Hints on proofs by recursion induction’

J. M. Brady

Computing Centre, University of Essex, Wivenhoe Park, Colchester CO4 35Q, Essex

In 1963 John McCarthy proposed a formalism based on conditional expressions and recursion for
use in the emergent theory of computation. Included in his proposals was a proof technique, known
as recrusive induction, which could be used to establish the equivalence of recursively defined
functions. This paper shows that the discovery of an equation to serve in a proof by recursive
induction does not have to rely on luck or inspiration, but can be developed rationally hand in hand

with the development of the proof.
(Received November 1975)

In 1963, John McCarthy (1963) published a seminal paper in
which he proposed a formalism based on conditional expres-
sions and recursion for use in the emergent theory of com-
putation. He also introduced a class of nonnumerical symbolic
expressions which he called S-expressions, and conjectured
that there might be a calculus of S-expressions analogous to
number theory. To this end, one of his more important con-
tributions was a proof technique known as recursion induction,
which could be used to establish the equivalence of recursively
defined functions, including functions of S-expressions. Suppose
that g(x) and A(x) are recursively defined functions which we
want to prove equivalent; for example we might have
g(x) = reverse [append [x1,x2]] and A(x) = append
[reverse [x,], reverse [x,]]. Recursion induction asserts that
we may conclude that g is equivalent to 4 if we can find an
equation

Sfx) = &(x, /)

which we can prove (a) defines a function f and (b) is satisfied
by g and h when they are substituted for f. Morris (1971)
points out that the justification of this claim is based on
Kleene’s first recursion theorem (Kleene 1950, page 348).

Despite its intended application to functions of S-expressions,
we illustrate the method with a simple application to the natural
numbers due to McCarthy (1963, page 59). Define addition in
terms of the successor x* and predecessor x~ as follows:

x+y=@x=0-yx +y%). (M
We can prove that (x + »)* = x + (»™) as follows:

let g(x,y) = (x + »)* and A(x,y) = x + (¥*), and use the
equation

f&59) = =0y, f(x7,3") . @

A simple induction proof on x establishes that (2) defines a
function, so we are left to show that it is satisfied by g and A.
g0, y) = (x + y)*

=@x=0-y,x" +y")* //definition of addition

=(x=0-y" (x~ + y*)") //property of conditional}

=(x=0->yp%g(x",y%)) //definition of g
so that g satisfies (2). The proof for 4 is similar.

In the above proof, we have followed the normal dictates of
mathematical elegance and given no clue as to the process by
which f was discovered. Other instances of such elegance in the
theory of computation include the discovery of Ackermann’s
function and the Grzegrocyck hierarchy. (Elsewhere we have
shown how the process of discovering them can quite easily be
explained (Brady, 1977).)

Experience soon shows that once an appropriate equation
such as (2) has been discovered, the proof usually proceeds

*The author would like to thank the referee for his helpful comments.

tthat is, f(p — a, b) is equal to p — f(a), f(b).

Volume 20 Number 4

fairly straightforwardly; the most difficult problem is seen to
be the discovery of the equation for f. This paper discusses that
discovery process. In particular, we argue that a major mis-
conception is that the discovery of the equation for f is inde-&
pendent of, and precedes, the proof of equivalence. On the3
contrary, we shall show how the equation may be dlscoveredC>
rationally, if heuristically, by matching (appropriate expanswnsm
of) the equations for g and 4 and previously proved theorems. >
It transpires that such matches only succeed when there is aB
certain structural similarity in the equations roughly corres-
ponding to a similarity in the control structures embodied in the"’
interpretation of the recursive definitions. For example, it lSo
very difficult to prove that (x*) +y = (x +»" w1thouta
changing the definition of addition to

x+»)=0=0->x,x"+y7) (3)§

(in which case one can use a very similar proof to that outlined3
above). The point is that the definition of x + y given abovei
recurses downwards on the value of x, building up the result i m3
y, while (x* +3) = (" =0-y,(x*")” + y*) requires as
test in the equatlon for f which can simultaneously be satlsﬁed:
by z = 0 and x* = 0. This point seems to support Dijkstra’sg
(1972, section 8) argument that programs should only beO
considered equivalent if they embody structurally sxmllarg
processes as well as computing the same function. The abllltyw
to match terminal tests implies a degree of such similarity, and%
will lead us to formulate a heuristic of expanding mnermostoo
function appllcatlons first, since functlon nesting provides a0>
form of sequencing.

