Generation of permutation sequences

A. D. Woodall

Department of Computing, North Staffordshire Polytechnic, Blackheath Lane, Stafford

A recursive program for direct lexicographic generation of permutation segences is described.
From this, an approach to developing algorithms for non-lexicographic generation of sequences is
presented, and one such algorithm is examined and proved.

(Received April 1976)

Algorithms for the generation of permutation sequences have
attracted a good deal of interest in the computing literature.
A survey of existing algorithms, and an analysis of their charac-
teristics was given in two papers by Professor Ord-Smith of
Bradford (Ord-Smith, 1970 and 1971). In the second of these
papers, Ord-Smith refers to an algorithm of the present author
which has not so far been published.

A recent paper by Fike (1975), which gave a new algorithm,
has prompted preparation of the present paper, describing the
algorithm in question. Fike’s algorithm had proved, on test, to
be one of the fastest known, and since the algorithm presented
in the present paper appears to be faster than Fike’s, it seems
to be worth describing.

The method by which the algorithm was developed is des-
cribed: It shows that there are many related algorithms which
seem worthy of study. '

Lexicographic algorithm

The first stage in the development was writing a recursive
algorithm for generating permutations in lexicographic order.
In essence, to generate all permutations of a set of » marks,
held initially in order, the steps are:

1. If there are only two marks, the next permutation is got by
swapping them; otherwise:

2. We hold the first mark unchanged while we generate all of
the permutations of the remaining » — 1 marks (using the
algorithm being described).

3. On completing these, the n — 1 marks will have been reversed
(since we are generating in lexicographic order). Unless we
have finished, we reverse them, which leaves them back in
order.

4. Now we swap the first of the n marks with the largest of the
following n — 1 marks which has not yet occupied the first
position.

5. We now repeat from 2.

Iteration will be finished when all marks have occupied the first
position while the remaining positions have been through a
complete sequence of permutations.

An ALGOL 60 procedure for this algorithm is given in Fig. 1.
The marks are preset in the integer array 4. The procedure
EXEC is called after each new permutation has been pro-
duced—in the test it simply printed the sequences. The pro-
cedure is invoked by the statements: EXEC;LEXPERM(n);
A is indexed from right to left.

Non-lexicographic algorithm
If we remove the restriction that permutations appear in lexi-
cographic order, we can still use the algorithm described above,
but we omit the reversing of marks described in step 3.

We omit the restriction that the swap in 4 is of the largest of
the following » — 1 marks not yet used—instead we take any
of them that has not appeared before.

346

This leaves us with the problem of choosing the right item for
a swap, so that we select a different mark each time: of course it
must be a different mark—rather than a mark from a different
position.

A simple procedure, which works, is as follows:

1. When n is odd, the swap of the mark in the nth position i
always with the last of the n — 1 remaining marks.

2. When n is even, the swap is with marks in the positiong
starting with that next to the nth mark, and working across..

To make the procedure clear, Fig. 2 gives the full print of the
permutations of the integer marks 1 to 4 using this method. %

An ALGOL 60 procedure for this algorithm is shown mn
Fig. 3. Testing for ‘even’ or ‘odd’ is by means of a globabg
Boolean array which is preset ‘true’ or ‘false’ as appropriates

In other ways the procedure is similar to that in Fig. 1.

eojuMBg

5}

Proof of algorithm
To show that the algorithm of Fig. 3 does in fact generat
permutations, it is necessary to show that the swapping proy
cedures used always pick on a different mark. 3
In the ‘odd’ case, where swapping is always with the ﬁrsé
position, we must show that the algorlthm applied to the outeE
n — 1 marks leaves a different mark in the first position aftem
each call. In the ‘even’ case, the marks must be shown to rotate>
appropriately.

od/uBo dno-olw

procedure LEXPERM (n); value n; integer n;
begin integer w;
if n = 2 then
begin w := A[1];
All] := A[2]; A[2] :=
EXEC
end
else
begin integer mp, hlen, i;
for mp :=n — 1 step —1 until 1 do
begin LEXPERM (n — 1);
hlen := (n — 1) + 2;
for i := 1 step 1 until hlen do
begin w := A[i];
A[i] := A[n — i];
Aln—i]:=w
end;
w = A[n]; A[n] := A[mp]; A[mp] :=
EXEC
end;
LEXPERM(n — 1)
end
end;

20z Iudy 61 uo 1senb Aq 9¥8E6E/9VE/Y

Fig. 1 The lexicographic algorithm. Uses global array 4 (for the
marks), and a global procedure EXEC

The Computer Journal

As a first stage in the proof of the algorithm, we notice that
it is simple to check whether or not the procedure works for all
values of n up to any given number. The check proceeds as
follows:

For each value of n we both check that the algorithm works,
and discover how the marks are reordered in a complete cycle
of n! permutations.

