Boolean simplification and integer inequalities

J. M. Wilson

Department of Management Studies, Loughborough University of Technology, Loughborough,

Leicestershire LE11 3TU

A method for the minimisation of Boolean expressions is presented. The algorithm has as its basis the
Quine approach, but it is geared to handling larger sets of Boolean variables, rather than small sets
of variables encountered in traditional examples. These larger sets of variables occur when a
Boolean minimisation process is incorporated in an Integer Programming algorithm.

(Received December 1975)

1. Introduction

Various algorithms for handling sets of integer inequalities
using Boolean algebra have been developed by Granot and
Hammer, (1970). Many of these algorithms require that a
method of Boolean simplification such as that of Quine (1955)
be used. As the Quine procedure in its usual form is not always
suitable for computation, an approach is developed here which
leads to a more systematic procedure.

2. Definitions
I. Let the Boolean operation of union be defined on x,y
(x,y€(0, 1)) as

XVvy = max(x,y) .
2. Let the Boolean operation of multiplication (product) be
defined on x, y (x, y € (0, 1)) as xy = min (x, y).
3. Letx = 1 — x(x €(0, 1)) be defined as the complement of x.

4. Let the consensus of x¢ and xi with respect to x be defined
as ¢y where ¢, are Boolean products such that ¢ contains
no variable which is both complemented and uncomple-
mented.

5. A product of several Boolean variables is termed a
conjunction.

3. Integer inequalities
An integer inequality of the form

Zx

i=1

may be represented by the Boolean conjunction

f=xx...x,

n—1()(x;€©,1);i=1,....n)

in the sense that
xl =yl,x2 =y2’-'-,xn =yn (yie(os l)9l= l,...,n)
is a solution to (1) if and only if
SO =yyr.¥a=0.

It has been shown (Granot and Hammer, 1970) that for each
system of inequalities

é_‘,l a;x; <b; (x;e(0,1);i=1,...,n))

j=1,...,.m
there exists another system of form

z ikls ‘Sl| -1 (l= 1,29'~-7t) (3)
kieS;
Sie{l,2,..,n}VIi=1,...,¢

(where %, = x;, or X,
and |§;| denotes the number of elements in the set S,) such that
the set of solutions to (2) is identical to the set of solutions to
Q3).

Any solution to (2) will be such that

356

fi= T1x%=0 (/I=1,2,...,1)

kieS,

and so any solution to (2) will be such that

b=rfivav...vfi=0.

The function ¢ is called the resolvent of the system
inequalities (2) and is a union of conjunctions. It is likely th

Bo@umoq

the function ¢ will possess Boolean redundancies, e.g. for thg
inequalities 3
3

X+ X3 + x3 <2 Z

- ©

X, + X, +x3<2 a

— [V

¢ = X;X2X3V X X2X3 . 8

Q.

However, using the usual procedure of Quine (1955) simplg
fication ¢ may be reduced to ¢ = x,x;, as the otheg
conjunctions subsume (and imply) x,x;.

0o/woo dn

4. Simplification approach
The procedure of converting a set of inequalities to a resolveng.
has been found to be useful in solving the integer programminé;
problem

maximise Y ¢;x;

subject to
ax;<b, (j=1,...m)

(x; €, 1);i=1,....n)

(for further details see Granot and Hammer (1970).

When handling the resolvent to solve integer programming
problems frequent use of the operation of Quine simplifications
will be required. It has been shown by Quine that the operatloxi;>
of developing the consensi of a union of conjunctlons may bg
done in a finite number of steps. However, in many of th@
examples considered in Boolean simplification (see for mstancc
Quine (1955) and Zissos and Duncan (1973)) the number of
Boolean variables is small. When the procedure of Quine
simplification is used for a larger set of variables a more
systematic approach is needed as the operations will be neces-
sarily programmed on a computer. A systematic approach to
the handling of Quine simplification can be developed because
of the following result.

