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Author’s Notes
The asymmetric or modified Galerkin method for the solution of a
linear operator equation

Pf=g (0))]
in an inner product space, proceeds by setting
N
frfn= 2 ahi 2
i=1
and computing a = (a;) from the Galerkin equation
La=g 3)

where
Lij = (b, Lhj); g = (hi', g)

and {h:}, {h'} are ‘suitably chosen’ sequences of functions. The
symmetric Galerkin technique chooses {h:"} = {h:}; the method of
least squares follows from the choice {h:i’} = {Zhi}. Such cal-
culations are common in approximation theory problems (& = I)
and in the fields of differential and integral equations; it is therefore
desirable to have efficient solution methods for the resulting linear
equations. For a wide class of one-dimensional differential and
integral equation problems, it has been shown (Freeman, Delves and
Reid, 1974; Bain and Delves, 1977; Delves, 1974) that the use of
orthogonal basis functions leads to matrices with a structure referred
to as ‘Asymptotic diagonality’ (Delves, 1977). In Delves (1977), a
block iterative algorithm was described for matrices with such a
structure ; the convergence rate of this algorithm is independent of N,
giving a solution time of @(N?); if all such problems led to such
matrices, this algorithm would therefore be preferred to a direct
solution. Unfortunately, this is not so; expansion methods with
non-orthogonalised bases may lead to very ill-conditioned matrices.
For example, the ill-conditioning of the least squares method with
basis {1, x, x2...} is notorious, and for this reason least squares
problems are usually discretised and solved as a set of overdeter-
mined equations, the (normal) equations (3) never being formed.
Recently, however, Barrodale and Stuart (1977) have introduced a
new version of Gauss elimination with particular advantages for
the solution of ill-conditioned expansion problems. In this variant,
which uses both row and column pivoting, the unknowns yielding
the largest residual are eliminated first, and a sensible solution to
the approximation problem can be returned even if the matrix
proves to be numerically singular.

We give here an implementation of the iterative scheme of Delves
(1977) which maintains the advantages of the Barrodale algorithm
and which can therefore be used for both well-conditioned and ill-
conditioned problems.

The algorithm

The iterative scheme of (2) requires that the first M equations be
partitioned off and solved directly with the current values of the
remaining unknowns on the right hand side; a straightforward
Gauss-Seidel scheme is used for the N-M additional equations. The
value of M required depends on the matrix to be solved. In the
algorithm given below, an initial sweep of the matrix is performed to
choose an appropriate value of M; the M x M leading submatrix is
triangulated using Gauss elimination, and the convergence of the
iterations is then monitored. If convergence is too slow, or non-
existent, the value of M is increased. Eventual convergence is there-
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fore guaranteed for any matrix; if the problem proves well-
conditioned, the time taken will be (®(N?2), while if it is sufficiently
ill-conditioned, the algorithm will eventually set M = N and perform
a direct solution of the problem.

The Gauss elimination routine used for the direct solution, employs
the pivoting strategy of Barrodale and Stuart (1977), and is arranged
to process additional rows and columns (if M is increased) and right
hand sides (as the iterations proceed). For a well-conditioned
approximation problem of significant size, M will be much less than
N; experience to date indicates that the initial estimate of M is
increased only rarely. If the matrix proves ill-conditioned, the
routine may set M = N. If in this case the matrix is found after Q
elimination stages to be numerically singular, the remaining N-Q

unknowns are set to zero and a solution of the Q-term approximation §
problem returned, with a warning flag; note that the zero elements £
may not be the last few, due to the column pivoting employed. A g

singular matrix with M < N merely results in M being increased and 2
the triangulation restarted. Full iterative refinement with double
length accumulation of the residuals is provided as an option for
users with ill-conditioned problems of a type for which this is
appropriate.

The routine returns a structure containing:
(a) The solution vector
(b) An estimate of the accuracy achieved
(c) The value of M used by the routine

(d) An error flag set to false if with M = N the matrix was found to
be numerically singular.
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In this case the value of M returned is not N, but @, the number of & g

significant, nonzero entries in the solution vector and the numerical 3
rank of the input matrix.

If on output M = N and no iterative refinement has been called for, =.
the error estimate will not be meaningful.

One other aspect of the algorithm is perhaps worthy of comment;
this is the use of matrix operators *, +, — to multiply a matrix by

a vector, and to add or subtract two vectors. In practice these will %
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normally be available through a standard installation library prelude, 5

and would then be machine coded. In the timings which follow we
consider three versions of the algorithms:

As given here, with matrix operators coded in
ALGOL 68

As given here, but using machine coded matrix operators

Version A:

Version B:

A rewritten version with the operator calls removed and
replaced by in-line ALGOL 68 code.

Code for the matrix operators is not included here.

Version C:

Performance
Table 1 shows some timings obtained from the algorithm on an
ICL 1906S computer. The equations solved are those arising from a
Galerkin solution of the Fredholm integral equation (see, e.g.
Delves, 1974)

f(x) = g(x) + 4 [3 ef f(y) dy C))
with
g(x) = e — AleeBx — 1)/[a + Px] )

and exact solution f(x) = e®*. The expansion set used are the
translated Chebychev polynomials; these lead to an asymptotically
diagonal matrix L for all values of the parameter f, although the
condition number of the matrix increases with |f]. In Table 1, values
of B =1, 5, 20 are taken, with A = a = 1. For each value of §,
four sets of times are given. The first is that for a standard Gauss
elimination routine (NAG library routine FO4AJB) using row
interchanges, displayed for comparison purposes; the other three
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Table 1 Solution of the linear equations arising from the integral equation (4)

All times are in msec and were obtained on an ICL 1906S using the RRE ALGOL 68R compiler

The versions of the routine are as follows:

Version A As given here; matrix operators coded in ALGOL 68

Version B As given here; matrix operators machine coded (partially)
Version C  Routine rewritten to replace matrix operator calls by inline (ALGOL 68) code

N = 5 9 17 33 65
Routine FO4AJB
(Gauss Elimination) T = 15 36 125 616 3,780
B=1; M= 3 3 3 3 3
Version A T = 63 56 79 189 509
Version B T = 59 51 68 137 320
Version C T = 35 40 66 184 621
B=35; M= 5 8 10 15 15
Version A T = 19 48 117 195 726
Version B T = 18 44 101 144 443
Version C T = 16 36 95 191 871
B = 20; M= 5 9 17 22 22
Version A T = 19 58 170 783 1,094
Version B T = 19 53 128 630 745
Version C T = 17 52 156 720 1,202

relate to the three versions A, B, C of the algorithm as described
above.

