An efficient algorithm for a complete link method
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An improved algorithm for a complete linkage clustering is discussed. The algorithm is based,
like the algorithm for the single link cluster method (Slink) presented by Sibson (1973), on a
compact representation of a dendrogram: the pointer representation. This approach offers economy
in computation. The algorithm is easily programmable.
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- 1. Introduction

Two of the well-known methods of cluster analysis are the
single and complete linkage clustering. The first one was
developed by Florek e al. (1951), Sneath (1957), and Johnson
(1971). An optimally efficient algorithm proposed by Sibson
(1973) made its application feasible for a number of OTU's well
into the range 10® to 10*. To avoid the extremes of this first
method—the well-known ‘chaining’ effect—it may be necessary
to apply on the same set of data alternative hierarchic methods.
We showed (Defays, 1975) in a fuzzy sets context that complete
linkage clustering, developed by Lance and Williams (1967),
and Johnson (1967), among others, generates one or some of
the minimal ultrametric dissimilarities superior to the initial
dis-similarity. The present paper provides an efficient algorithm
for carrying out one of the minimal superior ultrametric dis-
similarities. Like Sibson’s algorithm, Slink, it enables a
complete link cluster analysis to be applied on an unprece-
dented scale. This method is dependent on the labelling of
the objects. Modifications of the labelling permit us to
obtain different minimal superior ultrametric dissimilarities.

2. Notation, terminology and preliminary definitions

A fuzzy relation R is defined as a fuzzy collection of ordered
pairs. If X = {ili=1,...,N}, a fuzzy relation on X is
characterised by a membership function R(.,.) which associ-
ates with each pair (7, j) its ‘grade of membership’, or in this
case the dissimilarity between i/ and j, R(i, j) € [0, co]. In this
paper, we consider fuzzy relations R satisfying the two
conditions:

Vie X, R(i, i) = 0 (reflexivity) ,
Vi, je X, R(i,j) = R(j, i) (symmetry) .

If R and Q are defined on X, the min-max composition of R
and Q is denoted by R o Q and is defined by

Ro QG,j) = A{(QG, k) v Rk, j)lke X}, ieX,je X .

The r-fold composition ReRoR...oR is denoted by R".
R is transitive if R > R. We shall call an ultrametric relation,
a fuzzy relation which is reflexive, symmetric and transitive.
Note that the membership function of an ultrametric relation
is an ultrametric dissimilarity. We showed (Defays, 1975) that
if R is a fuzzy reflexive symmetric relation its transitive closure
R = R""! may be obtained by a single linkage clustering and
that complete linkage clustering gives one (or some) minimal
ultrametric relation (MUR) superior to R.
Like Sibson, we define a pointer representation as a pair
(m, A) of functions (n:1,2,...,N—1,2,...,N and A:1, 2,
.» N = [0. c0]) which satisfies the following conditions:

n(N) =

AN) = o0 .

Vi< N, i<a@).

Vi < N, (@) < A=(@)) .

This is the definition given by R. Sibson showed, in a slightly
different context, that there is a natural 1-1 correspondence
between pointer representations and ultrametric relations.
Suppose first that L is an ultrametric relation on X. Define n, A
by
n(N) = N;
MN) = o0;
and fori < N,
M) = ALG I > i}
n(i) = v {jIL(,j) = Ai)};
(m, 4) is called the pointer representation of L. Recnprocally,
suppose (m, A) is a pointer representation. Define R by 1tso
membership function:
R@,j) = A() if j = n(i) > i
= 2j)if i = n(j) > j;
=0ifi=/;
= oo otherwise .

/:sdpy woyy papeojumoq

L = R is an ultrametric relation associated with (m, A). It may
be shown that these two transformations are mutually inverse.

3. Algorithm

/1/0Z/10E/JulWoo/Wwoo dno-ojwepe

-
=
o
o
=
(e}
S
o
3
»
—
o
=
=
=¥
o
=
o
]
=
—
=
o
c
~
on
»
c
o
a
=
©]
=
-
o
o
]
(2]
je=r}
o
=
<
o

