The algebraic anatomy of programs

L. S. Levy and R. Melville*

Department of Statistics and Computer Science, University of Delaware, Newark,

Delaware 19711, USA

Game playing and backtracking programs among others can be understood in terms of algebraic
operations with zeros. The special properties of the algebraic operations can be used to explain the

equivalence of otherwise dissimilar algorithms.
(Received April 1976)

1. Prelude

Programming is undergoing an extensive rethinking due
primarily to the leadership of Dijkstra (1972). The effects of
this change in our concept of programming will be to set it into
perspective with other intellectual and problem-solving
activities. In the course of such a revision of programming, we
should keep a clear idea of the purpose of redefining
programming:

Programs must be understood by people. Only if we under-
stand the programs will we know if they are correct, and

X + 1

T, PN
f2
p
T/Y €
fi v

<____
O
-

T

Py

f V
1 f2

|

Fig. 1 Program to compute g(x)

where they are applicable. And only if we know that the
programs are correct can we be concerned about efficiency,
because the most efficient incorrect program is ‘STOP’
which takes no time and no physical resources.

We define the deep structure of a program as the description of
the underlying concepts in terms of which the program is
understood. The deep structure and the methodology for
developing the program text are the aspects of structured
programming which are considered most important. The
syntax of the program text considered by itself is often
an inaccurate indicator of program quality.
We shall give only the following example:
Let

F={fiix—>x+ 1Lfi:x—>x = 1}*
and P = {p(x) <=> xis even}. Fis a set of two functions,
and P is a set of one predicate, all definedon N = {0, 1, 2, ...},
to be included in our mini language. The program to be
written is to compute the function:

x) = 3ifx=0
8X) =0 if x % 0
Clearly a program to compute g is shown in Fig. 1. On the
other hand, suppose that our programming language, L, were
restricted in the following way:
(@xeF=>xel
b)x,ye F,peP =>

- <" -
\’U
/

o
(c¢) L is the smallest set of programs defined by 1 and 2.

Then L is composed of D-charts, and although g is program-
mable in L nothing is gained by so doing. (Kosaraju (1974) has
the most complete discussion of this issue, but see also Knuth
(1974b), Ashcroft and Manna (1972), and the special
SIGPLAN issue on control structures, Leavenworth (1972)).
The point of the example is that a conceptual issue in con-

*Current address: Department of Computer Science, Cornell University, Ithaca, New York

s, ., _Xx—yifxzy
x=Jr 0 ifx=sy

340

The Computer Journal

20z udy 61 U0 1s9n6 Aq 8Z/E6E/0FE/7/0Z/9101ME/|UlWO0/WOod"dNo oIS PEDE//:SdRY WO

|w)
<]
S
=3
o
o
o
@
o

=
=

structing g from F and P is to understand how a test for
evenness can be used to test for zero (when appropriate func-
tions are available). Fig. 2 shows such a zero test in non-L form.

In this paper we develop the deep structures of some programs
in terms of the algebraic properties of the groupoids. Examples
are given in which this point of view is then useful to program-
mers who share this algebraic perspective in developing
improved programs.

We acknowledge the following who have influenced our
approach to programming: Dijkstra (1972), Burstall (1969),
Burstall and Landin (1969), Mills (1972), and Yelowitz (1973).

2. Groupoids

2.1. Algebraic prelude

Dijkstra (1972) has posed the question, ‘In what sense can the

following programs, (i) and (ii) be considered equivalent?’
Let A; 1 < i < n be an array of truth-values and we wish to

compute the conjunction of the 4;’s:

p= A 4;
i=1

(i) condition «+ TRUE
doi=1toN
condition « condition A 4;
end

(ii) condition « TRUE
while conditiondo i = 1 to N
condition « condition A 4;
end

Program (i) runs through the whole linear array, 4, to compute
p. Program (ii), however, makes use of an additional fact about
the algebraic operation, A, namely that it has a zero. The
important point is that Program (ii) can be understood as a
variation of Program (i) which is applicable whenever the
algebra has a zero. Let us review the relevant algebraic notions.t

An algebraic system, a = {4, 2) is composed of a set of
elements A called the carrier of @ and a set of operations, Q.
A ranking function p assigns to each operation w in a natural
number, in {0, 1,2, ...}, called the rank of w. denoted p(w).
Each operatlon win Q corresponds to a function w: 4°™ — 4,
mapping the n-fold Cartesian product of the carrier to the
carrier. Operations of rank 0 are constants, operations of rank
1 are called unary, those of rank 2 are binary, those of rank 3
are ternary, etc.

