Monitoring database system performance

P. Dearnley

School of Computing Studies, University of East Anglia, Norwich, Norfolk

The motivations and methods of monitoring data base system performance are discussed. The
techniques used to monitor a particular system are described and the results of monitoring three

periods of data base system operation are given.
(Received November 1976)

New methods of managing data and new data base manage-
ment software packages are continuing to appear. Both data
base system designers and users, or potential users, are inter-
ested in evaluating new methods and products. One method of
evaluation is to monitor the performance of a system whilst
processing different query loads. The monitoring information
obtained may be used by users to compare one system with
another or to assess the implications of moving to a data base
management system from a conventional filing system. The
interests of system designers are a little different; they are
interested in evaluating performance to improve their product
and in not only the overheads in data base systems in general,
but the overheads attributable to their particular data base
management philosophy.

The data base system designer is unlikely to be able to per-
form an analytical evaluation of his entire product due to
both the complexity of the code employed and the method
of operation of the system, although it is possible to perform
such evaluations for some part of the design process (Kollias,
1976). The operation of a system such as IMS (IBM, 1970)
or a CODASYL implementation (CODASYL, 1971), allows
the programmer considerable freedom to navigate through
the data base (Bachman, 1973); an analytical approach would
be unable to allow for the vagarities of such navigators.
Similarly the implementation of non-navigational systems
often involves the dynamic selection of access paths based on
relationships in the data base at run time (Hutt, 1976;
Dearnley, 1976). Hence any evaluation is likely to be in the
form of experiments on a running system or on a model of a
system. If the analysis of the results can be tied to the logical
structure of the system then the designer can decide how to
allocate resources to improve the system. The resources may
be in the form of additional or special hardware (Lin et al.,
1975; Coulouris et al., 1972) to speed the performance of a
given system. Alternatively the designer may wish to know
where to concentrate human resources on the production of
new algorithms, firmware, assembly language code, etc. for
an improved software package. Similarly the costs of running
the system can be divided between useful work, overheads
inherent in the data base approach and the overheads peculiar
to the particular data base management philosophy employed.

Methods

One simple method of performance analysis is to regard the
data base management system as a ‘black box’ and to measure
the computing resources consumed during the processing of
particular query loads. This method may be sufficient for
users performing comparative analyses prior to selecting a
particular product but since it is not tied to the logical structure
of the system it gives the designer little insight into the opera-
tion of his product. A slightly more sophisticated approach
is to sample and record the state of the computer at regular
intervals. This can be thought of as physical monitoring and
can give some insight into the usage of machine resources.

Volume 21 Number 1

In addition if the software is produced by a system generation
procedure which produces a loader map it may be possible
to work back through this map and deduce the proportion of
time spent in those routines which happen to be sampled.
This method may be misleading if the system is overlaid and it
does not give information about the frequency of use of rou-
tines. Hence although the method may be useful for tuningo
computer performance it also contributes little to under-

standing the system. Logzcal monitoring can be employed if 'them
source text of the system is available. Calls on monitoring&
procedures are inserted in the source text. The monitoringd
procedures record the entry to and exit from routines or groups=. 3
of routines. The information recorded by the momtormgU
routines is output at the end of each monitored run. The mfor-\
mation might include the processor time used, the real tlmeo
used, the frequency of use and the number of perlpheral‘l
transfers performed. The timings may be made on a cumulative %
monitor basis so that the time attributed to a routine includes all2
lower level routines called by the given routine, or, on a3}
differential monitor basis so that the time used by lower levelS
routines is excluded. Logical monitoring ties the evaluationg
to the structure of the system, can accommodate overlays and%
allows measurements other than just the state of the host;_>
computer.

/L/LE/R1

Application
The method of logical monitoring has been used on a self =
organising data management system (Stocker and Dearnley, £

1973, 1974a). To investigate the viability of such systems aU1
model system has been built (Dearnley, 1974a) and a number =
of experiments performed (Dearnley, 1974b, 1976). The<
designers wished to know both the overheads attrlbutableg
to this type of system in general and the areas in which to 2
concentrate in the design and implementation of a new full-S
scale system following the same philosophy. The new system ©
is being implemented on a microprogrammable ‘back-end’ &
computer (Canaday, 1974) and the designers have to choose—
between firmware, assembly language and high level languagem
for the implementation of various routines. Naturally the ©
monitoring does not produce absolute guide lines for imple-
mentation nor does it produce perfect measurement of over-
heads but it does give some quantitive information to assist
in these difficult areas.