The previous paragraph refers to a confusion which is as olciQ
as computer science. Equation (1) is intended to be a deﬁn1t10n~
of the familiar addition function, given in McCarthy’s (1963)3
conditional expression formalism. Mathematics currentlyﬁo
defines a function to be a set of ordered pairs, and so there isS
nothing to choose between equatlon (1) and any other des-m
cription of the same function, that is, set of ordered pairs. InM
particular, there is no mathematical difference between
equations (1) and (3). The difference between equations (1) and
(3) referred to in the preceding paragraph arises when
McCarthy’s formalism is given an algorithmic interpretation.
Thus as well as defining the ordered pair ({3, 4>, 7), we also
think of equation 1 as giving rise to the computational sequence
3,4, 2,5, <1, 6), 0,7, finally yielding the answer 7.
Similarly, if f and g are functions, their composition g(f(x)) is
also a function, and mathematics does not prescribe that the
computation of an instance of g(f(x)) should first consist of an
application of f, and one of g, although this is the usual
algorithmic interpretation of composition. To be precise,
recursion induction is a technique for proving the equality of

353

two functions which have different descriptions. In the
remainder of this paper we shall be content to note the above
remarks, and continue to refer to the process embodied by a
function. Elsewhere the author, together with Richard Bornat,
has explored the above issue more deeply as part of a con-
tinuing critique of mathematical semantics (see Brady 1977,
chapter 8). Bornat and Brady (1977) also contains more
difficult proofs than those given here, whose purpose is not to
establish interesting new theorems but to illustrate the idea that
recursion induction proofs can be developed quite rationally
hand in hand with the discovery of the equation called for by
the technique.

Since McCarthy (1963), other techniques for proving equi-
valence have been discovered, notably computational induction
(Park, 1969; De Bakker and Scott, 1969) and structural induction
(Burstall, 1969; McCarthy and Painter, 1967). Burstall (1969,
page 41) points out that structural induction is a reformulated
special case of recursion induction which seems, however, to be
more easily applicable in the cases to which it applies. Boyer
and Moore (1973) use structural induction in a program which
automatically proves a large number of quite complex theorems
about functions of S-expressions defined in McCarthy’s
formalism. We suggest that the greater clarity of structural
induction, as well as the Boyer-Moore operations of reduce,
normalise, and generalise, can be explained in terms of the
analysis and matching described in this paper.

The author believes that the kinds of inferences described
below could be automated ; the use of a structural matcher and
lemma generator suggest a close relationship between this
study and Hardy’s (1975) system for automatically program-
ming LISP. Burstall and Darlington (1973, 1975) and
Darlington (1975) discuss some related ideas aimed at opti-

mising a recursive program or replacing a recursive program by .

an equivalent iterative one. The idea of automating the
discovery of mathematical proofs is discussed by Moses (1967)
and Bundy (1975).

The remainder of the paper consists of the detailed working of
three examples in support of our claim that the equation for f
can be discovered as the proof is discovered.

The theorems we shall consider involve the functions +,
defined above, as well as length, append and reverse, which
apply to single level lists, and which may be defined as follows:

length [/] = null [/] - 0, length [cdr [/]]7
append [/, m] = null[/] - m,
cons [car [/], append [cdr [/], m]]
reverse [/] = null [/] — NIL, append [reverse [cdr [/]],
list [car [/]]]

where list [x] = cons [x, NIL]. We shall also need the follow-
ing properties of S-expressions as well as various properties of
conditional expressions (see McCarthy, 1963, page 62).

car [cons [a, b]] = a

cdr [cons [a, b]] = b

cons [car [a], cdr [a]] = a, if a is not atomic
null [cons [a, b]] is false .