A groupoid, G, is an algebraic system, G = <G, {0}) where
0 is a binary operation. If G is finite, then 6 can be specified by
a groupoid operation table, where 0(g;, g;) is shown in the
row of g; and column of g;. (In infix notation 6(g; g;) is
denoted g;0g;).

Example:
Groupoid of logical values and A :

G = {({TRUE, FALSE}, {A}) .
The operation table is:
A ‘ TRUE FALSE

TRUE | TRUE FALSE
FALSE | FALSE FALSE

An element x of a groupoid with operation 0 is called a right
identity if 6(y, x) = y for every y in the carrier; x is called a
left identity if 0(x,y) = y for every y in the carrier. In the
groupoid of logical values and A, TRUE is both a left identity
and a right identity.

1A readable introduction for computer scientists is contained in
Preparata and Yeh (1973). More advanced treatment is given in
texts on Universal Algebra; for example, Gritzer (1968).

Volume 20 Number 4

/\F

0y

Fig. 2 Zero test in terms of evenness test

ojumoqg

An element x of a groupoid with operatlon 0 is called a rlghtm
zero if 0(y, x) = x for every y in the carrier. x is called a leftm
zero if O(x, y) = x for every y in the carrier. In the groupoid of—"
logical values and A, FALSE is both a left zero and a rlghtB
zero. =

The following facts about groupoids are well-known: A13
groupoid may have many left zeros or many right zeros. But®
if the groupoid has both a left zero and a right zero, then thea
left zero and the right zero are the same, and there are no otherB
left zeros or right zeros.

Similarly a groupoid may have many left identities or manyv
right identities. But if the groupoid has both a left identity and8
a right identity then the left identity and the right 1dent1tyo
are the same, and there are no other left identities or rlghtB
identities.

no-o

0z/alone/uf

2.2. Evaluating a sequence over a groupoid
Let (S,, S,, .. ., S,) be a sequence of elements of the groupoid, S
=(G, 6). The evaluatlon of the sequence over the groupoxdﬁ
is the computation of (...(S,0S,)...6S,). The followmgo
programs are applicable:

Program I—most general

ve S

i+2

while i < n do begin
ve—00S;
i—i+1
end

20z Idy 61 uo ysenb Aq gz/£6¢/

Program 2—the groupoid has a left identity
vel
i1
while i < n do begin
Ve 0 S;
i—i+1
end

Program 3—the groupoid has a left zero

ve S,

ie2

while i < n and v # 0 do begin
v+ v0S;
i—i+1
end

341

Program 4—the groupoid has a left zero and a left identity

vl

i1

while / < n and v # 0O do begin
U‘-UOS,‘
ile—i+1

end

Program 5—the groupoid has a left zero and a left identity and
no zero divisors.
v |
I+«
while i < n do begin
if S; = O then do begin
ve<0
exit
end
ve0v0S;
i+ 1
end
Programs (i) and (ii) of Section 2.1 can now be described as the
evaluation of a sequence over the groupoid

G = ({TRUE, FALSE}, {An}) .

If S; 1 < i< nis the array of truth values, the most general
program is:

(i) a) v<S,
i«2
while / < n do begin
Ve VAS;
=i+ 1
end

while recognition of both the presence of a left zero and left
identity and no zero divisors allows the program to be written
as:
(i) @) v« 1
i1
while / < » do begin
if S; = O then do begin
ve<0
exit
end
Ve—vAS;
P—i+1
end

Note
If the groupoid may have zero divisors, then the test must be
done on v, as in program 4.
Many more variations are possible if the groupoid is associ-
ative or commutative, or other special properties arise, such as:
i1
while (i < n and S; = TRUE)
i—i+1
end
v S;

which can be used for the iterative evaluation over the groupoid
of truth values and A.