With n = 2, the complete cycleis: C D ;D C.

The algorithm clearly works, and the reorder is a reversal (it
could scarcely be anything else).

With n = 3, the complete cycle is:

ooaaww
el-A--Avivie!
wAgOwWOU

In this case the algorithm works (the check is simply that each
mark has appeared in the left hand column) and the reordering
is again a reversal.

With n = 4, we no longer need to run through all the
permutations. We have:

B C
(using the n = 3 result)
(using the algorithm)
(using the algorithm)

(using the n = 3 result)

D
B
B
A (using the n = 3 result)
A
B
C (using the algorithm)

wO: Qg o> >
>p wwr >
oo oo ao-

B C D A (using the n = 3 result).

Again the algorithm is checked (each mark has appeared in the
left hand column). This time the reordering is cyclic.

Desk checking becomes tedious, and a program to perform the
check was written. However, it is not needed since the pattern of
reordering revealed by the check leads to an inductive proof of
the algorithm.

We note that, if # is odd, the algorithm reorders the marks
initially in positions M, to M, into positions as follows:

M, goes to position 1
M, goes to position n 1)
other marks finish in their starting positions.

If n is even the reordering gives:
M, goes to position 1
M,_, to position n
M, goes to positioni — 1 2<i<n-—1) 2
M, goes to position n — 1
M, goes to position n — 2

The above results have been verified by the desk check above
for small values of n. To complete the proof by induction,
consider first the application of the check where # is even.

The positions n — 1 to 1 (an odd number of positions) are
reordered as in (1) above; then we swap the nth position with
(successively) the n — 1th down to the first, reordering from
n — 1 to 1 between each, and after the last.

If the fortunes of the mark originally in position n are
followed, it will be seen to move initially to positionn — 1, and
thereafter to alternate between positions 1 and #n — 1, finishing
in position 1 (remember that » is even, n — 1 odd).

In a similar way, the resting place of each mark is found to
accord with the scheme (2) above.

The discussion of the proof with » odd is similar: In each case

Volume 20 Number 4

NN WW=—=—~RANRANWWNDDN

NWWNhNDARAW
—_ W= WNDNWADNWSA
NN WLWWLWWWW
WWARRAR~—=—>RANDN
Arm—LWWADRANOND—=—hA
— AW RAWNRAR~=NDRA—~

I O N QI O N N

2. W — - N

Fig. 2 Sequences generated by the non-lexicographic algorithm

procedure PERM ALL(n); value n; integer n
begin integer w
if n = 2 then
begin w := A[1];
A[1] := A[2]; A[2] :=
EXEC
end
else
begin integer mp, swpt;
for mp := n — 1 step —1 until 1 do
begin PERMALL(n — 1);
swpt .= if even[n] then mp else 1;
w = A[n]; A[n] := A[swpt]; A[swpt] := w;
EXEC
end;
PERMALL(n — 1)
end
end;

"dno-ojwiepeose//:sdiy woly papeojumod

0J/W0o

Fig. 3 Non-lexicographic algorithm (recursive). Uses global arrays 4
(for the marks) and even, and global procedure EXEC

[
=
o
»
-
(4]
o
@
[N
-
[¢]
w
(=
-
=4
ae
=
=
(e}
=
e
I
=
[=N
[on
c
=
-
o
e
o
c
»
Py
-
S
)
=
%]
g
<
5
[a N
=
(@}

b

J0Z/Bl0HE/ Ul

tion, that the algorithm is universally valid.