Theorem 1

length [append [/, m]] = length [/] + length [m]

We shall attempt to prove Theorem 1 by recursion induction:
define g [/, m] = length [append [/, m]] and hA[l,m] =
length [/] + length [m]. Clearly we are going to have to
expand an instance of each of length, append and + at some
stage of the proof, since the theorem would otherwise hold
more generally; the question is when. There are two possible
expansions on the left hand side, respectively yielding

g [/, m] = null [append [/, m]] - O,

length [cdr [append [/, m]]]* (L1)

354

gll, m] = null [/] - length [m], length [cons [car [/],

append [cdr [/], m]]] (L2)
There are three possibilities on the right hand side, two of which
involve expanding instances of length.

h [/, m] = length [/] = 0 — length [m],

length [/]~ + length [m]* (R1)

h [/, m] = null [/] - length [m],
length [cdr [/]]* + length [m] (R2)

h [, m] = null [m] - length [/],
length [/] + length [cdr [m]]* (R3)

The best match is (L2) with (R2), since it immediately disposes
of the terminal test and ‘suggests’ recursive calls with arguments
cdr [/] and m. That is, we attempt to find some function &
which enables us to transform (L2) into

g [/, m] = null [/] - length [m], k [g [cdr [/], m]]
and (R2) into

h[l,m] = null [/] — length [m], k [A [cdr [/], m]]
If we can successfully find such a &, the proof will be complete,
with

S, m] = null [I] - length [m], k [f [cdr [/], m]]
the equation needed formally in the recursion induction proof
technique. Now

k [g [cdr [/], m]] = k [length [append [cdr [/], m]]],
whereas the second half of L2 is
length [cons [car [/], append [cdr [/], m]]] . (L3)
We have still not used the definition of length. Applying the

definition of length and the properties of S-expressions noted
above, (L3) reduces to

length [append [cdr [/], m]]1*
which suggests that k [n] = n™. Similarly,
k [h [cdr [1], m]] = k [length [cdr [/]] + length [m]],
whereas we have in (R2)
length [cdr [/]]* + length [m] .
The choice of k[n] = n* is thus satisfactory if we can prove
(@ + b)* = (@*) + b, which matches the second Theorem

about + above. Hence the equation for f which enables a proof
by recursion induction is
f[I,m] = null [I] - length [m], f [cdr [I], m]* .

Consider the expansions (L2) and (R2). There were two possible
expansions on the left hand side; (L2) resulted from expanding
the innermost—that is to say the first in terms of the inter-
pretation of function nesting as sequencing. (R2) was chosen so
that the test matched exactly, and more generally that the
recursive call involved structurally similar function appli-
cations. These two observations amount to asserting that
recursion induction proofs rely on being able to match program
execution behaviour.

Theorem 2
reverse [append [/, m]] = append [reverse [m], reverse [/]]
There is a choice of two function applications on the left hand
side to expand; the ‘sequence’ heuristic used above suggests
expanding the (inner) call on append to give
null [/] — reverse [m], reverse [cons [car [/],

append [cdr [/], m]1].
Expanding reverse, to move it past the call to cons so as to
give a recursive call to g[/, m] = reverse [append [/, m]], we
get

null [/] — reverse [m], append [reverse [append [cdr [/], m],
list [car[/]]] =

null [/] — reverse [m],

The Computer Journal

B8EBE/ESE/P/0Z/9101E/|ulL0/Wo0" dno-olwepese//:sdRy Wolj papeojumoq

»
o

<
«Q

20z Iudy 6 uo }sen

append [g [cdr [1], m], list [car [/]]] (L)
On the right hand side, we have the choice of expanding
append, reverse [m] or reverse [/]. The terminal test ‘null [/]’,
and the ‘sequence’ heuristic, suggest expanding reverse [/],
which gives:
null [/] — append [reverse [m], NIL],

append [reverse [m], append [reverse [cdr [/]],
list [car [7]]]] (R)
matching the terminal test suggests a lemma:
append [L, NIL] = L ,
which is easily proved (by recursion or structural induction).
There is no immediate instance of 4 in (R), although we might
‘suspect’ A [cdr [/], m], which ties in with (L). In fact, (L)
strongly suggests the equation
SII, m] = null [I] - reverse [m],
append [f[cdr [/], m], list [car [/]]] (4)
which is satisfied by g. (4) would be satisfied by 4 if

append [4 [cdr [/], m], list [car [/]]] R2)
could be proved equal to
append [reverse [m], append [reverse [cdr [/]],
list [car [/]1]]] .

Now (R2) is
append [append [reverse [m], reverse [cdr [/]]],
list [car [/]]] ,
which suggests the associativity of append as a lemma:
append [, append [v, w]] = append [append [u, v], w]
This is easily shown using the techniques described in this
paper.