The style of presentation adopted to facilitate the discussion
emphasises the iterative control structure. No generality is lcst
in so doing. When the algebra is associative and commutative,
as in the case of the minimax algorithm, set operations may be
used rather than sequential iteration.

Another style of presentation which ‘hides’ the counting from
the programmer is a pseudo-LISP style. Any of the given

342

programs can readily be recast in that form (See e.g. Burge,
1975). For example, program 4 of this section becomes:

Program 4a
z a o = if null(a)
then a
else if head(x) = 0

then 0
else ez a 0 head(2) tail(x)

3. Game trees
3.1. Minimax prelude

In two-person game playing situations (see Nilsson, 1971), it is
common to represent the strategies available to the players as
a game tree as in Fig. 3.
The numbers on the leaves of the tree indicate the gain to A4 if
the game is played in such a way as to arrive at that leaf. For
example, at his initial move player A may choose a, b or c.
If A chooses b, then player B may choose to play g or h. If
player B chooses g, then the gain to A4 will be four units. If
player B chooses 4 then the gain to 4 will be two units.

A strategy for playing this game which is widely used is the

so-called minimax strategy. The assumption underlying this =

strategy is that at each move player 4 will play to maximise his
gain, and player B will play to minimise A4’s gain, and each =
player is aware of the other’s rule of play.

A pair of recursive programs are readily written to compute
the gain to A4 at a node.

Let T be the rest of a game tree seen from any node in the tree.
If the node is not a leaf then we may write

T =t(T,, Ts, ..., T,)

where T;, | < i < n, are the subtrees of T from left to right:
T = ro
T, T,...T,

The recursive programs are:

max (7T) A:if T is-a-leaf then T

else maximum {min (7)), ..., min(7,)}
min (T) 4 if T is-a-leaf then T
else minimum {max (T,), . . ., max (T,)}

In writing these programs we have used a style of pseudo-PL/1
and allowed operations maximum which selects the largest
element of a set, and minimum which selects the smallest o
element of a set.

The fact that these programs could be written as a pair of
mutually recursive programs is because the evaluation of a
game tree corresponds to a bottom-up automaton evaluatmg
the tree. It is known that this form of tree evaluation is a =

5 4 :
Fig. 3 A typical (?) game tree

The Computer Journal

|w)
<]
S
o
o
o

8ZL€6€/OT7€/V/OZ/9I3!Ue/lU[LUOO/LUOQ'an'O!LUGPQGE/ﬁSdllLI wol ps

U
(Q

san

o

N

>

_‘

¥20¢ I

Fig. 4 Part of a game tree illustrating a8

homomorphism from the tree algebra to the value algebra, as
discussed in Levy (1976). Hence, this style of programming is
itself an illustration of the principle of incorporating the
algebraic structure of the problem into the program.

Alternatively, we might write the programs using the iterative
control construct, do / = 2, ..., n with binary operations [
and |_, to compute the greater and smaller respectively of their
operands. (Thus 57 3is S5and 5 |_3is3). Theiterative programs
are:

max (T) Li if T is-a-leaf then return T
else begin value «— min (7T)

doi=2,...,n
value « value [min (T})
end

return value end

min (T) A if T is-a-leaf then return T
else begin value « min (7T)

do l = 2, ..o h
value « value [~ max (T;)
end

return value end

The groupoid structure in the evaluation of a node which is
made explicit in the sequential version of the program using the
iterative control construct is very important in the transformed
version of this program discussed in the next section.

3.2. Alpha-Beta (af8)

Consider the situation shown in Fig. 4.

Once player B has evaluated the path labelled ¢, he need not
consider further the path labelled 4, since the value of the node
at b cannot be more than 2—if it were player B he would
evaluate the node as at most 2, since he always chooses the
minimum—and since the root of the tree cannot have a value
less than 4, since player A4 chooses the maximum, the subtree
reached via d cannot have any effect on the value of the tree to
A. Therefore, the subtree reached via d need not be evaluated.