Efficient implementation
To give an efficient program for the permutation algorithm
recursion is eliminated. The result is the procedure of Fig. 4.
This is a useful, general way of producing effective algorithms ;=
A high level, often recursive, procedure reveals the structure ofo
the algorithm. Eliminating recursion gives a fast, but often less?
readable procedure. Examples of this methodology are to be3
found, for example, in Knuth’s tree visiting algorithms (Knuth,
1968) and in Fike’s paper already cited (Fike, 1975). The presen%>
algorithm gives a particularly effective example.

9v8E6E/9VElY

(a) To start with, the depth of recursion corresponds to one ofi
the positions where a mark is held. This is kept by the value
of a pointer p (in fact n — p + 1 corresponds to the depth
of recursion).

(b) Secondly, we note that when the recursive procedure is
entered, the first step is a recursive call, and this proceeds
down to the depth where p = 2. In the non-recursive version
(Fig. 4), we set p = 2 initially, jumping straight to the
bottom level, rather than descending through intermediate
levels.

(c) Thirdly, we note that while the natural return from a
recursive call is to the level immediately above, after the
last call from a procedure of the level below, there is no
more work to be done and the procedure exits at once (to
the appropriate level above).

To allow for this in the non-recursive procedure we keep

347

an array ‘ret’, holding the value of p to which control is to
be returned. On the last descent of any cycle, we set the
return value for the immediately lower value of p to the
point where the present level is to return.

At the same time we must set the current level’s ret to the
one above, since the normal initiation will be avoided by the
streamlining of step (b) above.

(d) Finally to further speed the program, we include the p = 2
interchange along with the next one in a loop (every
alternate interchange is at p = 2). This is why the loop
control sets p = ret(2), rather than p = 2 as (b) above
would suggest. It also means that the reset of ret(2) be-
comes a special case, which is taken care of by the first
statement in the loop—setting ret(2) to 3 again whenever it
has changed, but after the change has been effective.

The local variable mp of the recursive procedure reappears in
Fig. 4 as the array M, indexed by p. The even/odd information
is held by the sign of M.

Analysis of work done

The program of Fig. 4 has an extremely simple structure. The
loop is traversed exactly once for each two permutations, apart
from the last two. That is the loop is traversed n!/2 — 1 times.

At the first test in the loop, p > 3 will be false on exactly %
of the traversals.

Apart from this, there are just two paths within the loop,
depending on the outcome of the test mp = 0. Let S be the
number of occasions where the test shows mp = 0. At the
top level (p = n) there is one such occasion. At p =n — 1
there is one for each of the n descents from above, and so on.
Thus

S=1l+n+nn—-1)+...+nn-1)...4

= n! l_*_ 1 + 1 + l
\mTE—D T w2 3

if n is large we have S =n!(e — 2-5).

Thus the proportion of loop traversals where mp = 0 is
approximately S/(n!/2 — 1) ==2(e — 2-5) ==0-436.

The proportion where mp # 0 will thus be approximately
0-564. A simple count of the program will now give the
average computational cost per permutation. We remember
that each loop generates two permutations, and ignore the
two outside the loop, and the other initialisation—which is
slight.

We now have (for large n): cost per permutation =

1 exchange of a pair of marks
+4-205 array accesses
+ 5-769 assignments
+0-936 add/subtract operations
+2-5 “if” tests.
This permits comparison with previous algorithms.

Further improvements

The decision to include the permutations of the end two marks
explicitly in the loop is arbitrary. It is equally simple to run
through the five changes of the end three marks within the loop,
or for that matter the 23 changes of the end four marks.

This kind of improvement of a permutation algorithm is not
new; it has been used effectively by Boothroyd (1967). The
details are simple—the value of p is set to the appropriate ‘ret’
value (3 or 4), the values of the marks are captured as variables
at the beginning of the loop, and the work per permutation is
drastically reduced.

The details of these programs and their analyses are not given:
they can be simply constructed.