These timings show, first, the ((N2) cost of the iterative algorithm,
in contrast to the ()(N3) dependence of the standard Gauss elimi-
nation routine. The differences between versions A, B, and C show
that the extra overheads of calling the matrix operators are negligible;
the easy availability of the machine coded versions of these operators,
and the substantial improvement which these yield, for the larger
matrices, indicates that their use increases the efficiency as well as
the clarity of the code.
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MODE MATRESULT =
STRWCT ( REF [,
PROC Leqwad =
( REF [, ] REAL a, b, x, REAL acc, BOOL refine) MATRESULT :
BESIN
#soLves the Linear equations aex=b for multiple righthand sides b[,il#
#by a block iterative method.For a suitable value of m,the matrix a
#is partitioned.The first m equations are solved directly,and the
#remainder solved using a Gauss-Seidel scheme.The value of m is
#chosen to ensure rapid convergence of the iterations,
#  For wellconditioned approximation problems,the solution time for
#n equations is o(nt2),For sufficiently illconditioned problems, the
#method reduces to a direct solution using the pivotting strategy of

#Barrodale (see List of references).
#

A New Variant of

] REAL ans, REAL ep, INT evals, -BOOL fin);

# Parameters
# a - a [1:n,1:n] REAL matrix of coefficients,
# Left unchanged by the procedure.
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n - a [1:n,1:nrhs] matrix containing as its columns the

nrhs rightnand sides for which solutions are required.

Left unchanged by the procedure,
x = a [1:n,1:rhsImatrix containing on entry an initial

approximation to the solution vectors.!f no information

is available,this approximation may be zero.
On exit, x will contain the computed solution,
acc - a user -provided estimate of the accuracy required,

The procedure will attempt to return an approximation

xcalc to the exact solution x such that
//x=xcalc// < acc.
refine- if set to TRUE on entry,the procedure carries out

dowle-Length evaluation of the reslduals,and iterative
refinement of the solution of the first m equations,

result

The routine returns the calculated solution together

with an error estimate,in a MATRESULT structure,
The fields of this structure have the following
significance:

ans - a [1:n,1:nrhs] REAL array containing the solution xcalc

ep - an estimate of the infinity norm //xcalc-x//
evals - normally contains the value of

illconditioning in the natrix.

If the matrix a was found to be numepically singular,
then evals contains instzad the numerical rank r of a,
In this case,n-r of the rows of xcalc will be found to b:
identically zero(these ma2y not be the Last rows),and the

remaining r rows solve the reduced rer problemn.
fin - a boolzan value normally set to TRUZ ;

set to FALSE if a is found to be numerically sinjular.

operators.

The procedure assumes that the following matrix operators

have been defined:
MORM a =-gives the infinity norm of a
MORM1 a-gives the one norn of a
/:=,¢ : with their usual meanings.
:double Length versions of e,- :=

RAERAERRAEEARERITXE
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m,the size used for the
first block of equations,A Large value of m indicates

W
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INT n :=1 UPB a, m := (0, Linit, rank, nrhs := 2 UPB b;

BOOL rowexchange = TRUE , colexchange = FALSE ;
BOOL notconverged, converging;
REF [, 1 REAL null = NIL ;
REAL cutoff := 0.1, del1 := 1,1 used by setn #;
PROC interchange =
( REF [, ] REAL a, INT r, s, BOOL row) VOID :
BEGIN # interchanges two columns or rows of a #
INT L;
IF r/=s
THEN
REF [] REAL b, c;
:=als, 1; ¢
ELSE b := a[, s]; ¢

(L LwB a:l UP3 a] RZAL

Fl
EMD # interchange #;
PROC maxind = ( REF [] REAL a) INT :
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BEGIN
# returns a pointer to the element of maximum size in a #
INT m;
REAL temp := 0.0, tomp;
m := LWB a;

3
FOR i FRoM LWB,a To UPB a
DO
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tomp := ABS a(i];

oD ;

IF tomp>temp THEN temp := tomp; m := i F1

m
END # maxind #;
PROC Leqdirect =

( REF [,
) BOOL

Gives a direct solLution of the m equations aex=b,using Gauss
elimination,given that mpreve rows and columns of a have already
been processed.The vectors row,col hold on entry pivotting
information for these first mpreve equations,and on exit similar
information for the remaining equations also,The vector b is
overwritten by the solution x.

If a proves to have numerical rank r<m,the Last(before
reordering)m-r rows of b are set zero,and a solution of the
remaining r equations returned,together with the value TRUE

for Leqdirect.

BEGIN

] REAL a, b, REF [] INT row, col, REF INT mpreve

ARLELRREITRLR

INT rowi, colj, m := UPB a;
REAL delta := 10esmall real, temp, mult;
BOOL sing := FALSE , banded := mpreve<m;

INT piv;

rank

:= m4¥ initial assumption #;

# treat first mpreve rhsides and new columns #
FOR newrow To mpreve

DO

oD

interchange(b, newrow, row[newrow], -rowexchange);
IF banded
THEN
interchange(a[, mpreve+1:m], newrow,
row[newrow]), rowexchange);
interchange(almpreve+1:m, 1, newrow,
col[newrow], colexchange)
Fl
temp := a[newrow, newrowl;
FOR 1 FROi newrow+1 TO m
Do

mult := a(i, newrow]/temp;

IF ABS mult>smallreal

THEN
b[i, J-:=multeb[newrow, J1;
IF banded

IF i>mpreve
THEN newrow
ELSE mpreve

Fl +1;
afi, Limit:m]l-:=multealnewrow, Limit:m]
Fl
Fl
oD # iw
# newrow #;

# now complete the processing of the new rows #
FOR newrow

DO
K

oD

FROM IF mpreve=0 THEN 1 ELSZ mnpreve F1I
To m

pick a row pivot #
row[newrow] := piv :=
maxind(b[newrow:m AT newrow, 11);
interchange(», newrow, piv, rovwexchange);
interchange(a[, newrow:m], newrow, piv, rowexchange

H
# pick a coluan pivot #
col[newrow] := piv :=

maxind(a[newrow, newrow:m AT newrow]);
interchange(a, newrow, piv, colexchange);
tenp := alnewrow, newrowl;
IF ABS temp<delta
THEN

sing := TRUE ;

rank := newrow-1;

CLEAR b[rank+1:m, J];

GOTO backsub

Fl ;
FOR i FROIi newrow+1 TO @
DO
ault := afi, newrowl/temp;

afi, newrow+1:m]-:=multeal[newrow, newrow+1:m];
b[i, l-:=nulten[newrow, ]

oD # 1w

# newrow it;

# now back substitute #
b[rank, 1/:=alrank, rankl;
FOR 1 FROL rank=1 3Y =1 TO 1

Do
oD

(h[i, J-:=a[i, i+1:rankled[i+1:rank, 1)/:=afi, i]

# now resort ¥
FOR 1 FROH M=1 3Y =1 TO 1

DO
0D

interchange(b, i, col[i], rowexchange)

mpreve := m;
sing

END #
PROC setm =

leqdirect #;
( INT mold) INT :

# computes a suitable value for m,the point at which the
matrix a is partitioned #

BEGIN

REAL temp, sum;
INT m := mold;

IF m=0
THEN
# check the bottom rows #
m:=n;
FOR i FROM n BY -1 TO 2
WHILE
((temp := ABS a[i, 1])/=0.0) AND
((sum := NORii1 ali, ])<del1etemp)
D0 m=:=1
oD
Fl ;
# now check the sides &
IF m HE n
THEN

REAL anorm := C.0;

FOR i TO m CO anorm+:= NORM1 a[i, ] oD ;
anorme:=cutoff;