symmetric fuzzy relation R.R and L will then be two extreme &
clusterings of X. The interest of L is to shade the results obtained &
by the single linkage clustering. We shall note R, the restriction §
of R to the first » OTU’s {1,2,...,n} of X. IfL, isa MUR Y
superior to R,, as we shall show it, a MUR L,,, superior to o
R, may be easily obtained from L,. Like in Slink, the reasong
for considering a pointer representation is that it can be up-
dated on the inclusion of a new OTU in an efficient way. o
Quantities defined on the first n elements will be given subscript &
n. So, we shall note (n,, 4,) as the pointer representation of a i
MUR L, superior to R,. The present paper gives a method to =
generate from (s An) the pointer representation (7, ;, 4,4 ) of

a MURL,,, superior to R, ;. R

For given n we define p,(i) recursively on i:

uai) = VARG, n + 1), u,(DIj:m,(j) = i, 2,(j) < pa(j)}
and then, v,(n — i) which, when unset, will be noted *,

vn(" - 1) = Aun(n - l)

}sen

if

An = 1) =2 v {p,(n -
and if v, (n,(n — ©)) # *,

v(n — i) = * otherwise .
Ifa = v {i|Vj, v,(j) = v,@i) or v,(j) = *}, we may define (r, 1)
which we shall prove to be the pointer representation of a
MUR L, , superior to R, as follows:

an+1)=n+1;
An+1)=o0;

i)s #n(nn(n - i))}
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n@=n+1;

Ma) = v,(a) ;

Yk =z 1, n(nka) =n+1;
Vk > 1, A(nk(a)) = A,(n*,"(a)

if we note 7%a) = a and if 7*7'(a) < n
and recursively on i, if for all k > 0, i # n*(a):
M) = A,30) ;
n(i) = m,(i)
n(m,(i)) =n + 1 = Mm,(i)),

except that if and A,(i)

n(i) =n + 1.

Theorem
(m, A) is the pointer representation of a MUR L, , superior to
Rn+ 1

Proof

Let us show first that (, 1) is a pointer representation. We have
defined n(n + 1) =n + 1 and A(n + 1) = 0. Since =n(i) >
n,(i), for i <n we have i < n,(i) < n(i). If i =n, since
n = n*(a) for some k > 0, we have n < n(n) = n + 1. In all
cases, if i < n + 1, we have i < n(i). If n(i) # n + 1, we have
AG) = A,(i). Then, if =,(i) <n, we have A(i) = 1,(/) <
A (D). If A(r(i)) = A,(m,(i)), then A(i) < A(n(i)). If A(=(i)) =
M=, (i) # A (m,(i), then n(m,(i)) = n + 1. But, since n(i) #
n + 1, we have 1,(i) < A(n,(i)) = An(i)). If n, (i) = n, then
n(n,(i)) = n + 1. But, since n(i) # n + 1, we have A(/) =
A(0) < Am, (i) = An(i)). In all cases, n(i) # n + 1 implies
A(i) < A(n(i)) and (7, 1) is a pointer representation.

Let us show now that (=, ) is the pointer representation of a
relation superior to R,,,. We shall note L the ultrametric
relation associated with (, A). First of all, it is easy to prove that
L(i,j) < L,(,j) for i, j < n. For, if n(i) # n,(i), and if i = a
_or i = nika) for some k > 1, we have L(i,n + 1) < A(i) <
A1) and L(m,(i),n + 1) < An,(i)) = A,(i). In virtue of
transitivity, we must have L(i, n,(i)) < A,(i); if n(i) # @),
and i # a and i # n%(a) for all k > 1, we have n,(i) = a or
n,(i) = n*(a) for some k& > 1 and A,(i) = A(m,(i)). Since
L@i,n + 1) < 2,(§) and L(z,(i),n + 1) < A(n,(i)) < 4,(i), in
virtue of transitivity, L(i, n,({)) < A,(i). If =n(i) = =, (i), we
have L(i, n,(i)) < A,(i). Therefore, we shall have L(i,j) <
L,(@i,j)foralli,j < n.To prove that L o R, ,, itis sufficient to
prove that for all 4 € [0, 0], L* > R " if we note