348

procedure perm(A, n, exec); value n; integer n;
integer array A; procedure exec;

begin integer p, Mp, swpt, i, w;
integer array M, KM [3:n], ret[2:n];
for i := 4 step 2 until n do

begin M[i] := KM[i] :=i—1;

MG -1]:=KM[i-1]:=2—1i

end;
ifn+2x 2% nthen KM[n] := M[n] :=1 — n;
for i := 2 step 1 until n do ret[i] :=i + 1;
for p := ret[2] while p < n do

begin

if p > 3 then ret[2] := 3;

exec;

w = A[l]; A[1] := A[2]; A[2] := w;
Mp := M[p];

if Mp < 0O then

begin swpt := 1; Mp := Mp + 1 end
else

begin swpt := Mp; Mp := Mp — 1 end;
if Mp = O then

begin

M[p] := KM[p];

ret[p — 1] := ret[p];

retp] :=p + 1

end

else M[p] := Mp;

exec;

w:= A[p]; A[p] := A[swpt]; A[swpt] :=w
end;

exec;

w = A[l1]; A[1] := A[2]; A[2] := w;

exec

end of perm

Fig. 4 The final form of the algorithm as a self-contained ALGOL 60
procedure

Other algorithms

Reverting to the recursive version of the algorithm, the
particular procedure used for choosing which mark to swap
with the nth mark is not the only possible one.

A similar, but slightly more complicated procedure yields the
familiar sequence due to Wells (1961). Here, if n is odd, the
first two swaps are with the adjacent mark, thereafter swapping o
is with positions starting at the end and stepping across. With @
n odd, the swap is always with the adjacent item.

Once an algorithm has been established, the non-recursive _
version can be simply obtained. In fact there is an obvious
correspondence with Wells’ algorithm, the array M of Fig. 4 =
corresponding to the variable radix counters used as a ‘sig-
nature’ by Wells. The improvement involving the array ret ®
could also be devised, simply by considering ways of econo-
mising the counter mechanism.

However, the derivation via the recursive algorithm seems
more natural and shows clearly how other sequences can be
found. In fact, if the places for each of the n — 1 swaps with the
nth position in a cycle at depth n are held as the nth row of a
two-dimensional array, no algorithm need be found. The array
can be constructed, for example, so that the swap to the nth
position is always of the largest mark not yet to have been
there (taking ‘largest’ to mean leftmost in the original order).
This approach, with a study of the array formed, seems likely
to yield interesting results.

d 9¥8E6E/9VE/F/0Z/0101HE/|UfWOd/Wod dno-dlWapedE//:SARY WOl papeojumod

61 Uo1sen

Conclusion
The traditional approach to the generation of permutation

The Computer Journal

sequences has been to assume that a direct program is too
difficult to write. This has usually led to study of a cognate
problem—generation of all states of a function whose states
can be placed in one to one correspondence with permutations.

The function is chosen so that its states are simply generated
and the correspondences are amenable to mathematical study.

The present paper shows that the problem can be solved by
direct programming.

References

BoOTHROYD, J. (1967). Algorithm 30, The Computer Journal, Vol. 10, p. 310

Fikg, C. T. (1975). A Permutation Generation Method. The Computer Journal, Vol. 18, pp. 21-22

KnNuts, D. E. (1968). The Art of Computer Programming, Volume 1: Fundamental Algorithms, Addison-Wesley Publishing Company,
Reading, Massachusetts.

ORD-SMITH, R. J. (1970). Generation of Permutation Sequences: part 1. The Computer Journal, Vol. 13, pp. 152-155

ORD-SMITH, R. J. (1971). Generation of Permutation Sequences: part 2. The Computer Journal, Vol. 14, pp. 136-139

WELLs, MARK B. (1961). Generation of Permutations by Transposition. Mathematics of Computation, Vol. 15, p. 192

Book reviews

Modelling and Performance Evaluation of Computer Systems,
edited by H. Beilner and E. Gelenbe, 1977; 515 pages. (North-
Holland, Dfl. 95.00)

ojumoq

spread and their output is usually a simple plot shown on a type-—
writer. The problems tackled are mostly concerned with expressmgg
the data in a simple way, such as with equal spreads in different &
groups or straight line relationships between variables, and with 3
spotting outlying values which require special attention. The approach 3
is a refreshing change from that of the standard statistical texts 1%
though (as with the parent book) it is not always clear just what the &
proposed analysis is for; the recommended approach seems to beg?
‘Here’s some nice data—Ilet’s analyse them’ rather than one which®
starts with the purposes for which the data were gathered in the3
first place. Symptomatically, the brief section on expernmentalo
design is almost worthless. c

The book contains algorithms both in APL and FORTRAN foro
doing the various analyses. These are potentially quite useful butg
could have been far more so had a little more care been taken. IO
cannot speak for the APL, but the FORTRAN contains many_
non-standard features and the algorithms are imagined as embeddedS
in an operating system which is fairly sophisticated in its handling ofn
temporary files, default parameter values and so on. I hope to try([>
them out in practice, but I do not anticipate that this will be a'\>
particularly easy task.