FOR i

Volume 20 Number 4

REXRERERRRER

WHILE (i<m AidD m<n)
DO

sum := 0.0;
FOR j FROM n BY =1 To m+1
HHI%E

IF sum>anorm THEN m := j F1 ;
sum<=anorn

)
DO sum+:= ABS afi, j]
0D
oD ;
SKIP
F1 ;
# if we are close to n,the hell with iterating #
IF (m/n)>0.8 THEN m := n FI ;
# force m>mold by a reasonable margin #
m := ( ROYUND (1,2emold)) MAX m;
# check that this is not too much #
m:=m MIN n;
m
"END # setm #;

PROC Leqiter =
( REF [, 1 REAL adold, REF [] INT rowold, colold)

MATRESULT

This is the main routine of Leqwad, and implements the block
iterative scheme described in.the text.An estimate of the current
accuracy is obtained from e(n)=//x(n)-x(n-1)//.f the iterations
diverge, the blocksize m is increased and Leqliter is called
recursively to generate increased temporary storage.This should
happen onLy rarely.Otherwise,the iterations are terminated when
either the predicted current error falls below the requested acc,
or e(n) begins to oscillate.Such oscillations cannot occur,for a
Linear problem,in the absence of roundoff errors;they are taken to
be an indication that the maximum achievable accuracy has been

BEGIN
INT mnew;
REAL eps := acc+1, epsprev := acc+2,
convergencefactor := 1;
REAL epp;
BOOL singular, oscillating := FALSE ;
# first update the value of m and get appropriate
workspace #
mnew := setm(m);
[1:mnew, -1:mnew] REAL ad;
[1:mnew, -1:nrhs] REAL xold;
[1:nrhs] REAL temp;
[1:mnew] INT row, col;
REF [] REAL xx;
# copy appropriate part of the matrix #
IF adold ISNT null
THEN
ad[1:m, 1:m] := adold;
row[1:m] := rowold;
col[1:m] := colold;
ad[1:m, m+l:mnew] := al1:m, m+1:mnew]
ELSEm := 0
ad[m+1:mnew, 1:mnew] := a[m+1:mnew, 1:mMnew];
REF [, ] REAL X0 = x[1:mnew, ], bO = b[1:mnew, J1;
notconverged := converging := TRUE ;
FOR iter
WHILE notconverged AND converging
Do
xold := x0;
X0 := b0;
IF refine
THEN X0 D-:= a[1:mnew, 1:n] De Xx
ELSE
IF mnew<n
THEN x0-:=a[1:mnew, mnew+1:n]ex[mnew+1:n, ]
Fl

Fl # refine ¥;
singular := leqdirect(ad, x0, row, col, m);
# note that Legdirect sets m:=imnew #
# check the change in x0 #
epp := epsprav;
epsprev := eps;
IF refine
THEN eps := NORH X0; XO+:=xolLd
ELSE eps := NORM (x0-xold)
Fl ;
IF singular
THEN converging := FALSE
ELSE
IF n<n# usual case # OR refine
THEN
# now Gauss Seidel on the remaining
equations #
FOR 1 FROI m+1 TO n
DO
xx := x[1, 1;
temp := XX;
(x{i, 1 :=b[i, 1)=:=afi, 1:i-1]e
x[1:i-1, 1;
IF i<n
THEN xx-:=a[i, i+1:nJex[i+1:n, 1

Fl ;

xx/:=ali, 1);

eps := eps MAX ( MNORM1 (xx-temp))
oD # i #;
IF iter>1
THEN

conzergencefactor =

converging :=
(epsprev=-eps)>10esmallpreal

ps/(epsprev-eps)-

0

1.

1
!
)
Fl 3
convergencefactor :=
convergencefactor MIN 100.0;
IF iter>2
THEN
oscillating :=
(eps>=epsprev) AND (epsprev<=epp)
Fl ;
notconverged :=

RUERRBBTIRERRER
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(epseconvergencefactor>acc) AND
( NOT oscillating)
ELSE
# m=n and no iterative refinement.dont trust
the error estimate #
eps := 0,0;
notconverged := converging := FALSE
F1 # main Loop #
F1 # singularity test #
0D # iteration Loop #;
IF (notconverged) AND m<n

EN
cutoff/:=100;
IF singular
THEN

Legiter( WIL ,
# restarts the triangulation #
ELSE Legiter(ad, row, colL)
Fl
ELSE
(x, epseconvergencefactor,
IF singular THEN rank ELSE m FI ,
NOT singular)

NIL , NIL )

Fl
END # Leqiter #;
# now the main call #
Leqiter( NIL , ‘NIL , NIL )
END # Leqwad #;

Algorithm 97
THE FAST GALERKIN ALGORITHM FOR THE SOLUTION OF
LINEAR FREDHOLM EQUATIONS
L. M. Delves
Department of Computational and Statistical Science
University of Liverpool
and
L. F. Abd. El Al
Department of Mathematics
University of Cairo

Authors’ notes
In a recent paper, Delves (1977) gave a ‘Fast Galerkin’ Algorithm
for the solution of the linear Fredholm equation of the second kind:

f(x) = g(x) + [3 K(x, y) f(y)dy 6))
The algorithm described produces an approximate solution fa(x) of
the form

fax) = E'Am(ax _p @

x=Q/b-a),p=(a+bb-a

where Ti(z), — 1 < z < 1, is a Chebyshev polynomial of the first
kind; and in addition an error estimate which takes account of both
truncation errors (finite N) and quadrature errors (in the approxi-
mation of the integrals involved). The computational cost involved
is O(N2 In N), compared with the O(N3) cost of previous Chebyshev
schemes for (1) (Elliott, 1963; Scraton, 1969; El-Gendi, 1969;
Watson, 1973; Miller and Symm, 1975).

We give here an implementation of the algorithm, referring to
Delves (1977) for a description of the method and of the error
estimate; and for timings obtained with the algorithm. The language
used is ALGOL 68 as defined in the Revised Report (van Wijngaarden
et al., 1974) and the program makes use of an FFT procedure
(proc FFT) of which only a dummy version is included here.
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PROC postconvert = ( REF [] REAL a, b) VOID :
# Forms the vector b:=aec,where ¢ is the transformation matrix #
# referred to in the text of ref (1),equation (26) i
BEGIN
INT n := UPB a, -m2, -sufix;
REAL temp, -t1;
FOR s FROH LWB b TO UPB b

DO
temp := 0.0;
b[s] := a[s];
FORM TO n
DO
m2 := 2em;
t1 := IF s+m2<=n THEN a[s+m2] ELSE 0.0 FI ;
sufix := ABS (s-m2-1);
IF sufix<n THEN t1+:=a[sufix+1] F1 ;
IF t1/=0.0 THEN temp+:=t1/(m2em2-1) F1
oD ;
b[s]-:=temp
0D

END # postconvert #;
PROC preconvert = ( REF [] REAL a, b) VOID :
H Forms the vector b:=cea,where ¢ is the same matrix as in
postconvert #
(a[1]e:=2,0; postconvert(a, b); al11/:=2.0; b[1]1/:=2.0);
PROC Leqfred =