Theorem 3
reverse [reverse [I]] = 1.
In this final case, g[/] = reverse [reverse [/]] and A[l] = 1,

References

so that we have to work entirely from the left hand side to an
equation for f. Using the ‘sequence’ heuristic to expand the
innermost call to reverse, we get
reverse [reverse [/]] = null [/] — NIL,

reverse [append [reverse [cdr [/]],

list [car [/]171] ,
since reverse [NIL] = NIL. Matching suggests we should
work towards the recursive call reverse [reverse [cdr [/]]] of g,
which involves interchanging reverse and append. The left
hand side of Theorem 2 matches this subproblem, so we get
null [/] - NIL, append [reverse [list [car [/]]],

g [edr [7711 (L)
which suggests that we should try to simplify

reverse [list [car [/]]] .

The sequence heuristic suggests expanding list (there is no
obvious way to expand car), so we recall that list [m] =
cons [m, NIL]. We can now expand reverse using the pro-
perties of car, cdr and cons given above, to get

append [reverse [NIL], list [car [/]]]
which is list [car [/]]. Substituting back in (L1) gives
null [/] — NIL, append [list [car [/]], g [cdr [/1]] (L2)
This can be tidied up by expanding list to get the equation
null [/] - NIL, cons [car [/], g [edr [/]1]] ,
which is clearly satisfied by A.

The discovery of an equation to serve in a proof by recursion
induction does not have to rely on luck or inspiration, but can
be rationally developed hand in hand with the development of
the proof. A sequencing heuristic is suggested which reflects
one facet of the idea that proofs of equivalence are only
possible if the programs or functions to be proved equivalent
have a reasonably similar process structure.

BorNAT, R. and Brapy, J. M. (1977). Recursion Induction considered harmful (submitted for publication).
BovER, R. S. and Mooreg, J. S. (1973). Proving theorems about LISP programs, proceedings third Int. Jt. Conf. Art. Int., Stanford, pp.

486-493.
BraADY, J. M. (1977).

The theory of computer science: a programming approach, Chapman and Hall.

Bunpy, A. (1975). Analysing mathematical proofs (or reading between the lines), proc. fourth Int. Jt. Conf. Art. Int., Thlisi, pp. 22-28.
BursTALL, R. M. (1969). Proving properties of programs by structural induction, The Computer Journal, Vol. 12, pp. 41-48.
BURSTALL, R. M. and DARLINGTON, J. (1973). A system which automatically improves programs, Proc. third Int. Jt. Conf. Art. Int. p. 479.

BURSTALL, R. M. and DARLINGTON, J. (1975).
Los Angeles.

Some transformations for developing recursive programs, Proc. Int. Conf. reliable software,

DARLINGTON, J. (1975). Application of program transformation to program synthesis, Colloquium on proving and improving programs,

IRIA, France.
DE BAKKER, J. W. and ScotT, D. (1969).

A theory of programs, unpublished memo, Vienna.

DukstraA, E. W. (1972). Notes on structured programming, in Dahl, Dijkstra and Hoare, Structured programming, Academic Press, pp. 1-82.
HARDY, S. (1975). Synthesis of LISP functions from examples, proc. fourth Int. Jt. Conf. Art. Int., Tblisi, pp. 240-245.

KLEENE, S. C. (1950).

Introduction to metamathematics, Van Nostrand.

MCcCARTHY, J. (1963). A basis for a mathematical science of computation, in Computer programming and formal systems, (Braffert and Hirsch-

berg eds.) North-Holland, pp. 33-70.

McCARTHY, J. and PAINTER, J. A. (1967). Correctness of a compiler for arithmetical expressions, in Math. aspects of computer science,

Amer. Math. Soc., RI, pp. 33-41.

Mornris, J. H. Jr. (1971). Another recursion induction principle, CACM, Vol. 14, pp. 351-354.

Moses, J. (1967). Symbolic Integration, Ph.D. thesis, MIT.

Park, D. (1969). Fixpoint induction and proofs of program properties, Machine Intelligence, Vol. S, (Meltzer and Mitchie eds.), Edinburgh

University Press, pp. 59-78.

Volume 20 Number 4

355

20 udy 61 U0 159n6 Aq 9B8EBE/ESE/F/0Z/310ME/|ULOD/W0Y"dNO"DILLSPEDE//:SARY W) PAPEOUMOQ