Each major routine is equipped with calls on monitoring
procedures. These procedures record the real time used and the
processor time used on both a cumulative and a differential
basis. In addition the frequency of use is measured, as are the
transfers to and from the disc unit holding the data base.
Peripheral transfers involving files in the operating system
file-store but outside the data base are ignored. When the
data base system is closed down the monitoring information
is written to file-store for subsequent analysis.

YyIS

15

Utility
Structure Housekeeping Processing DBMS overhead SODMS overhead
High level Searches Interpreters Extract
Sort
Index
Route finding
Route costing
Folio management
Low level Logical I/O File allocation Folio definition I/O
Page turning Folio definition I/O
Basic IOCS Version definition I/O
Move
Compare
Miscellaneous Archiving I/O thru’ OS Folio definition
Start up Statistics

Fig. 1 Classification by structure and utility

System structure

To appreciate the results of the studies presented in later
sections it is necessary to understand the logical structure
of the system under evaluation. The system is controlled by
two interpreters. One interpreter allows the user to specify
two types of actions, classified as simple or complex. Simple
actions include such things as loading new user input and writing
results to file-store. Complex actions call upon a route finding
and costing section which prepares a route through the data
base to answer an enquiry. The route finder, in turn, calls
upon a second interpreter to perform complex actions such as
searching and re-structuring. This second interpreter can also
be invoked by the folio management routine which takes
decisions about restructuring and updating when the system
is idle. All action routines call on a common set of file handling
routines which manage both the data base itself and the system’s
directory of folio and version definitions. The file handling
routines are themselves monitored by statistics routines which
record the usage of versions whilst searches are in progress.
A number of miscellaneous routines exist for such purposes
as system start-up and archiving. More detail of the imple-
mentation is given elsewhere (Dearnley, 1974a).

Classification by structure

For monitoring purposes the system is divided into 57 routines.
These routines are, for the purpose of brevity in this section,
grouped into 21 categories. The categories are shown in the
body of Fig. 1. The rows of Fig. 1 show the routine categories
further grouped into three classes: high level, low level and
miscellaneous.

The high level class includes those routines of which the user
is aware and those routines which represent major components
of the system. Thus the class includes the user interpreter
and the costing mechanism, both of which are known to the
user. It also includes re-structuring, route finding and folio
management which represent major parts of the system.

The low level class includes minor routines necessary for
system operation and those routines from which the major
components are built. Thus this level includes folio and version
definition handling, the input/output package, and, the move
and compare routines. The input/output package comprises
record handling at the logical level which calls upon page
turning routines as required. The page turning routines process
the system map and call upon the basic IOCS for physical
transfers.

16

The miscellaneous class comprises the necessary routines for
archiving and recovering the data base, starting the system up,
communicating with the host operating system file-store,
collecting statistics and receiving definitions of new data from
the user. The statistics group is included here rather than under
low level because it operates both at the search level (to collect
the nature of the query) and at the IOCS level (to record how
the query is serviced).

Classification by utility

To provide data on the overheads of the data base approach
and the self organising philosophy the 21 categories are divided
into four classes based upon their utility from the user’s
viewpoint. The classes are housekeeping, processing, DBMS
overhead and SODMS overhead. The classification is shown
by the columns of Fig. 1. The processing class includes those
groups which represent the work a user actually wishes to do
and might explicitly program in a conventional file processing
environment. Thus it includes putting data in and getting it
out (I/O through OS), searching for records matching query
specifications and extracting relevant data (searches with their
necessary I/O, moves and compares). Loading and initialising
the system and keeping back up is classed as housekeeping.
The division between DBMS and SODMS is more difficult,
for example where should (re-)structuring be placed ? One view
is that it is a necessary prerequisite of using the DBMS and
therefore not in the SODMS class. However the approach taken
here (to the advantage of the DBMS class) is that structuring
and re-structuring is performed dynamically to achieve cost
advantages and thus should be charged to the SODMS class.
Thus the DBMS class comprises interpreters, (dynamic) file
allocation and version (i.e. data file) definition I/O; rather a
generous view of DBMS overheads! The SODMS class
includes statistical routines, folio management, route finding
and costing, all structuring and obtaining folio definitions
and the I/O of folio definitions.