( REF [, ] REAL a, REF [] REAL b, X, REAL acc) VECRESULT :
#Solves the equations (iprime+aec)ex=b by block iterationu
# where iprime(i)=1,1>1;=0.5,1=1 i
4 This procedure is adapted from proc Leqwad,ref(2). H
# The iterative scheme(21) of ref (1) is used,and #
HThe product aec is not formed explicitly. it
BEGIM

INT h := 1 UPB a, n := 0, Linit, rank;
300L rowexchange = TRUE , colexchange = FALSC ;
B00L notconverqged,converging;
REF [, ‘1 REAL null = NIL ;
REAL cutoff := 0.02, dell := 0,024 used by setn #;
[1:n] REAL y # used as tenporary storage to hold cex #;
PROC interchange =
( REF [, ] REAL a, INT r, s, BOOL row) VOID :
BEGIM # interchanges two rows or coluins of the matrix a

INT L
IF r/=s
THEN
REF [] REAL b, c;
1F row
THEN b := a[s, ]; ¢ := a[r, J; L := 2
ELSE b := a[, s); ¢ := a[, rl; L := 1
Fl ;
[L LwB a:L UPS al] REAL d;
d :=c;
cl) :=0[];
b[] :=d

Fl
END # interchange #;
PROC maxind = ( REF [] REAL a) IiT :
BEGIN # returns a pointer to the Largest element in a i
INT m := LuS a;
REAL temp := 0.0, tonp;
FOR 1 FROM LW3 a TO UPZ a
DO
tomp := A3S al[il;
IF tomp>temp THEi! temp := tomp; = := 1 F1
oD
m
EID # maxind #;
PROC lLeqdirect =

REF [, ] REAL a, REF [] RZAL b, REF [] 1UT row, col,

RIF IHT npreve
) BOOL :
# Gives a direct solution of the equations aex=b, H
# The solution x is returned in b. H

# This procedure is a modification of proc Leqdirect given:i
# in ref(2),and differs in treating only a single rh side #
BEGIN
INT rowi, colj, piv, m := UPB a;
REAL delta := 10esmall real, temp, mulLt;
BOOL sing := FALSE , banded := mpreve<m;
rank :=m # initial assumption #;
# treat first npreve rhsides and new columns #
FOR newrow TO mpreve
DO
interchange (b, newrow, row[newrow], -colexchange);
# note that algolL48 treats b as a row vector,hence
colexchange #
IF banded
THEN
interchange(a[, mpreve+1:m], newrow,
rov[newrow], rowexchange);
interchange(almpreve+1:m, ], newrow,
. col[newrow], colexchange)
Fl ;
temp := alnewrow, newrow];
FOR 1 FROH newrow+1 To m
DO
mult := ali, newrow]/temp;
IF ABS mult>smallreal
THEN
b[i]-:=multeb[newrow];
IF banded
THEN
Limit :=
IF i>mpreve
THEN newrow
ELSE mpreve

F1 +1;
ali, Limit:m]-:=multealnewrow, Limit:m]
Fl
Fl
oD # 1#
OD # newrow #;
# now complete the processing of the new rows #
FOR newrow
FROM IF mpreve=0 THEN 1 ELSE mpreve F1
TO m
DO
# pick a row pivot #
row[newrow] := piv :=
maxind (b [newrow:m AT newrowl);
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backsub:

interchange(b, newrow, plv, -colexchange);

interchange(al, newrow:ml], newrow, piv, rowexchange
).

ﬂ'pick a column pivot #
col[newrow] := piv :=

maxind(a[newrow, newrow:m AT newrow]);
interchange(a, newrow, piv, colexchangé);
temp := a%newrow, newrow)l;
IF ABS temp<delta
THEN

sing := TRUC ;
rank := newrow=-1;
CLEAR b[rank+1:m];
GOTo backsub

Fl ;

FOR i FROM newrow+1 To m

DO
nult := ali, newrow]/temp;

afi, newrowti:m]-:=myltea[newrow, newrow+1:13;

b[il-:=multed[newrow]
0D # 1i#
OD # newrow #;
# now back sunstitute #
b[rank]l/:=alrank, rank];
FOR 1 FROI rank-1 3Y -1 To

oD ;
# now resort #
FOR i1 FRot n=1 8Y =1 TO 1
DO interchange(b, i, col[i], colexchange)
oD ;
mpreve := n;
sing
EMND # Lleqdirect #;

PROC setn = ( INT mold) INT :

# computes a suitable value for the size of the first block #

BEGIN
REAL temp, sum;
INT m := mold;

IF m=0
THEN

# check tne botton rows #

mz:=n;

FOR i FRO! n BY -1 Tp 2

WHILE

8S (1,0+afi, 1]))/=0,0) AND
:= HoRKT afl, ])<delletemp)

Fl ;
# now check the si<as #
IF 2 NE n
THEN

REAL anorm := m+1;

FOR 1 TO n 20 anorm+:= iIORi1 afi, ] op
anoriss=cutot’;

FOR i

WHILE (i<a AiD m<n)

20

H

sum := 0,0;
FOR J FRGil n 2Y =1 To m+1
WHILE
IF sum>anorm THEM m := j FI ;
sum<=anorn
D0 sum+:= A3s ali, j]
[o]]
oD ;
SK1P
Fl ;

# if we are close to n,the hell with iterating #

IF (n/N)>0.8 THIN @ := n FI ;

# force m>mold by a reasonable margin ¥

:= ( ROYLD (1.2eri0ld)) iiAX [aH

H chack that this is not too nuch #
nme=Hlin

CHD i# setm #;

3

PROC Legiter =

Volume 20

( REF [, ] RZAL adold, REF [] I!T rowold, colold)
VECRESULT
# a modified version of proc Leqiter,ref(2) #
BEGIM
INT mnew;
REAL eps := acc+1, epsprev := acc+2,
convergencefactor := 1,epp,tenp;
BOOL singular, oscillating := FALSE ;
# first update the valuc of m and get appropriate
workspace #
nnew := setm(m);
[1:mnew, 1:mnew] REAL ad;
[1:mnew] REAL delt;
[1:mnew] INT row, col;

# form appropriate part of the matrix ip +kec and place

in ad #
IF adold ISNT null
THEN

ad[1:m, 1:m] := adold;
row[1:m] := rowold;
col[1:m] := colold;
FOR i TO m
DO postconvert(ali, ], ad[i, m+1:mnew AT m+1])
oD
ELSE m := 0

Fl 3
FOR 1 FROM m+1 To mnew
DO

postconvert(ali, ], ad[i, 1);

ad[i, 1)+:= IF i=1 THEN 2.0 ELSE 1.0 FI
oD ;
REF [] REAL X0 = x[1:mnew], b0 = b[1:mnew];
notconverged := converging := TRUE ;
FOR iter
WHILE notconverged AND converging
DO

# form y=cex #

preconvert(x, y);

# compute change in first m components of x #
(delt := b0)=-:=x0;

delt[1)-:=x[1];

delt-:=al1:mnew, Jey;

singular := Leqdirect(ad, delt, row, col, m);
# note that Leqdirect sets m:=mnew #