1senb Aq $06€6€/95€/7/0Z/9101M

Theorem

For a resolvent ¢ of Boolean variables x,, . . ., x, the set of all
conjunctions derivable by consensus operations within ¢ can
be derived by performing the operation of consensus on the
conjunctions separately with respect to each of the n variables
Xy, X3, - . ., X, €ach taken in turn in any order. Hence, the
operations may be completed in » sets of steps.

The Computer Journal

(a) Original Conjunctions

xz .\‘ 2
— ¢ d
X a e ya
X, b g h

(b) New conjunctions after consensus with respect to x,
Xy X,

cd cf, de, ef ch, dg, gh

(c) New conjunctions after consensus with respect to x,
X3 X,

ab ag, be, eg ah, bf, fh

(d) New conjunctions after consensus with respect to x,
(after x,) or x, (after x,). '
X, X,

cd, ab, ach, ag, be, eg ah, bf, fh
bef, cfh, agh
deg, adg, bef

bde, efgh
x, cf.de,ef — —
X, ch, dg,gh — —
Fig. 1
. Proof*

1. Consider first the variables x,, x,.
The conjunctions involving x,, x, are
ax,, bx,, cx,, dx,, ex,x,, fx,X,, gX,x,, hx,X, (1)
where a, b, . . ., h are Boolean products in other variables.
Now if consensus is performed on set (1) with respect to x,
and then on the augmented set of conjunctions and consensi
with respect to x,, 23 new conjunctions are produced.

If consensus is performed on set (1) with respect to x, and
then on the augmented set of conjunctions and consensi
with respect to x,, 23 new conjunctions are produced.
(see Fig. 1)

These two sets of 23 consensi conjunctions are identical and
so the results of the operation of consensus are independent
of the order chosen for x,, x,. But x,, x, were any variables
so that the operation of consensus can be performed with
respect to any two variables in turn in any order.

2. Results in permutation theory justify that an ordered set of
n variables may be expressed as any other ordered set of n
variables after a sequence of pairwise interchanges of
variables has taken place. 1, above shows that consensus is
independent of the order of any pair of variables, consensus
operations may be performed in any order on n variables
and produce the same set of consensi.

The simplification approach in algorithmic form is as follows:
for a set S of conjunctions in Boolean variables x,, x,, . . ., x,
select a variable x; and partition S into three subsets,

S;, those conjunctions which involve x; (uncomplemented)
S;, those conjunctions which involve x;
S;, those conjunctions which do not involve x; or X;.

The consensi between conjunctions in set S; and set S;, are
now formed. Any consensus which subsumes conjunctions in S
may be removed as it is redundant and any conjunction in S
which may be replaced by a conjunction which it subsumes and

*A fuller version of this proof is contained in (Wilson (1975).

Volume 20 Number 4

which involves fewer variables is replaced by the appropriate
conjunction.

Let S, denote the modified set formed from S after any
replacements have been made. There are now two sets of
conjunctions—the set S, and the set S*, of conjunctions
derived from S. A new variable X; not already chosen is now
chosen to replace x;; the split into three subsets is made over
S) U S*intoS;.S;,.S; suchthatS; US;, US; =S, US*

Consensus proceeds between S; and S;, and the consensi
formed are now included in the set S *. Removal of redundancies
takes place as before and the set S, is formed from S,. The
process continues for each of the n variables x, . . ., x, until
finally the situation is reached where the sets S, and S* are
left (S* being redundant to S,).

For the purposes of integer programming the set S, will
suffice as a representation of the conjunctions as the Boolean
information is now in a concise form; however, criteria such as
those of Zissos and Duncan (1973) can be used to shorten the
size of the final representation. This option was included in one

computer program and made no appreciable reduction in timeg

used.