This is reminiscent of the situation we had encountered in
Section 2, in evaluating a sequence over a groupoid with a zero.
The value at the node b is the minimum of the values of its
subtrees, evaluated from left to right, with the added condition
that any value less than or equal to 4 is a zero of the groupoid.
Summarising, the evaluation of the sequence of subtrees at a
node is performed in a groupoid with a zero, the value of the
zero being determined at the node.

A special case occurs when evaluating the left-most subtree
of a node, since the left-most subtree does not have a zero.
It is usual in presentations of the alpha-beta algorithm to
introduce fictitious zeros— + oo and — co—for this case. We feel
that little is gained by this artifice, and that since such an
artifice tends to conceal the algebra at the node it should be
avoided.

With this much introduction we can now present the

Volume 20 Number 4

alpha-beta algorithm:

max (T) 4 if T is-a-leaf then return T
else begin top « min (7,)
doi=2,...,n
top « top [
end
return top end

min (7, top)

min (T) A: if T is-a-leaf then return T
else begin bottom « max (7,)

doi=2,...,n
bottom « bottom |_ max (T;, bottom)
end

return bottom end

max (7T, bottom) 4 if T is-a-leaf then return T
else begin top « min (T,)
do /= 2,..., n while (top < bottom)
top « top [min (T, top)
end
return top end

min (7, top) A if T is-a-leaf then return T
else begin bottom « max (7))

do/ = 2, ..., n while (bottom > top)
bottom « bottom |_ max (7, bottom)
end

return bottom end

epeae//:sdnu woJ) papeojumoq

Note
max (7, bottom) is the larger of max (7)) and bottom whll@
min (7, top) is the smaller of min (T) and top. In fact, the;
situation is slightly more complicated since in max (7, bottom)U
for example, we are only interested in increasing the compute

value of the subtree if it can effect the computed value of thea
whole tree. (See Knuth, 1974b).

4. Problems

4.1. Backtracking
The techmque of enumeration known as backtracking is2
discussed in Dijkstra (1972) and Nilsson (1971). However, thew
best introduction and discussion of backtrackmg is still Go]omtﬁ
and Baumert (1965). We can summarise the algorithm ag?,
follows.

Arrange the set of alternatives as a decision tree. The set og
leaves is called the frontier. Each path in the tree from root tm
frontier corresponds to a sequence of choices. The set ofB
solutions in the tree is the set of paths which do not fail.

An algorithm which does not use the zeros of the algebrae to
simplify the computation would calculate the set of paths fromn>
a node x to the frontier, ST, in the tree

T, T,.

#z/emme/uiwo

uo}

20z Iud

n
as S; = U x* S, where x is the label of the root. The set
i=1
of solutions is then the subset of the set of paths which are
successful, i.e. whose value is non-zero.

However, the backtrack program uses the fact that if the
value of an initial segment of the path from root to frontier is
zero, then the value of the complete path must be zero. In the
following programs we again identify the node of a tree with
its label. The complete programs are:

bA=forain A, do
if not zero (a) then ba (a, a)

ba(a, X) 4 if x is-a-leaf then print («)

343

elsedoi=1,...,n
if not zero (a*x;) then
ba(a*x;, x;)
end
The procedure ba has parameters o and x, where x is a node
label and o is the sequence of node labels encountered on a
path from root node to x.

Note that the backtrack program differs from the usual
versions in that the backtracking, or reduction of the index k,
is not explicitly shown. Thus the algebraically motivated
backtrack program manages to ‘hide’ the stack control from
the programmer—a feature that is desirable in recursive
programming.

4.2. The problem of the eight queens

The eight queens problem is often used in the literature
(Dijkstra, 1972) as a standard example of the application of
backtracking. The problem is to find ways to place eight queens
on a chessboard so that no queen is attacking any other queen.
A brute force approach might examine the (%) possible
positions in which eight queens can be placed. With the
observation that at most one queen can be placed in a row, the
search space can be narrowed to (8)® positions. We examine the
(8)® positions by placing queens in rows 1,...,/ and then
attempting to place a queen in row / + 1, in the eight possible
column positions of that row. When placement of a queen in
row i + 1, column j is not allowed—because that square is
under attack—the attempted partial solution, including
(i + 1,/) will never lead to a valid solution. In the algebra of
backtracking, that partial solution is a zero.