Number 4

1
DO (b[i]-:=a[i, i+i:rankleb[i+1:pank])/:=a[i, i}

# check the change in x0 and update #
epp := epsprev;
epsprev := eps;
eps := NORM delt;
X0+:=delt;
IF singular
THEN converging := FALSE
ELSE
IF m<n # usual case #
THEN

# now iterate on the remaining equations #

FOR 1 FROM m+1 To n
DO
temp = b[i]-ali, Jey;
t= eps i1AX ( ABS (temp-x[il));
1= tenp

IF iter>1
THEN
convergencefactor :=.,
(converging := (epsprev-eps)>10esmallreal

! eps/(epsprev-eps)
! 0

Fl ;
convergencefactor :=
convergencefactor MIN 100.0;
IF iter>2
THEN
oscillating :=
(eps>=epsprev) AND (epsprev<=epp)
Fl 3
notconverged :=
(epseconvergencefactor>acc) AND
( MOT oscillating)
ELSE
# n=n,dont trust the error estimate #
eps := 0,0;
notconverged := converging := FALSE
Fl & main Loop &
Fl # singularity test #
oD # iteration Loop ¥;
IF (notconverged) AiD n<n
THEN
cutoff/:=100;
IF singular
THEN
Llegiter( NIL , ®IL , NIL )
# restarts the triangulation #
ELSE Leqiter(ad, row, col)
Fl

ELSE
(x, epseconvergencefactor,
IF m=n THEN rank ELSE n FI , NOT singular)
Fl
END # Leqgiter #;
# now the main call #
Legiter( NIL , NIL , NIL )
END # Leqfred #;
PROC c?sines = ( REF [] REAL xx) VOID :
BESIN
REF [] REAL x = xx[ AT 0];
INT n = UPB X, np = UPB x%2;

¥ conmputes cos(iepi/n),i=0,1,...n,using the stable recurrenc

# relation of Hopgood and Litherland(ref(3)), #
INT spacing := np, ispaced, nup := 1,
m := ROUND (Ln(n)/Ln(2));
x[0] := 1.0;
x[npl := 0,0;
REAL phi := pi/2.0, x1;
FOR L FROM 2 TO n
Do

phi/:=2,0;
ispaced := spacing;

spacingg:=2;

x[spacing] := x1 := cos(phi);
X1:=0.5/x1;
ispaced-:=spacing;

nupe:=2;

FOR i FROM 3 BY 2 TO nup
DO
ispaced+:=spacinge2;

oD #
oD # L #;
FOR J FROM O TO np=-1 DO x[n-j] := -x[j] OD
END # cosines #;
PROC check = ([] REAL b, REF REAL norm) BOOL :
Hthis procedure checks the vector b to see whether its elements #
Hare smoothly converging to zero,allowing for a possible H
#odd-even effect,and returns in parameter norm either b[n] or #
#b[n-1] as an estimate of the truncation error associated with b#
BEGIN
INT n := UPB b;
BOOL converged := FALSE # exceptional case #;
norm := ABS b[nl;
IF n>2
THEN-
# normal case #
REAL 21 := ABS b[n-1], z2 := ABS b[n-2];
converged :=norm<z2;
IF (21>z2 AND z1>norm) THEN norm := z1 FI
F1 # normal case #;
converged
END # check #;
PROC fft = ( REF [] REAL aa) VOID :
BERIN
REF [] REAL a = aa[ AT 13;
# evaluates the cosine transform

n-
aa(k) = SIGHA aa(j)ecos(jepiek/(n-1)),k=0,1,..n-1
j=0

where the first and Last terms are halved.
This dunny version should be replaced by one using the
Fast Fourier Transform.
INT n:=1 UPB a;[1:n] REAL b; REAL temp, fac;
FOR k TO n DO

temp:=0.0; fac:=pie(k-1)/(n-1);

FOR j TO n DO

tenp+:=

AR R

x[%spaced] t= x1-(xtispaced-spacing]+x[1spaced+spacing
#

[woo/woo dno olwepeoe//:sdiy Woll papeojuMo(]

2/|u

H

20z 1Mdy 61 udisenb Aq £/6€6€/L2E/v/0Z/810M

RRAERRRR

a[j]-coséfac-(J—1))-( IF J=1 OR j=n THEN 0.5 ELSE 1.0 F1 )
D ;
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b[k]:=tempe2/(n=1)
oD ;

’ a:=b
END #fftu;
PROC fredsol =

REF [] REAL X, REAL a, b,
PROC ( REAL , REAL ) REAL kernel, PROC ( REAL ) REAL gg
) VECRESWT

R R R R R R R AR AR R B R R R LR R R IR R 3 S T e e S g e R R E E E E R

IR

#

#

#

solves the Linear Fredholm equation
b
f(r) = g(r) + INT k(r,s)ef(s)eds

a
using the Fast Galerkin method described in ref(1),
f(r) is approximated by a truncated Chebyshev polynomial
expansion of the form:

n
f(r) = si(;;m x(1)et(i-1)((2ex-a-b)/(b-a))

Note that the first term is NOT halved.
The time taken by the routine is O(nt2eln(n)),
Leafred is an adaptation of procedure Leqwad of ref(2).#
1t iterates the Linear equations to an accuracy H
determined from the a priori estimates given in ref(1) #
#

RUERBRAERERRERRR

Parameters #
---------- #
X = a real vector of dimensions [1:n].on input,should #
contain an approximation to the expansion coefficients.#
This approximation may be zero if no information is #
available,but if fredsol has been called previously H
with a smaller value of n,the previous coefficients #
should be saved and augmented with zeroes to yield some#
saving of time in the solution of the linear equations.#

on output,x will contain the computed expansion K
coefficients. H
a,b- The Lower and upper Limits of integration in the #

integral operator. #
kernel- a user provided function yielding the kernel k(r,s)#

of the integral equation. M
39 - a user provided function yielding the driving functions

g(r) of the integral equation,
resul ts.

Th2 procedure returns a result of mode vecresult,a

structure whose fields have the following significance
ans - a pointer to X,the vector of expansion coefficients.
ep - an estimate of the absolute accuracy:

0

REERLLTRERRER

max abs(f(s)-fapprox(s))
s=a

achieved by the routine.For a discussion of the error#
estimate, see ref(1). #
eval s-the nunber of significant components in the vector Xx.#
This will normally be n.If however the problem was #
found to be numerically singular,then the routine H
will return with evals=m<n,and n-m components of x #
will be set to zero.These will be the components #
found to be the Least important numerically.In this #
case, the solution x returned still satisfies the #
approximate Galerkin equations,but the error estimate#
ep may be unreliable. H
fin - a boolean field usually set to true.Set false if #
there is reason to suppose that the error estimate ep#
may be unreliable.This may happen for any of the H
following reasons: #
symptom internal flag#
mmm———— mmiae ———n H
Matrix numerically singutar fin OF result#
Matrix not singular,but too ill
conditioned to solve accurately,
given the quadrature errors present. convergence
Ragged convergence in the matrix k conk
Ragged convergence in the rhs vector g cong
Ragged convergence in the solution vector cona