Notes

SpEojUMO

1. Various rules for which variable X; to select can be adopted.=

A rule which was found convenient to program was tog
choose that x; which would give rise to the smallest number=
of potential conjunctions as it was known that all consensio
would be generated eventually, i.e. choose i such thats
IS5, % |S;,] is minimised. 3

e

Q.
- 2. That no further conjunctions could be produced after the n%_

sets of steps have been completed can be deduced from the2
Theorem. For if the order of variable selection had been suchs
that
' Nis X2y ooy Xpy v v oy Xy X,
were to be used expecting to generate new conjunctions a
step (n + 1), then this order could be altered to
X1y Xgy ooy Xpy Xpy o v 0y X,y
by a sequence of pairwise interchanges and so would produc

an equivalent set of consensi. But this order is clearly =
equivalent to

wo9/wod

r‘?

sjoIe/|u

=~

o
0¢

Xis Xgy ooy Xpy o v oy Xp

Thus as the Theorem justifies pairwise interchanges of order 3
in the variable selected for consensus, then no more new =
consensi can arise after the n steps of the process have been<
completed. =

6€/95¢€

o
D

. The fact that the process of consensus ends after n sets of 2—

steps is more convenient to program than an approach .
which is only completed once it can show that no furtherg
new consensi can be generated. In the Quine approach theS
end is reached when no further new consensi can be found.
This condition is awkward to handle in a computer program.

5. Results

In a typical (0-1) integer programming problem of 40 con-
straints and 20 variables the problem is solved in about 100
seconds of CPU time on an ICL 1900 machine. The process
involves around ten complete uses of the simplification routine.
The program was written in FORTRAN and is such that up to
1,000 consensi can be generated and held in core storage before
deletion has to be used to make space available. However,
deletion usually takes place before as many as 1,000 consensi
have been generated. The constraints give rise to around 200
initial conjunctions in the resolvent.

6. Conclusions
An approach has been developed for systematically using
Quine simplification to handle sets of n variables. The approach

357

4

o
N
=

has similarities to the McCluskey version of Quine’s method
(McCluskey, 1962) but is more geared to general types of
Boolean expressions. McCluskey’s approach is more dependent
on many similar Boolean expressions occurring in the set of
Boolean expressions to be simplified. This- allows drastic

References

simplification to take place early on, but in the integer pro-
gramming problems it was found that the type of Boolean
expressions arising were not amenable to this treatment. Hence
a completely systematic approach of the type described was
necessary.

Granort, F. and HAMMER, P. L. (1970). On the Use of Boolean Functions in Bivalent Programming, Methods of Operations Research,

Vol. 12, pp. 154-184

QUINE, W. V. (1955). A Way to Simplify Truth Functions, American Mathematical Monthly, Vol. 62, pp. 627-631
Zissos, D. and DuncaN, F. G. (1973). Boolean minimisation, The Computer Journal, Vol. 16, No. 2, pp. 174-179
WIiLsoN, J. M. (1975). Boolean Methods of (0-1) Integer Programming, D. Phil. thesis, University of Sussex
McCLuskey, E. J. (1962). A Survey of Switching Circuit Theory, McGraw-Hill

Book reviews

FORTRAN 1V in Chemistry, by G. Beech, 1975; 303 pages. (John
Wiley, £8-75)

Dr. Beech’s book is a useful addition to the growing literature on the
use of computers in undergraduate science courses. In his intro-
ductory chapter he states that users of the book should be familiar
with FORTRAN 1V and he makes no attempt to give the potted
version of the language that wastes so much space in similar works.
The reviewer agrees with his statement that many programs pub-
lished in similar books are so simple that they would be better suited
to a desk calculator. Dr. Beech’s examples go significantly beyond
this but he still limits them to the capacity of a relatively small
computer and throughout implies the use of teletype display. There
can be few institutions therefore, that could not benefit directly from
the examples given, although sophisticates with access to large
computers and to graphical display will be somewhat impatient with
them. A good feature of the book is the full theoretical background
given to all the examples cited.