We present first the abstract version of the eight queens
problem followed by the program text of the B6700 ALGOL
program. In these programs the following notations have been
used:

queen has been placed in row k;

qa(k):
if k = 7 then write out the solution, otherwise
attempt to place a queen in row k + 1.
col[c]{(=) column c is free
up [u] (=) upward diagonal u is free

down [d] (=) downward diagonal d is free
Q[0...k]: placement of queens O, ...,
partial solution

k representing a

The abstract program is:

qa(k) A if k = 7 then print Q
else for i/ to 8 do
if not zero(i) then
ok + 1] :=
qatk + 1)
fi
fi;
for i to n do (Q[0] := i; qa(0))
Note that the abstract program follows the general back-
tracking pattern with k = 7 corresponding to a leaf of the

References
ASHCROFT, E. and MANNA, Z. (1972).
Holland Publ. Co., Amsterdam, The Netherlands, p. 250-255
BURGE, W. (1975).
BuURrsTALL, R. M. (1969).
BURSTALL, R. M. and LANDIN, P. J. (1969).
D. Michie, (eds.) American Elsevier, p. 17-43
DuKSTRA, E. W. (1972).
GoLoms, S. and BAUMERT, L. (1965).
GRATZER, G. (1968).
KNuTH, D. E. (1974a).
No. 4, p. 261-302
KNuTH, D. E. (1974b).
KnNuts, D. E. and FLoyDp, R. W. (1974).

344

search tree. In the complete program following;the zero test
uses the three arrays, col, up, down, to check if the square
being evaluated is under attack.

The complete ALGOL 60 program is:

begin
file out (kind = printer);
integer array Q[0:7];
boolean array co/ [0:7], up [—7:+ 7], down [0:14];
procedure ga(k); value k; integer k ;
if k = 7 then write(out, {8(x2,i2)>, Q)
else begin integer ¢, u, d,;
c:=0;
u:=k+1)-c;
d:=k+ 1)+ ¢
while ¢ < = 7 do begin
if col[c] and up[u] and down[d]

then begin
Ok + 1] :=c;
col[c] := up[u] := down[d] := FALSE;
qalk + 17;
col[c] := up[u] := down[d] := TRUE;
end
end ga;
integer ¢, J;
Jji=0;

while j < = 7 do begin
col[j] := TRUE;
ji=*+1
end;
i:=0;
while j < = 14 do begin
up[j — 7] := down[j] := TRUE;
Ji=*4+1
end;
c:=0;
while ¢ < = 7 do begin
col[c] := up[c] := down[c] :=
Q[0] :=
qa[0];
col[c]) := up[—c] := down[c] := TRUE;
c:=*+1
end

FALSE;

end.

nB Aq 822E6€/07E/¥/0Z/010ME/|ulWo0/100 dNo"olWapeo.//:SARY WOl PAPEO|UMOQ

5. Conclusion
We have shown several examples in which the algebra of an’
algorithm can be used to clarify a program text and its accomsS
panying documentation. The programmer who knows thes
relevant algebra will be better able to understand the programsU
More, an understandmg of the deep structure can lead tO‘—
improved versions of programs in which properties of th@
underlying algebra can be exploited in the control structure of™
the program.