RN

Refersnces
(1) L.N.Delves,a Fast Galerkin method for the solution
of Linear Fredholm Equations,J.l.!l.A to be published.#
(2) L.M.Delves,a Linear Equation solver for Galepkin and #
Least squares problems,submitted to Computer Journal .4
(3) F.R.A.Hopgood and C.Litherland,CACY 9(1965)270 H
See also J.Oliver, stable Hethods of evaluating thew
Points cos(iepi/n),J.1.M.A 15(1975)247 #

HRRER

BEGIN
VECRESULT result;
INT n := UPB x;
[1:n] REAL g,s8s;
[1:n, 1:n] REAL k;
REAL normdg, normg, normdL, normLinv, norma, temp, rq, rt,
fac,error,accy;
REAL c¢1 := (b-a)e0.5, c2 := (a+b)e0.5, c3 := -c1;
BOOL cong, cona, -conk,convergence ;
# first compute the (mapped) cosine values #
cosines(ss);
FOR 1 TO n DO ss[i] := cless[i]+c2 0D ;
# now compute the kernel and driving term function values #
FOR1 TO n
DO
temp := ss[i];
gl1] := gg(temp);
FOR j TO n DO k[i, j] :=c3ekernel(temp, ss[j]) oD
oD # i #;
# now transform these #
ff1(g);
FOR 1 TO n DO fft(k[i, 1) oD ;
FOR 1 TO n DO fft(k[, i]) oD ;
normg := HORH g;
conk :=
check(( NOR!11 k[n-2, 1, NORH1 X[n=-1
noradL);
normdles= ABS c1;
cong := check(g, normdg);
accy := riormdg MAX normdl;
result := Leqfred(k, g, x, 0.leaccy);
norma := HORM X;
normliny := noprma/normg;

» 1, HORM1 k[n, 1),
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cona := check(x, rt);
fac := 1-normlinvenoradl;
convergence :=
IF fac<10esmallreal
THEN fac := 10esqrt(smallreal); FALSE
ELSE TRUE
FI ;
rq := normlinve(norndg+noridlenorna)/fac;
ep OF result+:=rq+nert;
fin OF result :=
convergence AMD cona AMD cong AND conk AND
(fin OF result);
result
END # fredsol #;

Algorithm 98
A NOTE ON THE SOLUTION OF CERTAIN TRIDIAGONAL
SYSTEMS OF LINEAR EQUATIONS
W. D. Hoskins
Computer Science Department
The University of Manitoba
Winnipeg, Manitoba
G. E. McMaster
Department of Mathematics
and Computer Science
Brandon University
Brandon, Manitoba

Authors’ notes »
The problem of solving a tridiagonal system of linear equations
Ax = d 1.ng
occurs frequently in the solution of partial and ordinary differential 3
equations (Fox, 1962), and in the solutions of cubic spline problems 3
when prescribed derivatives are specified at the boundaries (Spath, =
1974). : @
In the following discussion we consider the case when the matrix A 5

peojumoq

sd

has the form: 8
Q.

z b g

b a b 5

[}

. e e C

A= R 1.2)%
.. S

b a b 8\’

b w nyn é

3

Since the matrix A4 is symmetric, a modification of the coupled &
algorithm of Andres, Hoskins and McMaster (1974), McMaster =
(1976) or the Evans and Hatzopoulos (1976) algorithm could be used ©
to solve the equation system (1.1). In this paper, an algorithm that 5
decouples the equation system at, or adjacent to, the centre isg
presented. This decoupling enables the algorithm to minimise the >
effect of the boundary conditions on the solution values and in a &
parallel processing environment, the algorithm is very efficient.

1. Description of the procedure

The Malcolm-Palmer (1974) form for the LU decomposition of A4
can be shown to converge for most boundary equations; however,
for each set of boundary conditions, a value for the convergence
factor ¢ must be determined. Additionally, any uncertainties in the —.
boundary conditions are propagated in both the elimination and in
the solution steps.

The algorithm proposed here, which we will call Madison, exploits
several of the economies of the Malcolm-Palmer technique and for
sufficiently large n [greater than the convergence factor (which is
subsequently determined)], the convergence of the method is
independent of the boundary conditions. Algorithm Madison utilises

013senb Aq £,6€6
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Table 1 Upper bound C and observed values of ¢ on the IBM 360

Short precision

a C c
30 19 17
35 16 14
4-0 14 12
50 12 12
7-0 10 10
80 9 9
9:0 8 8
200 6 6
250 5 5
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the symmetry and near centrosymmetry to decouple the equation
system at the value, m = [(n + 1)/2], the integer part of n + 1
divided by 2, and to separate the work into two nearly parallel
processes.

A multiple of the mth row of the equation system with coefficient
matrix as defined in (1.1) may be added to the remaining rows to
attempt to simultaneously move the coefficient matrix A to upper and
lower triangular form. This elimination step propagates a non-zero
entry in column m + 1 in the upper half and column m — 1 in the
lower half of the coefficient matrix resulting in 4 having the form:

'u* -
1u

1u
1 Ue Sc
1.
1 us .;'2
1w 0 51
1 s 1
s1 0 w1 2.1
52 uz 1
Se ’ uc 1
ul
ul
w*

Notice that the u; are shown as converging to # (Malcolm and
Palmer, 1974) and simultaneously the s; given by

si = (= 1) si—1/ui—1

are shown as converging to 0 to machine precision after some pre-
determined value i = c¢. The solution values xi, x2, ..., Xm_c-1;
Xn, Xn—1, . . ., Xm+c+1 May be obtained immediately, in parallel, in
the back-substitution process. The solution values Xxm-c-1 and
Xm+c+1 May be subtracted from equations m — ¢ and m + ¢
respectively to leave a smaller equation system with coefficient
matrix in the form

-

'uc Sc
1 Uc—1
1 u $2
uw 0 51
1 a 1 2.2)
s1 0 w1
52 uz 1
. Uec—-1 1
L Se uc_
Using an additional elimination phase, we have
-uc . Sc. 1
Uc_1 Se_1
uy 0 &
1 a 1 (2.3)
51 0 uf
Sct.l uc—l.
| Sc U]

The two by two equation system with coefficient matrix

PR
u; s
PN
57U

at the centre is solved first, the remainder of the solution values

being obtained readily by back substitution.
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In a manner analogous to that of Malcolm and Palmer (1974), it is
possible to determine an upper bound C after which both the u; have
converged and the s; may be assumed to be zero to machine precision.

For seven figures of accuracy, an upper bound is given by

C = 81n (10)/(In (@ — 4} — In () .

2. Discussion
It is clear that algorithm Madison as described in Section 1 requires
only n + 2c¢ + 1 words of storage for the entire solution.

It is interesting to note that the elimination process for the Madison
algorithm is performed from the centre values of the matrix outwards,
thus reducing the growth of the error due to the effect of the boun-
dary conditions and round-off error in the elimination stage. The
final solution is then obtained from the outer edges inwards thus
reducing the growth of rounding error in the backward substitution
(Wilkinson, 1965).

In the forward elimination, a little over half the work need be done
if a parallel processing machine is available, and the two back
substitution phases can be arranged to take place simultaneously.