The implication of using the term ‘utility’ is that the user
should view the processing class and, to some extent the house-
keeping class, as useful in obtaining his objectives. Whilst
the DBMS and SODMS classes are the overheads in adopting
the data base approach in general and the self-organising
approach in particular.

Studies
Three studies have been used for evaluation; the studies were

The Computer Journal

202 udy 61 U0 188n6 AQ ¥ZHS /S L/1/LZ/aI0ME/UlWod/ W00 dno dlWspeoe)/:SAjY Wolj paPEojuMOQ

deliberately chosen to include archiving, re-structuring and a
number of searches. The data base system was run on an
ICL 1903T under the GEORGE 3 operating system; it was
allocated 30K 24-bit words of store and the data base, system
map and system directory were held on one EDS 60 disc
transport. To facilitate timing no other jobs were run by the
operating system during the monitoring periods. Before the
monitor output was analysed a pair of ‘dummy’ systems were
run. One dummy consisted of performing a large number of
‘opens’ and recording the times taken by the operating system
to connect the program to its files. An average overhead for
opening a file under this operating system was then subtracted
from the monitor output. The second ‘dummy’ consisted of
running the monitoring procedures, in a null routine, a large
number of times; this allowed the overhead of monitoring
to be assessed.

The monitor output includes the number of peripheral trans-
fers, the cumulative and differential processor times, the cumu-
lative and differential real times and the frequency of usage
for each of the 57 routines. For the purposes of this paper the
21 groupings mentioned above are further contracted to ten
groups as shown in Fig. 2, and the results presented are limited
to the frequencies of usage and differential times.

The monitor output from these studies is given in Figs. 3, 4
and S. (Readings which were non-zero but too small to show
on the bar charts have been rounded up to a single asterisk;
very long bars have been abbreviated and their actual value
recorded below the appropriate bar.)

The studies all use one folio of 60 pages of data located in a
data base area of 2,400 pages.

Routine Group Group for Abbreviation used
Name in Fig. 1 Figs. 3-5 in Figs. 3-5
Extract Organisation ORGANISE
Sort
Index
Search Search SEARCH
Interpreters Interpreters INTPRTR
Route finding Route handling ROUTES
Routse costing
Folio management | Folio management | FOLIO
System directory

I/0
File allocation I/0 I/0
Logical I/O
Page turning
Basic IOCS
Move Move/Compare MOVE/COMP
Compare
Archiving Archiving ARCHIVE
Start-up
Folio definition Other OTHER
I/O thru’ O.S.
Statistics Statistics STAT

Fig. 2 Re-grouping and abbreviations

Study 1. Access and Re-organisation
The first study involves both requests to be answered and an
occurrence of data base re-organisation. A serial search is
performed which takes the statistics for the usage of that part
of the folio over the given threshold. The system then goes idle
and into the folio management routines; these routines find that
creating a new version would appear to be profitable. The
complex action interpreter is instructed to extract a new version
containing five frequently used fields, to sort this version on the
most frequent access key and to build an index to the version.
A further request is then processed. The route for answering
this request involves three indexed searches, one of which
happens to use the newly created version. Inspection of Figs. 3,
4 and 5 shows that the process category is the most frequently
used and that this category uses the most processor and real
time. The SODMS category uses roughly half the processor
and real time of the process category for about one quarter the
frequency of usage; this is partly due to the fact that the route
finding and folio management routines are comparatively
complex relative to the search and I/O routines. The monitor
output for the breakdown by utility shows a considerable
amount of the real time in organisation and in I/O, as might
be expected in an example involving sorting. The small values
given for DBMS must be viewed in the light of the fact that
the breakdown into DBMS and SODMS overheads favours
the DBMS category by placing all organisation in the SODMS
category.