The Translation of ‘go to’ programs to ‘while’ programs, Proc. IFIP Congress 1971, Vol. 1, North

Recursive Programming Techniques, Addison-Wesley, Reading, Mass.
Proving Properties of Programs by Structural Induction, The Computer Journal, Vol. 12, p. 41-48
Programs and their Proofs: an Algebraic Approach, Machine Intelligence, 4. B. Meltzer and

Notes on Structured Programming in Structured Programming by Dahl, Dijkstra, and Hoare, Academic Press
Backtrack Programming, JACM, Vol. 12, No. 3, p. 516-524

Universal Algebra, Van Nostrand, Princeton, NJ

Structured Programming with go to Statements, ACM Computing Surveys, Special Issue: Programming, Vol. 6,

An Analysis of Alpha-Beta Pruning, Stanford University Report STAN-CS-74-441
Notes on avoiding ‘go to’ statements, Information Processing Letters, Vol. 1, No. 1, p. 23-31

The Computer Journal

KosARrAJU, S. Q. (1974). Analysis of Structured Programs, Journal of Computer and System Sciences, Vol. 9, p. 232-255

LEAVENWORTL, B. M. ed. (1972). Special Issue on Control Structures in Programming Languages, ACM Sigplan notices, Vol. 7, No. 11
Levy, L. S. (1976). Automata on Trees: A Tutorial Survey, Egyptian Computer Journal (forthcoming).

MiLis, H. D. (1972). Mathematical Foundations for Structured Programming, FSC 72-6012, Federal Systems Division, IBM Corporation,

Gaithersburg, Md.

NiLssoN, N. J. (1971). Problem-Solving Methods in Artificial Intelligence, McGraw-Hill, New York, NY
PREPARATA, F. P. and YEeH, R. T. (1973). Introduction to Discrete Structures, Addison-Wesley, Reading, Mass.
YeLowitz, L. (1973). A Symmetric, Top-Down Structured Approach to Computer Program/Proof Development, IBM Report FSC

73-5001, IBM Federal Systems Division, Gaithersburg, Md.

Book reviews

Informal Introduction to Algol 68, by C. H. Lindsey and S. G. van der
Meulen, 1977; 361 pages. (North Holland, for 1FIP, US$14.50)

ALGOL 60 appeared in 1960; the report was quite difficult reading
to a generation not brought up on Backus Naur Form, but it became
the users’ bible. A few errors were detected and a revised report
appeared in 1962. ALGOL 68 appeared in 1968, by which time the
whole scale of everything had increased. The difficulty of mastering
the extended grammatical techniques used in defining it meant that
few but specialists gave the report more than a single shuddering
glance, and so in 1971 an official informal introduction appeared.
As aresult of the ‘field trials’ stage, a revised report appeared in 1974.
This revision went further than the ALGOL 60 revision did; it made
significant improvements in the language (as well as extensive addi-
tions to the descriptive techniques). The 1971 introduction was no
longer an accurate one, and the work here under review is its
consequential revision.

Every serious computer science undergraduate who uses ALGOL
60 has his own (often Xeroxed) copy of the ALGOL 60 report.
Because it carries the guarantee not only of the authors but also of
the whole of IFIP WG 2.1, this work is nearly as authoritative as the
Report itself, and might fulfil the same function for ALGOL 68 were
it not far too big to do so. It starts with a sixty page ‘Very informal
introduction’; one wonders whether authors and publishers have
considered making this available by itself to penurious students. As a
substitute for the report in this context its only defect, which it
shares with the main work, is that it dispenses entirely with any
formal grammar. 1 found it very clearly written. Apart from an
unintended and distracting mnemonic in using fun rather than fn
or func for function, and an unidiomatic usage of constantly (using
constantly yielded for yielded . . . in the form of a constant), my only
complaint is that I still, after considerable investigation of scope,
range and reach, cannot see how a local generator in a for-loop can
produce storage that outlives the control variable. (That the work goes
too fast for anyone to absorb properly on a single reading is inevit-
able.) The main work is directed to the specialist student, whether
advanced programmer or implementer; it covers the whole language
by a profusion of program snippets illustrating each point as it
arises. Like the 1971 version, it is organised as a two-dimensional
array of sections so that it may be read by rows (each introducing a
new development of phrase structure) or by columns (each dealing
with a new concept in data structure and its associated notation).
Thefinalrow consists of more extended examples appropriate to each
column. Appendices include a description of the sublanguage
ALGOL 68S and of the recently approved stropping conventions.