3. Program

3.1. Formal parameter list

(a) Input to the procedure Madison cé?
n the order of the equation system to be solved. It must be >2¢ + =

¢ the value after which the u; in the LU decomposition will converg%—

and the s; may be assumed to be zero (from Table 1) =

d the vector of constant values on the righthand side of the equatio@
system =

a the value on the main diagonal of the coefficient matrix (apa@
from the positions (1, 1) and (n, 1))

z the value in position (1, 1) of the coefficient matrix

w the value in position (1, n) of the coefficient matrix.

y

dnoolwapeoe/,

(b) Output from procedure Madison
d the vector of solution values. The original contents of d are los

T

3.2. ALGOL 60 procedure for algorithm Madison
begin
procedure madison(c, n, d, a, z, w);
comment madison solves a tridiagonal linear system of equations.
ax = d where a has ones on the off diagonals and the values (z, a,
... w) on the main diagonal. The effect of the boundary values z,
is minimised in the solution since these values are not used in t
program until the final stage of the elimination process;
begin
value ¢, n, a, z, w; integer ¢, n; array d; real a, z, w;
begin
real array s[0: c]; real array u[0: c];
real ul, alpha, temp, t; integer i, j, m;
s[0] := 1. ;u[0] := a; m := (n + 1) div 2;
for i := 1 step 1 until c do
begin s[i] := —s[i — 1)uli — 1];
ulil:=a— 1./uli — 11;
dim—i]l:=d[m—il—dlm— i+ 1)uli — 1];
dim+ i]:=dlm+il—dlm+i— 1)uli — 1]
end;
ul 1= ulcl;
fori ;= m — c — 1 step —1 until 2 do
dli]:=d[i]— d[i + 1]/ul;
fori:=m+ c + 1step 1 until n — 1 do
dli]:= d[i] — d[i — 1)/ul;
d[1]:= (d[1] — d[2)ul)/z — 1.[ul);
d[n] := (d[n] — dln — 1)ul)/(w — 1.[ul);
for i ;= 2 step 1 untilm — ¢ — 1 do
dli]:= d[i] — d[i — 1]D/ul;
fori:=n— 1step —1untilm + ¢ + 1 do
dli]:= (d[i] — d[li + 1]D/ul;
dim—cl:=dm—cl—dlm—c—1];
dim+ cl:=dlm+ cl—dlm+ c+ 1];
for i := ¢ — 1 step — 1 until 1 do
begin
s[i]:= s[i] — sli + 1)uli + 17;
dim — il:=dlm— il — dlm — i — 1)fuli + 1];

oBIE/|UlWO9/WO!
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dim+ il:=dm+ il—dlm+ i+ 1)uli + 1]
end;
alpha 1= —1.J(u[1] + s[11); temp = (u[11*¥*2 — s[1]¥*2);
d{m] := (d[m] + alpha*(d[m — 1] + d[m + 1)))/a;
t:= (dlm — 17*ul1] — s[11*d[m + 1])/temp;
dim + 1] := (u[11*d[m + 1] = s[11*d[m — 1])/temp;
dim — 1] := t; temp := d[m + 1];
for i := 2 step 1 until ¢ do

begin

dim — i]:= (d[m — i] — sli*temp)/uli];

dim+ i) := (dlm + i] — sli]*t)/uli]

end
end madison;
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ON THE CONSTRUCTION OF BALANCED BINARY TREES

FOR PARALLEL PROCESSING
D. J. Evans and S. A. Smith
Department of Computer Studies
Loughborough University of Technology
Loughborough, Leics.

Authors’ note

Over the past few years new computer architectures have emerged
which possess a number of arithmetic units or processors. To utilise
these machines efficiently statements should be compiled so as to
indicate where several parts of an arithmetic expression (or indeed
several sequential expressions) can be computed in parallel.

If an arithmetic expression is represented by a binary tree any
operations that appear at the same level within the tree can be
assigned to separate arithmetic units or processors and computed in
parallel.

In this paper we present a method which produces a binary tree
representation of an arithmetic expression which is of minimum
height wherever possible. Throughout, emphasis will be directed to
an algorithmic process to be used for creating such trees, which will
be incorporated within the compiling process.

1. Formation of a balanced tree

Methods of forming tree representations of arithmetic expressions
are well known and given in Knuth (1968). We consider the formation
of a binary tree of minimum height for its compesite elements and
subtrees. Such a tree will be called a ‘balanced binary tree’ or a
‘balanced tree’. The remaining terminology will be taken as that
given by Knuth (1968; 1973).

We now consider the specific case where a balanced binary tree is
systematically constructed from single element components (see
Fig. 1). Assume that the first element is attached to the null node,
then a second element can be added by forming a new node whose
left hand son is the original element and whose right hand son is
the new element (this is called ‘inserting one place above’). Further
elements can then be added, the third by inserting a new node two
places above the previous element whilst a fourth can be added by
inserting a new node one place above the third element. Finally, the
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fifth element can be added by inserting a new node three places
above the fourth element, etc. This tree construction process can be
enumerated by using a numeric code which is generated in the
following manner. At any point on the tree the number 1 is used to
represent the placing of an element one place above the previous
entry in the tree and the number 2 to represent its placing two
positions above. So the four insertions shown in Fig. 1 can be
represented by a code given by the series of numbers 1, 2, 1, 2.

To extend this process the requirements of balancing dictates that
the following three insertions will be in the same manner as the first 3
(i.e., 1, 2, 1). The eighth, that is the 23, insertion will be situated at the
fourth (3 + 1) level above all the other nodes. In general then the
next 2¢ — 1 insertions will be in the same manner as the first (2¢ — 1)
insertions and the 2(i+DLth jngertion will be at the (i + 2)th level
above all other nodes.

2. Addition of subtrees to an existing tree

The process outlined in the previous section will allow single elements
to be inserted into a tree but it is also useful to be able to add sub-
trees to an existing tree where the subtrees will retain their structure
within the overall tree structure. To do this the following criteria are
defined:

1. Any increase in the overall height of the tree caused by the
insertion process should be kept to an absolute minimum. This is
so that the number of levels in the tree will continue to be
minimised.

2. An insertion at the top of the tree is preferable to extending the
tree below the lowest existing level. This provides for possible,
future extensions to the tree. If we extend the tree below the
lowest existing level then the next insertion must also extend the
height of the tree. If the tree is extended above all existing levels
the next insertion may not extend the overall height of the tree.

3. The subtrees should be placed in the first available position in the
tree, providing the previous conditions are met. This again is done
to provide for future extensions to the tree, so that the maximum
number of vacant nodes are available for successive insertions.

