per-3
formance in accessing speed and flexibility, the cost for thed
additional processing time is minimised. Furthermore, the timeS
required for the generation of longer initial sorted sequences is”’
worth spending, since it reduces overall external sorting time;
by reducing the time needed for the second phase of ans

[2]

—

external sorting procedure—the slower of the two phases. 7

The minimum length for an ordered natural sequence in an”.
input file is two records. The average length of the input blocks
is then always greater than or equal to two records per block,S.
and the latter condition exists when the input data is perfectlyy
random. The present method uses m degrees of freedom which®
merges at least m natural input sequences on to the output
sequence, and so the resulting output is always more than 2m
records. Any non-random input data will increase the average
length of the output sequences produced by the present
method. The m degrees of freedom coupled with the reservoir
permits any subsequent record with a key value not less than
the mth largest key value of the input data blocks that precede
it to be appended to the current output sequence before the
reservoir is full. The expected length of the output is a function
of the parameters of the sizes of the selection tree and the
reservoir, m and R, and of the randomness of the input data
file.

The method uses a loser-oriented binary selection tree for
performing an efficient internal merge. Only the keys plus the
location pointers of the leading records of the input data

The Computer Journal

blocks are included in the nodes of the selection tree, instead of
the whole records. In almost all sorting applications, the size of
the node will be only a fraction of the size of the whole record,
and so the method permits effective use of computer’s main
memory. It makes full advantage of the increasing capacity and
speed of direct access storage when limited main memory

References

DINSOMORE, R. J. (1965).
FLovep, R. W. (1964).
FrAzER, W. D. and Wong, C. K. (1972).
FrienD, E. H. (1956).
Knuth, D. E. (1973).
WiLLIAMS, J. W. J. (1964).

capacity is available. Such situations are commonly found in
multiprogramming environments and in minicomputer appli-
cations, for example. The ability to change the size of the
reservoir to vary the expected length of the output sequences
offers greater flexibility for fully utilising memory space for
different kinds of external sorting applications.

Longer Strings from Sorting, CACM, Vol. 8, No. 1
Algorithm 245: Treesort 3, CACM, Vol 7, No. 12
Sorting by Natural Selection, CACM, Vol. 15, No. 10
Sorting on Electronic Computer Systems, JACM, Vol. 3, No. 3, July. -
The Art of Computer Programming; Vol. 3, Sorting and Searching, Addison-Wesley, Reading, Mass.
Algorithm 232: Heapsort, CACM, Vol. 7, No. 6

Book reviews

The ANSI/SPARC DBMS Model, edited by D. A. Jardine, 1977;
225 pages. (North Holland, US $24.00)

Systems for Large Data Bases, edited by P. C. Lockemann and E. J.
Neuhold, 1977; 224 pages. (North Holland, US$24.50)

" These books record the proceedings of two conferences dealing with
data base management systems. The first reports the Second
SHARE working conference on Data Base Management Systems,
held at Montreal in April 1976; the second reports the Second
International IFIP conference on Very Large Data Bases, held at
Brussels in September 1976.

It would be wrong, of course, to infer from the titles given to the
proceedings that the Montreal conference dealt exclusively or com-
prehensively with the ANSI/SPARC model, or that the Brussels
conference concentrated on problems arising from very high data
volumes. Perhaps predictably, both conferences had contributions
on access control, end-user interfaces, the conceptual model/schema,
and the various competing data models. On the last of these topics,
the neat Montreal tutorial paper by Tsichritzis and Lochovsky is
marred (but not rendered unintelligible) by the omission of all the
diagrams referred to in the text; Tsichritzis appears again at Brussels
as co-author of a comprehensive and concise taxonomy of data
models.

The Montreal proceedings open with an expository paper on the
ANSI/SPARC model by Beatrice Yormark and include considerable
treatment and discussion of the three schema level approach, with
particular emphasis on the nature, function and form of the con-
ceptual schema. In addition to the topics already mentioned there is
a useful and readable account by Frank Manola of the Codasyl
DDLC’s activities since the 1973 Journal of Development, indicating
the current state of the language specifications and future directions
for the DDLC’s work. Each paper is accompanied by an edited
version of the discussion which followed it; panel discussion
sessions also are included.

With fifteen papers to Montreal’s nine, the Brussels conference was
able to range more widely to include, inter alia, contributions on
a methodology for choosing an efficient internal schema; DIAM II’s
general model for access methods; the development of a special
purpose hardware processor for performing the primitive operations
on relations; communication of data between different DBMSs; the
conversion of applications programs as a consequence of data base
changes; user extensions to the Peterlee Relational Test Vehicle; a
deductive capability for data management; and the British Library
bibliographic retrieval system, MERLIN. Discussion reports are not
included in the proceedings.

Typographically, the Montreal proceedings have been edited into a
uniform style and they bristle with (mostly trivial) misprints; the
Brussels proceedings have been prepared directly from author
supplied copies.

A number of the contributors are well known in the data base field,

Volume 20 Number 4

jumoQ

and both books contain much that is of interest to those concernef
with current developments in data base technology. These confers
ences demonstrate again how much material is still in the melting-p
and how much melting is still to be done; despite some persuasivé
arguments to the contrary, one is left with an intuitive respect for
those individuals at Montreal who expressed a fear of prematutg
standardisation in the data base area.

J. INGLIS (London§

CAMAC Instrumentation and Interface Standards, IEEE, 1977; 21§.
pages. (John Wiley, £15-00)

‘dno*

Although the computer industry has succeeded in standardisin
some common parameters such as magnetic tape track formats,
has not established any degree of uniformity in computer inpu
output buses, even between different models produced by the samie
manufacturer. Where many different types of instrument nee
interfacing to an online computing system, such a diversity causes’
difficult problems for instrument makers, computer manufacturet%
and the ultimate user.

In an attempt to diminish these problems, several attempts to deﬁnE
a standard bus have been made, probably the most successful bemg
the CAMAC (Computer ‘Automated Measurement and Controfy
standard dataway proposed by the Committee for Europeag
Standards on Nuclear Equipment. The originators in 1969 were
concerned with the problem of connecting a variety of measuring and
monitoring equipment to a controller which often comprised
hardwired logic. It was soon realised that a minicomputer and later 2
microprocessor would provide a more powerful and more flexible
controller, so that many later installations replaced the control]eg
by a computer interface.

The original specification included mechanical and electrical detanE.
of the units, and provided for a single crate containing 25 ‘stationsly
but this concept was extended in 1972 to allow multiple crat§
systems. All of these schemes used parallel data transmission, which
is fast but involves many lines. Where instruments are well separated
geographically, cable costs can be drastically reduced by using serial
transmission. The standard for this was defined in 1974.

This book collects together the IEEE standards which defined the
CAMAC modular instrumentation and interface system and their
associated digital highways, together with a supplement giving the
IEEE recommended practice for block transfers in CAMAC
systems.

The CAMAC system is now being increasingly applied to online
industrial computer installations and over a thousand different
instruments are available with CAMAC interfaces. This book gives
much detail about the signal levels, timing and protocol and system
organisation and would be an invaluable guide to any user involved
in an online control system requiring a variety of sensing and
monitoring instruments.

J. C. CLULEY (Birmingham)

301