STUDY 1
H SKPNG *k

PROCESS Ak 3 o o R o o R o ok o o ok o o K K K o K oK K
DBMS ARk Kk ok

S O0DMS A 2k ok ok o ok ok ok ok ok oKk ok ok K ok K K K K ok K K

S TUDY 2
===== =
H SKPNG *
P ROCESS A o R oo o oK K KK K o oK K KRR KK KK KKK KK o o o
DBMS K o o o o ok ok 25.9
S ODMS o oo Rk oK o K K K oK K KK R K

STUDY 3
= ===3 =
H SKPNG o ook ok K K
PROCESS Ao o o o ko o Kk oK oK K
D BMS ok ok kK

S ODMS *k

STUDY 1
=z ==3= =
0 RGANISE
S EARCH

ok
Ak

INTPRTR Aok ok ko

ROUTES LRI e

FOLIO *k

1/0 A AR KKk K KK KK
MOVE/COMP | *kkkkkkkk

ARCHIVE
0 THER

S TAT

4o ok ok oKk kK
a0k ok o ok ok o ok ok

S TUDY 2
=z=az =
0 RGANISE
S EARCH
INTPRTR
ROUTES
FOLIO
170
MOVE/COMP
ARCHIVE
0 THER

S TAT

4ok o e o o o e o ok e o ok e ok e o ke o ok ke ook o ok e ok ok

Aok Rk

4o o o ok o ok e o ke ok ok ok ok

xRk

o e e o o oK o ok ok oo oo o R o o o ok ko o ok ok ok ok ok ok ko ok ok ok ok ok ok o ok ok ok ok
e ok o o A ok o e ok ok oK o ok oK o K ok K

ke 2k o ke o ok ok K
40k 2 o o ok o o o o ok ok K

STUDY 3
= ===22 =
0 RGANISE
S EARCH

I NTPRTR
ROUTES
FOLIO
1/0 Ak koK KoK K
MOVE/COMP| *

ARCHIVE o Aok ok kKK
0 THER *kk

STAT SN ’
. & e

* koK kK

-

Fig. 3

Volume 21 Number 1

17

20z udy 61 U0 1s9nB AQ ¥ZHSHb/S L/ L/LZ/aI0Ne/UlWod/Wwod dno-owepese)/:sdny

O
o
S
3
o
Q
)
o
=

o
3

STUDY 1

H SKPNG *k

PROCESS o ook o o ok o ok o K oK oK o ok o R K K ok R K K
DBMS *

S ODMS ok ke ok o ok oK koK KOk

STUDY 2

H SKPNG *

PROCESS 04 K 0 K 3K K 2 K K K oK K K ok R ok ke ok ko 3 ok 3 oK ok ke 3 o o ok kR R ke o o o o oK o oK oK oK ok

DBMS *%

SODMS Aok kK kKK

STUDY 3

===== =

H SKPNG Fok ok ok kR KKk

PROCESS oA R o K K K KKK KK KKK KRR KRR KRR Rk kK o o o

DBMS * 380

SODMS *

STUDY 1

O RGANISE |*kkkkkkxkkxk

S EARCH kK

INTPRTR *

ROUTES *

FOLIO *

1/0 ko ok K o ko ok o ok K KoK K

MOVE/COMP | k***

ARCHIVE

0 THER *%k

STAT *k

STUDY 2

0 RGANISE

S EARCH Aok o ok koK KoK K

I NTPRTR *

ROUTES *%

FOLIO *

1/0 a0k ko ok ko ok ok ok ko ok o 3K oK 3K oK ok ok ok ok oK oK o ok

MOVE/COMP | 3k ok ok ok ok 5 5k ok

ARCHIVE

0 THER *%

S TAT ook

STUDY 3

===== =

0 RGANISE

S EARCH

I NTPRTR *

ROUTES

FOLIO

1/0 3 3 ko o ok o K K K K ok A o K oK K ok o Rk KoK o K AR R R KK K KR R OR KR KRR R KK KK e o o

MOVE/COMP 33

ARCHIVE A KKK

0 THER *%

S TAT } +
2 125 210

Fig. 4

STUDY 1

H SKPNG *

P ROCESS A oo R R o o

DBNMS *

SODMS Aok koK

STUDY 2

sasz== =

H SKPNG *

P ROCESS a2k e o o o o 0 e e o o o o o o ke ke o o o ok ke ok o o o R ok o R ok ok ok o K KK R R R kKRR KK o o o