The chapter on numerical methods gives an adequate survey of
techniques such as simple statistics, solution of simultaneous
equations, curve fitting, eigenvalue problems and numerical
differentiation and integration, most of which are used in later
chapters. A chapter follows in which are presented several intro-
ductory examples allied to a course in practical chemistry. These
should find universal acceptance. The heart of the book is contained
in chapters entitled ‘Tutorial and dry-lab applications’ and ‘Theo-
retical chemistry’ in which Dr. Beech and a colleague present
seventeen useful programs, with attendant. theory, covering topics
such as lattice energies, spectrum deconvolution, transition metal
spectra, Huckel molecular orbital calculations, etc. The reviewer has
written his own version of several of these programs; if he had not he
would use Dr. Beech’s and save considerable time and effort. All
must find some place in a modern chemistry course.

The penultimate chapter is the least satisfactory. In introducing the
topic of data acquisition and processing, it is geared solely to the
medium of paper tape. The author’s justification for this is somewhat
ingenious.

The book will be bought and read by those committed to the subject
and they will be disappointed it did not go further. The uncommitted
who, along with their students, would benefit most from the book,
will not get past the title.

J. E. PARKIN (London)

Graph Theory: An Algorithmic Approach, by Nicos Christophides,
1975; 400 pages. (Academic Press, £12-50)

There are at least twenty textbooks on graph theory in print. What
does a new one offer ? Well, the subject is so large that no one book
can deal with all of it, so we are treated 1o a new combination of
topics. In this case they seem to have been chosen for their practical
applicability. Most welcome are chapters on the location of medians
and centres; suitably absent is discussion of enumeration and
planarity.

There is an elegant departure from the overworked style of ‘Theory-

358

followed-by-applications’. Each new subject is introduced with afy
informal discussion which gives a hint of the likely applications. Thi§
is followed by a brief formal statement of the problem together witR
appropriate definitions. More detailed discussion of applicationg
occurs only by way of examples. g
The algorithms are expressed informally and they are describe

rather than defined. Proofs are given for some, examples of applis
cation for others. I like this method of explanation because it gets
. . (2]

you to the core of the ideas quickly. There is detail enough to enable-
you to write an actual computer program, but not so much that [h§
main theme is obscured. 3
Each chapter ends with a reasonable set of problems and a biblios.
graphy which is thorough but (mercifully) not exhaustive. The boolg
is ideally suited to the engineer or computer scientist who is alread$
solving problems of graph theory and seeks a deeper theoreticaB
knowledge, a range of suggestions and an easy path into the liter3.
ature. The pure mathematician would find it less satisfactory8
Contents include: basic definitions, reachability, set coveringzs
colouring, medians and centres, spanning trees, shortest pathsy
circuits (Euler graphs and Hamiltonians), network flows, matchingg
and assignment. o

G. WyviLL (Bradfordg

3

Information Retrieval and the Computer, by C. D. Price, 1977, 20@
pages. (MacDonald and Jane’s Computer Monographs No. 2683
£5-95)]

o

=

The author’s lectures on document retrieval systems for courses af
the University of Lancaster are here presented as a textbook@
Though the courses were given to students of computer studies, onl)@_
a basic knowledge of computer science is assumed so the book is alscg
of potential interest as a text for courses in information science. Thex
main sections of the text are The retrieval process, Documents andﬁ
their classification, Indexes, Automatic classification, Abstracts and
extracts and Automated document retrieval systems. Y

Once he has established his level of discourse, the author maintains§
it uniformly to the end. The text provides a general descriptive
overview of the field, as seen by someone standing back from the
active research fronts. The result is a balanced, readable survey
supported by sensible judgements about the several issues still
unresolved and by well chosen suggestions for further reading on
topics which invite closer scrutiny.

In summing up the results of research on the document retrieval
process, the author suggests that great effort has been expended on
experimental work only ‘to arrive at a surprisingly meagre set of
firm conclusions’ (page 196). He is right. But some are coming to the
conclusion that the general validity of long standing basic concepts
such as relevance and precision must now be questioned. Within the
context of work on the well known text collections they may retain
their accepted meaning but their application to read operating
systems becomes more and more dubious. By the time that this text
reaches its deserved second edition, 1 believe it will be this last
section of the book which will demand most of the revision.

B. C. BrookEs (London)

4

The Computer Journal