ALGOL 68 on the defensive is its own worst enemy, and some of
this survives in this book. Thus although it is to be commended for
restoring to us such familiar terms as expression and statement, it
does its subject no good by suggesting that coercion saves us from
writing widenedtoreal(i) when everyone knows that all it saves us
from is float(i). Nevertheless, these are minor criticisms. We have too
often learned the hard way that, where the concealments and pro-
tections of high level languages are concerned, ignorance is not always
bliss. ALGOL 68 has chosen to develop a machine independent way
of describing some of what goes on behind the scenes; just enough to
restore the bliss without incurring the folly. Consequently this is a
work that should be in every computer library, and that will be
invaluable to anyone involved with a real understanding of what
computing involves.

B. HigMAN (Lancaster)

Volume 20 Number 4

Digital Picture Analysis, edited by A. Rosenfeld, 1976; 351 pages.
(Springer-Verlag, Topics in Applied Physics, Vol. 11, US$29.60)

Visual inspection as a routine task in industry, medicine and com-
merce represents an enormous labour bill. This fact has fascinated
computer scientists and engineers for several decades now and has
spawned massive research efforts to automate these tasks with a
consequent vast literature. This book is a valuable source of refer- 9
ences to that literature except for the singular omission of theg
substantial body of work on computer interpretation of images ofg
three dimensional scenes. The five substantive chapters are separately &
authored, and each treats a different topic area. There is an Q
(obligatory) account of character recognition by Professor Ullmann o 3
which is poorly illustrated and fails to give a sense of the challenges =
remaining in that field, e.g. recognition of badly written material like%
signatures. A chapter by Haralick on the interpretation of images of £
the land surface, e.g. air photos, does little more than parade the & 3
mathematics of decision theory: it gives us no sense of how well that &
mathematics performs nor of what the state of the art is. Both 3
authors remain remote from the giver of the task. Mcllwain’s £
account of work in high energy physics—basically of the automc\ticU
analysis of bubble chamber photographs—ls at the other extreme. g
The physics underlying these images is well understood and theB
recognition techniques are carefully tuned to the explicit recovery 8
of the three dimensional geometry of the particle track. We are§
presented with large amounts of high energy physics but no general
principles of picture analysis emerge. Preston’s account of work ong =
the analysis of cell images mcludmg work on chromosomes done in m
the UK by Rutoviztz’s MRC group is a massnve piece of scholarship,
with more than 400 situations.

The best chapter however is that written by Harlow and his
colleagues, in which they describe their work in devising compu-
tational tools to accomplish automatic diagnosis of a variety of &
clinical abnormalities—bone malformations, heart disease, brain
tumours, etc.—starting from conventional radiographs The paperZ
is full ofmterestlng problem details, e.g. the ways in which congestiona
can occur in the heart—an important assessment in dlagnosmgm
congenital heart disease. Estimating this from a radiograph involves o
‘seeing’ the heart boundary: a difficult problem made worse by the ~.
fact that ‘there is some disagreement as to the location of the top of g
the heart, (so) we chose an arbitrary criterion suggested by radiolo-©
gists’. The active collaboration between potential users—in this r, N
case radiologists—and computer scientist produces something in m
which we can see how the problem interacts with the hoped for ©
means of its solution, namely the computing system. The collabor-
ation also provides the opportunity to compare results: human v.
computer interpretation—an evaluation all too often missing in the
engineer’s sorties into applications.

Perhaps the most interesting feature of their work however is the
clear sense of the variety of processes that have to be programmed
into an effect system. In his introduction the book’s editor Professor
Rosenfeld offers a unifying framework for the subject in terms of four
goals that he believes characterise pictorial pattern recognition—
matching, classifying, segmenting and recognising. If such a taxo-
nomy is to be useful, then it should inform the designer; while
Haralick and Ullmann would, I’'m sure, be happy with it Harlow
and his colleagues seem to me to have felicitously indulged in what
Preston in his chapter disparagingly refers to as ‘the adhockery’ of
shape analysis. But shape and the meanings of shape is what it’s all
about, isn’t it Professor Rosenfeld ?

69/0178/17/03

Max CLOWEs (Brighton)

345