Previously the position for insertion of a new node has been defined
in terms of the previous element inserted. For the insertion of a
subtree a dummy pointer will be required so that the next insertion
can be implemented at the correct position in the tree. The value of
this dummy pointer will depend on the relative heights of the subtree
and the tree into which it is to be inserted. If the subtree is shorter
than the tree into which it is being inserted then it is assumed that
the maximum number of elements that could be held by a subtree of
that number of levels has been added, and the dummy pointer is
theoretically obtained from the last element added. If the subtree

The Computer Journal

20z udy 61 U0 188n6 AQ €/6E6€/1LE/7/0Z/31014e/|ufL00/W0d"dNO"oILLSPEDE//:SARY W) PAPEOUMOQ



height is greater than or equal to that of the tree into which it is
being inserted then a different approach is necessary. Since the next
insertion will be required to be above the join of the tree and the
subtree (the reasoning being the same as that for criterion 2), then
the dummy pointer will need to be theoretically taken from the last
element inserted in a tree (containing the maximum number of
elements) of one level greater than the subtree actually inserted.
Details of this procedure for the additions of subtrees can be seen in
Fig. 2(a) and (b).

3. Conclusion

A great deal of research has been carried out into the handling of
binary trees containing data, see for instance Day (1976). Some work
has also been done in producing syntactic trees with a minimum
number of levels, see for instance Baer and Bovet (1968). In com-
parison the algorithm described here will produce a binary tree
representation of the elements and subtrees as given, which will have
minimum height possible for such a tree without having to reorder
the expression. Any operations that appear at the same level within
the binary tree can be assigned to separate arithmetic units or
processors and computed in parallel.

4. ALGOL 68 procedure
A procedure that balances trees in the manner described hitherto has
been written and tested in ALGOL 68.

Throughout the algorithm the existence of a recursive ALGOL 68
MODE TREE is assumed with at least the following five fields:

LEFT this is a reference to the tree that is the left hand son
of the present tree. This can be null if there is no left
hand son.

OPERATOR this is the operator (e.g. +) that joins the left and
right hand son, or if a leaf node, the variable name.

RIGHT this is a reference to the tree that is the right hand son
of the present tree. This tree can be null if there is no
right hand son.

LEVEL this is the level of the operator in the overall tree,
usually one for a variable.

FATHER this is a reference to the tree that is the father of the

present tree. This tree can be null if this tree has no
father.

Other fields may be added to meet the needs of a given situation.
The following ALGOL 68 declaration will define the structure
explained.

MODE TREE = STRUCT(REF TREE left, STRING operator,
REF TREE right, INT level, REF TREE father)
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<make balanced tree> adds an item or a sub-tree to an existing tree,
at the most suitable point for an entry of its size
..tittttt*.tttt!ii!tﬁ'ﬁﬁiti'!".*t'.c
PROC make balanced tree=(REF INT next,randtop,optop,

INT last REF {[] TREE this,

REF REF TREE orig,[] REF TREE randstack,

[]1 CHAR operators)

Ak EET T EEARA AN [T Y

VOID:
Commmmmeecmmmmmmmmmmemmm e mmmmmmmmmmmmm—memmmamemmmmmmm e
next indicates the next free position in the array of trees<this>,
originally O

randtop indicates the top item of<randstack>

optop indicates the number of entries in<operators>

last indicates where in<this>references to the current set of sub-trees
begins, initially 1

this a stack of trees used to hold all subtrees formed

orig contains the current sub-tree

randstack a stack containing sub-trees and operands

operators a stack of operators, which correspond to the operands
this procedure will form a balanced tree of operands and operators,
as long as the operator remains the same
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(INT temp;
INT count,prev,pcount;
CHAR oper+operators [optop];
pcount<0;
INT nooflevels+12;
[1:24nooflevels-1] INT predefined;
INT value«l;
predefined([1]+«1;
FOR i FROM 2 TO nooflevels DO
(value TIMES 2;predefined|value]«i;
predefined[value+1:2*value-1]«predetined|l:value-1]);
OP '>'=(TREE expra,exprb) INT:
(INT lev+(level OF expra>level OF exprb!level OF expra!
level OF exprb)+l;lev);
ctﬁt""l."ltﬂt'thttiiitl'ti'tttttt&ttl't*tttlkﬂtttitltitﬁtl*k..ttttit..ttt
<pa>adjusts<point>so that instead of pointing to a node it points to
to its father
L L T L s
PROC pa=(REF INT point) VOID:
(INT temp<point;
FOR il FROM last TO next WHILE temp=point DO

WHILE this[il] IS father OF this[point] DO point«il);

Clmmmmmmm e e e e e e m e e mm e e e e e e e mmemm—e— e
attach first element or sub-tree to null node
next PLUS 1;
level OF this[next|«level OF randstack[randtop];
left OF this[next]<randstack|randtop];
operator OF this[next]«"@";
orig«left OF this[next];
randtop MINUS 1;
prev«»next;
count«2+(level OF this[next|-1);
o U UM
the loop that builds up the tree
WHILE (optop>= LWB operators AND randtop>=LWB randstack
oper=operators [optop] ! FALSE) DO
(optop MINUS 1;
next PLUS 1;
temp+0;
IF level OF randstack[randtop]>=level OF orig THEN
count+2+(level OF orig-1)
ELSE WHILE level OF randstack[randtop]”predefined(count] DO
count PLUS 1
FI;
left OF this[next]+randstack|randtop]:
operator OF this[next]<oper;
IF predefined{count]=1
OR pcount=0
THEN
Creeeccecccccccccccccccm e mc e mee e e e eee e cecmcecmecemesceceee—————
place one place above the previous entry
father OF this[next]<*this[prev]:
right OF this[next]<left OF this(prev]:
left OF this[prev]<this[next]
ELSE
Cmmmmmm e e e e e mm e e e mm e m e e m e e ————
placetemp> 1 places above the previous entry
temp+predefined[count]-level OF this[prev];
FOR i TO temp WHILL operator OF (father OF this([prev])#'@
DO pa(prev) ;
father OF this[next|*father OF thisl)rev&; X
IF operator OF (father OF this [prev1)=" " THEN
operator OF (father OF this [next])«"@"
ELSE this [prev] IS right OF (father OF this [prev]) THEN
right OF (father OF this [prev])«this[next]
ELSE left OF (father OF this [prev])«this[next]
FI;
father OF this [prev]<«this|next];
right OF this[next]«this[prev]
FI;
Commmmmmmmmmmem e mmmmmmmmmmmm e m e —eemmeemeeeemsomememeo—s-—-mee
if a sub-tree of level greater than one has been added update count
to allow for this
IF level OF randstack[randtop]=1 THEN prevenext
ELSF level OF randstack[randtop]>=level OF orig THEN
prev<next;
count«24(level OF randstack|randtop])-1
ELSE count PLUS 2t(level OF randstack([randtop|-1)-1;
FOR il FROM last TO next-1 DO
IF this[il] IS left OF this[next] THEN
prev«il;
father OF this|prev]«this[next];
GoTo 1%
FI;
iz: SKIP
FI;
IF operator OF (father OF this|next])="@" OR peount=0 THEN
orig«this|[next|; pcountel
FI;
- count PLUS 1:
randtop MINUS 1:
temp+next:
Cmm e e e m e e e e e e e e e memmmmeememmmmmmmmeeeemmmmmmemmemmmmmmememeemeem— o

IF operator OF this[temp]= "@" THEN

level OF this[temp]<«left OF this[temp]>right OF this[temp]
ELSE

WHILE operator OF this[temp]#"@" DO

(level OF this [temp]«left OF this[temp]'>'

right OF this[temp];pa(temp))

FI)); :
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