This book consists of 31 papers presented at the 1976 International
Workshop of Modelling and Performance Evaluation of Computer
Systems. Two thirds of the contributions are from West European
research laboratories and universities, and the remainder from
Eastern Europe and USA.

The largest group of papers aims at an understanding of the proces-
ses within a computer, hence mathematical models of virtual storage
systems, multiprogramming facilities, file assignment and other
characteristics associated with large computers are presented. Some
of the authors provide solutions to classes of queueing networks
which have made advances to probability theory, whereas others use
existing modelling techniques such as queueing theory, simulation,
Markov processes, or dynamic programming. The other major group
of papers is concerned with scheduling of externally given tasks
through the computer. Simple statistical models are described as well
as more complicated heuristic models. In addition, two papers
concentrate on measurement aspects of information inside a com-
puter, and there is a textbook type contribution on ‘Statistics and
simulation’.

The papers vary in length from two to 32 pages and differ con-
siderably in quality. Some authors present no more than a theorem or
mathematical formula with sparse explanation, whereas others
describe their models in some detail together with experimental
evidence. The editors give no guidance to the reader who wishes to
select certain topics, nor are the papers arranged in any coherent
sequence.

This is not a book for the commercial computer installation, but
could be of benefit to the mathematically orientated researcher in
computer science or probability theory.

M. J. R. HEAaLY (Harrow)

Systems: Analysis, Administration and Architecture, by J. W.
Sutherland, 1975; 339 pages. (van Nostrand Reinhold, £6-95)

6 Aq 98€6€/9YE/7/0

n

Computer scientists and computer practmoners make frequent use o
of the word ‘systems’ but rarely so in the sense in which it has-
become used in system science circles. Indeed system science has, 503
far, not had much practical impact on the computer field except©
perhaps tangentially in the field of ‘systems analysis’. However, eveng
there very few systems analysts are in fact aware of the thinking that;‘
has gone into the system science area these past 20 years. o

R. HoLsTeIN (London) . S
It is of course not only in the analysis of a potential computer®

Interactive Data Analysis, by R. R. McNeil, 1977; 186 pages. (John
Wiley, £7-00, paper only)

The title of this book requires interpretation. ‘Data analysis’ is a
branch of statistics pioneered by J. W. Tukey of Princeton Univer-
sity, whose influence is pervasive throughout the book—it may
indeed be regarded as an introduction to Tukey’s Exploratory Data
Analysis, recently published by Addison-Wesley after some years of
informal circulation. ‘Interactive’ is taken to imply that the results of
one piece of data analysis can be used immediately as input to the
next piece, without a computer necessarily being involved.

On the statistical side, the original flavour of the book may be
illustrated by the fact that it contains no mention of significance tests
of any kind, and that the mean as a measure of location is only
introduced (in a rather complex form) in the final chapter. The
methods illustrated are essentially descriptive. They are based on
medians and inter-quartile distances as measures of location and

Volume 20 Number 4

application, and the design of the hardware and software to imple-
ment it, that system science can make a contribution. Examination of
the complex problems facing the software industry, the design of the
software process, the implementation and maintenance of large
programs, all constitute problems that are typical of those for whose
solution system science offers an approach. Similarly, as computer
system design moves further and further into the distributed
computer area, the system approach becomes increasingly important.

Systems thinking is thus a must for the serious computer scientist
or practitioner, the system architect, the software designer and the
executive with computing responsibilities.

Sutherland’s book, Systems: Analysis, Administration and Archi-
tecture, gives a first class introduction to the subject area. It is
relatively simple reading yet comprehensive. Once picked up it is
difficult to put down and this reviewer can only recommend it in the
strongest terms.

M. M. LeamaN (London)

349