DBMS * 13654

S ODMS A oo o oo

STUDY 3

= =s== =

H SKPNG *

PROCESS a0 o e o 2 o e o e o o o ok kol o o o ok ok o o o ok ok ok ok ok ok ok

DBMS *

SODMS *

STUDY 1

===== =

O RGANISE | =*

S EARCH *

I NTPRTR *

ROUTES *

FOLIO *

1/0 AR A A A A R KK K

MOUE/ COMP | # sk sk ko ok o ok

ARCHIVE

0 THER *

S TAT kK

STUDY 2

0 RGANISE

S EARCH *

I NTPRTR *

ROUTES *

FOLIO *

170, R AR R K K o K o K o o

MOVE/Z COMP | ki sk sk ok o ok o o ok ok o o ok o o o o o o ok oo ok o o ook o o ko oo o ok o ok ok o

ARCHIVE

0 THER *

S TAT o o o 3 o o ok o ok ok ok e o o ok ok ok K

STUDY 3

0 RGANISE

S EARCH

I NTPRTR *

ROUTES

FOLIO

1/0 A oA R o R R oK K K R o oK

MOVE/COMP| *

ARCHIVE *

0 THER *

S TAT N N
[] 4000 8000

Fig. §

Study 2. Access only

The second study consisted of a series of six requests to be
answered from the data base already online. Each request
comprised checking the definition of a folio, specifying
selection and output parts of a query, agreeing to the cost of
access and returning the results to the host operating system.
When the system closed down no re-organisation was found
to be profitable. No archiving was involved in this study.
Thus this study represents the data base in a steady state.
The requests were answered with ten searches, seven of which
used indexes and three of which were serial searches. The figures
show that major cost is attributable to the process category
and that this exceeds the SODMS overhead by a factor of at
least 2-5; similarly the SODMS overhead exceeds the DBMS
overhead by a factor of at least three. A large part of the pro-
cess cost is, as might be expected, in the I/O and move/
compare routines, whilst the collection of statistics proves to
be a significant part of the SODMS category. The processor
time for route finding shows that the routes were discovered
in just over half a second each.

Study 3. Restoring a dumped data base

The final study involves checking the specification of the data
base currently loaded, reloading an old copy of the data base
from a physical dump and checking the specification of this
copy. This task was undertaken to allow a series of experiments
to be repeated from an identical initial data base. The study

is included to show the residual overhead when performing
a task which requires almost none of the SODMS or DBMS
features but is performed using the data base system. The figures
show this overhead to be very small in real time with the I/O
group using most of the time. The processor times are less
satisfactory with almost as much time being used in the control
of archiving as in the transfer of data.

Overall assessment

Fig. 6 shows the total times and the peripheral transfers for
each study. The ratio of processor time to real time shows that,
in this system, comparatively little processor time is used;
this corresponds to verbal observations made by users of
certain CODASYL-based systems but is in marked contrast
to observations of the implementors of, at least, one relational
system. Unfortunately such figures are rarely published and
thus accurate comparison is difficult. With the exception of
study three, which approaches an ideal of 0-07*, the average
time per data base transfer is disappointing. It is assumed that
this is accounted for by other peripheral transfers to and from
the operating system, and, the offline printing of results. The
total volume printed during the monitoring (results, data base
system messages and operating system messages) was approxi-
mately 3,900 lines. Apart from the overhead of opening a file,
known to be significant, no allowance has been made for
operating system overheads.

*Computed as (52 msec. for average aim movement of 200 cylinders) + (125 msec. latency) + (0-5 msec. transfer time) + (25 msec. allow-
ance for read-after-write check on 209 of transfers, i.e. 5 msec.) = 70 msec.