n+1
= {@NDILG ) < h}, R = { DIR, 1 (LJ) < h} .
If L is an ultrametric relation, Zadeh (1971) has shown that for
all he[0, 0], L" is an equivalence. Let C be a class of the
equivalence L" and let us prove that for all i, je C, R(i,j) < h
If C is also a class of the equivalence L! = {(i,/)|L,(i, /) < h},
since L, o R, the assertion is established. If C is not a class of
L*, since L, is a MUR superior to R,, we have n + | € C and
C — {n + 1} is aclass of L% The assertion will be established
if we prove thatforallie C, R(i, n + 1) < h.Foralli < n + 1,
we define o(i) to be A(n*~1(i)) if 7*~1(i) # #*() = n + 1 and
we define a(n + 1) = 0. By construction of L, C = {i|o(i) <
h}. This assertion may be easily established. The proof may be
found in (Sibson, 1973) and is not given. We suppose
C—{n+1} # ¢. In this case aeC for, if ieC and
i#n+ 1, we have o(i) > AMa). Let us show first that if
n(j)=n+ landjeC, R(j,n + 1) < p(j) < h. Ifj = a, itis
true. If n,(j) = a and =n(j) = n + 1, we have 1,(j) = A(a).
If p,(j) > 4,(j), we have h > p,(a) = Ma) > pu,(j)- If u,(j) <
2.(j), since A,(j) = A(j)and a(j) = A(j) < h, we have u,(j) < h.
In all cases, if 7,(j) = @ and n(j) = n + 1, we have u,(j) < A
if jeC. If j = n%a) for some kK > 1 and je C, we have
h 2 0(j) = A(j) = Mrka) = A,(n*'(a)) = p(n(@) = p,(j)
for v,(n*(@)) # *. If m,(j) = n*(a) for some k > 1 and 1,(j)>
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AMr*(a)), we have p,(j) < h too for if p,(j) < 4,(j), we have
1) < A(j) = X(j) = o(j) < h and if p,(j)> 4,(j), since
h = o(j) = Xj) = 4,(j) = Mak@)) we have n*@)eC and
h = u,(t*(a)) > u,(j). Let us show now that if n(j) # n’(j) =
n+ 1and je C, we have R(j,n + 1) < u,(j) < h. If 1,(j) <
1,(j). recursively we have h = 1, (n(j)) = 1,(); if 2,(j) = 1,i)s
since n1(j) # n + 1 we have n(j) = n,(j) and w,(j) < 4,(j) =
A(j) < Mn(j)) = a(j) < h. If n?(j) # n*(j)=n + 1 and je C,
it can be established as precedently that /> u,(j) =
R(j, n + 1). Recursively, it can be shown that for all ie C,
h = p,(i) = R(i,n + 1). Thus we have L o R, ;.

To complete the proof, we must establish that for every
ultrametric relation L’ such that L o L' o R,,,; we have
L = L’. Let us suppose L’ to be such an ultrametric relation
(Lo L oR,,,) and let us show first that for all i < n,
L'(i,n + 1) = u,i). If i = 1, it is obvious. Suppose it is true
forall i < k < n. We shall establish that L'(k, n + 1) > u,(k).
Since L' > R,,,, we have L'(k,n+ 1) = R(k,n + I). If
m,(j) = k and p,(j) > 2,(j). since L'(j, k) < L(j, k) < L,(j, k)
< 4,(j) < ua(j) and since L'(j,n + 1) = p,(j) for j < k, we
have in virtue of transitivity of L', L'(k,n + 1) > p,(j) agd
therefore, by construction of u,(k), p,(k) < L'(k,n + 1). We
note (7', A’) the pointer representation of L’. The theorem will
be established if we suppose that L’ # L and we show that@:t
induces an absurdity. Since L, is a MUT superior to R, :rf
I # L, there exists i with /1’(1) < A(i) and #'(i) = n + 1 #
n(i). Since p,(i) < L'(i, n + 1) < A'(i), we have p,(i) < }g)
and for all k > 1, L'(i,n + 1) < L'(i, n¥i)) < L,(i, n*(i)) &€
A(m*71(i)). Thus, in virtue of transitivity of L', we ha@e
A(m*N0)) = L'(nk(i), n + 1) = p,(n*(i)) and by construcu@l
of v,, v,(i) = u,(i). An immediate consequence is v,(a) < v @)
= p,,(z) < A(@i) or vya) = v,(i) = (i) < X)) and a >g.
In 'Y = {(r, s)|L'(r, s) < A'(i)}, i and a must be in the sarfie
class. Since L, is a MUT superior to R, and since for all5,
j<n L(ij) > L(j) > L(,j), i and a must be in the same
class of L¥™. Since n + 1 belongs to that class and n(i) 3
n + 1, it implies A(i) < A’(i) which is absurd. This completgs

the proof of our theorem. a5
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Notice that the choice of a = v {i|Vj, v,(j) = v, (i) or
v,(j) = =} is arbitrary. Other choices are possible.