18

The Computer Journal

202 udy 61 U0 188n6 AQ ¥ZHS /S L/1/LZ/aI0ME/UlWod/ W00 dno dlWspeoe)/:SAjY Wolj paPEojuMOQ

Conclusions : Study

In the studies monitored the times attnbuted to DBMS and 1 2 3
SODMS overheads were always less than those for ‘useful

processing’; in some cases the overheads were appreciably 1. Total real time (secs) 179 249 382
smaller. Until figures are published by other implementors, 2. Total processor time

it is not possible to compare the self organising philosophy (secs) 19 37 9
w1th,. say, the network philosophy b}xt it is apparent that 3. Ratio 2:1 (approx.) 1:9:6 1:6:7 1:44
certain overheads, such as the collection of usage statistics, .

are quite considerable. 4. Net real time 2-1 (secs)t 160 212 373
When considering the full-scale implementation of a self 5. Peripheral transfers

organising system it would appear that special hardware, to/from data base 805 447 5062
such as head-per-track devices or the LEECH processor 6. Average time per data

(McGregor et al., 1976) would be advantageous in reducing base transfer (4 = 5) 0-199 0-47 0-74

I/Q times. This would place more emphasis on th_e routines 5 oo peripheral
which must be completed before the next I/O operation can be
transfers to/from OS

performed, for example, the move and compare group. The %

. . . : file store 1474 1169 651
machine used for the monitored implementation already has
special hardware for data movement and the non-numeric ~ Fig. 6 Total and transfers
comparison routines were coded in assembly language; I:Vhe“ monitored the system did not allow overlap.
despite this the processor time used in the move and compare obtained from operating system log.
group is considerable. Often the I/O routines have to wait o
whilst a page of data is examined for matching keys and the moving is lmportant and these routines are candidates for £ z
appropriate records moved out to another buffer. Alternate buf- implementation in firmware. Similarly it is hoped that some 5 o
fering helps in sequential searches but many of the tasks of the control of basic I/O, for example the merging w1th1nQ
require random access, for example indexed searches and access sorting, can be microprogrammed, further reducing the time =
to the system directory, thus the time spent comparing and elapsing between 1/O operations.

References

BacHMAN, C. W. (1973). The Programmer as Navigator, CACM, Vol. 16, No. 11.

CANADAY, R. H., HARRISON, R. D., IVIE, E. L. and RYDER, J. L. (1974). A Back-end Computer for Data Base Management, CACM, Vol. 17,
No. 10.

CODASYL (1971). Data Base Task Group, April 1971 Report.

CouLourss, G. F., Evans, J. M. and MiTcHELL, R. W. (1973). Towards Content-addressing in Data Bases, The Computer Journal, Vol. 15, ¢
No. 2.

DEARNLEY, P. A. (1974a). A Model of a Self-organising Data Management System, The Computer Journal, Vol. 17, No. 1.

DEARNLEY, P. A. (1974b). The Operation of a Model Self-organising Data Management System, The Computer Journal, Vol. 17, No. 3.

DEARNLEY, P. A. (1976). An Investigation into Database Resilience, The Computer Journal, Vol. 19, No. 2.

DEARNLEY, P. A. (1976). Dynamic Access Path Selection, Proceedings of the Symposium on Implementing Relational Data Base Systems, >
University of Southampton.

HurtT, A. T. F. (1976). A Software Architecture for a Relational Data Base Management System, Proceedings of the Symposium on Imple-
menting Relational Data Base Systems, University of Southampton.

IBM (1970). Information Management System/360 Version 2, general information manual, IBM Form No. GH20-0765.

KotLLias, J. G. (1976). The Design of Data Base Management Systems using Linear Programming Techniques, Ph.D Thesis, University
of East Anglia, Norwich, England.

Lin, C. S., SMITH, D. C. P. and SmiTH, J. M. (1975). The Design of a Rotatmg Associative Memory for Relational Data Base Apphcatlons,
Computer Science Department Report, University of Utah, Salt Lake City, Utah 84112, USA.

MCGREGOR, D. P., THOMsON, R. G. and DawsoN, W. N. (1976). High Performance Hardware for Database Systems in Systems for Largec
Data Bases, P C. Lockemann and E. J. Neubold (editors), North Holland Pub. Co.

STOCKER, P. M. and DEARNLEY, P. A. (1973). Self-Organising Data Management Systems, The Computer Journal. Vol. 16, No. 3.

STOCKER, P. M. and DEARNLEY, P. A. (1974). A Self-Organising Data Management System in Dafa Base Management edited by Klimbe
and Koffeman, North Holland.

vevSvy/S L/L/LZ/S|OI1JE/|U[UJOO/LUOO'an olwapeoe//:sdjy wouy

sanb A

—_

20z ludy 61 uo

Volume 21 Number 1 19