If we start with 7,(1) = | and /(1) = o0, then after N — 1|
steps of the above recursive process, we shall obtain the pointer
representation of a MUR superior to R. We have noticed at the
beginning of this paper that the result will vary with a relabelling
of the elements of X.

An interesting question is: is it possible by modifications of the
latellings of the OTU’s to obtain with our algorithm all the
MUR’s superior to R? Unhappily, this hope is not founded.
The very simple example given below proves it. In Fig. 1, we
link OTU’s with dissimilarity 0. The dissimilarity between
two not linked OTU's is supposed to be 1. In Fig. 2, the relation
L represented with the same conventions as in Fig. |,isa MUR
superior to the relation R of Fig. I, which obviously cannot be
obtained with our algorithm.

If one hopes to obtain a result L not too far from the initial
relation R, a choice of the labels such as

N N N
2 RI)< X R2j)<...< 3 RIN.))

i=1 j=1 i=1
may be judicious.
The results may be presented as in Slink; a conversion of the
pointer representation into a packed representation provides
readable output.

4. The CLINK algorithm

We are going now to give a statement of the algorithm from
the computational point of view. We shall try to give it as
similarly as possible to the statement of the Slink algorithm.
In fact, to perform our algorithm, the subroutine Slinkl of
Slink has only to be modified. As in Slink, three arrays of
dimension N are used; we shall denote them by n, A, M.
Suppose that n, A contain =,, 4,. The Clink algorithm will
change them into n,,,, 4,,, as follows:

1.Setn(n + Nton + 1, A(n + 1) to co.
2.Set M(i)to R(i,n + l)fori=1,..., n
3. For i increasing from 1 to n
if A(i) < M(i)
set M(n(i)) to max {M(n(i)), M(i)}.
set M (i) to co.
4. Set a to n.

5. For i increasing from 1 to n
f A(m—i+1)=M@n-—i+ 1)
setaton —i+ 1if M(n— i+ 1) < M(a).
fA(n—i+ 1)< Mmn-—i+1)
set M(n — i + 1) to oo.
6. Set b to n(a), c to A(a), n(a) ton + 1 and A(a) to M(a).

T.Ifa<n
ifb<n
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set d to n(b), e to A (b).
set m(b) ton + 1, A(b) toc.
set btod, ctoe.
go to 7.
ifb=n
set i(b) ton + 1, A(b) to c.

8. For i increasing from 1 to n
if n(n(i)) =n + 1
set (i) ton + 1 if A(i) = A(n(i)).

Appendix A FORTRAN CLINK program

We only give here a subroutine CLINK which must be inserted
in the Slink program in the place of the subroutine Slinkl.
Note that the calling program for the subroutine CLINK must
declare TOP which is not declared for Slink1. The measure 4,
of classifiability will have a negative value as the result is an
ultrametric relation superior to the initial relation.

SUBROUTINE CLINK(NA,HA,HB,I1,NMX0OBJ,TOP)
DIMENSION NA(NMXOBJ),HA(NMXOBJ),HB(NMX0BJ)
L0 1 J=1,1I1
NEXT=NA(J)
IF (HA(J)-HB(J))2,1,1
2 H=HB(Q)
HB(J)=TOP
IF (HB(NEXTJ)}-H)3,1,1
3 HB(NEXT)=H
CONTINUE
IMAX=I1
DO 4 JI=1,1I1
J=I1-J1+1
NEXT=NA(])
IF (HA(2)-HB(NEXT))E,S,5

-

5 IF (HB(J)-HB(IMAX))7,4,4
7  IMAX=J
GO 70 4
6 HB{J)=TOP
4 CONTINUE

I1S=NA(IMAX)
H1S=HA(IMAX)
NACIMAX)=I1+1
HA(IMAX)=HE(IMAX)
IF (IMAX-11)10,11,11
10 IF (I1s-I11)8,9,9
8 K=NA(I1S)
HK=HA(I1S)
NA(I1S)=I1+1
HA(I1S)=H1S
I1s=K
H1S=HK
GO T0 10
9 NA(INS)=I1+1
HA(I1S)=H1sS
11 DO 12 J=1,11
NEXT=NA(J)
IF (NA(NEXT)-I1)12,12,13
13 IF (HA(J)-HA(NEXT))12,14,14
14 NA(J)=I1+1
12 CONTINUE
RETURN
END
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