Text compression with an Associative Parallel
Processor

R. M Lea

Department of Electrical Engineering and Electronics, Brunel University, Kingston Lane,
Uxbridge, Middlesex UB8 3PH

Text compression, using a coding dictionary of 200+ n-grams, can halve file storage costs and
double data transmission rates. However, software based text compression systems are slow and
expensive in storage.

Two hardware systems (based on a fixed record length and a byte-organised variable record length
Associative Parallel Processor), for the compression and decompression of textual information, are
described. Algorithms are given and their execution illustrated with practical examples.

A feasibility study, comparing the performances and costs of the two systems with a conventional
microprocessor (Digital LSI-11) implementation is also reported. The fixed record length system is
3,600 times faster for compression, 1,600 times faster for decompression and its production cost is
nearly 6 % cheaper. The variable record length system is 560 times faster for compression, 240 times
faster for decompression and its production cost is 58 9 cheaper. Whereas the conventional micro-
processor system cannot perform at typical disk transmission rates, the compression and decom-
pression rates for the fixed record length hardware are 4.1 and 6.3M bytes-per sec. and for the

variable record length hardware are 0.64 and 0.91M bytes-per-sec. respectively.

(Received May 1976)

1. Introduction

On-line, large-scale, information retrieval systems require
direct access to large (viz. hundreds of M bytes) data-bases.
Moreover, bibliographic text files are updated at regular
intervals. For example, one year of ‘Chemical Abstracts
Condensates’ contains about 4 M words. Such large data-bases
impose high storage and maintenance costs. In addition there
is an increasing demand for small-scale information retrieval
systems in the new growth areas of office and library
automation. In view of the ‘information explosion’, it is
essential that the storage requirement of retrieval systems is
minimised or, put another way, that the information content of
a storage medium is maximised. Thus, the subject of text
compression is becoming increasingly important.

Text compression is achieved by reducing the intrinsic
redundancy of stored text. Assuming the removal of unneces-
sary spaces or other delimiters, considerable redundancy may
still exist in the encoding of the information content of text
files. Most computer systems employ a standard 8-bit character
code (e.g. ASCII and EBCDIC), which can support 256
different code symbols. However, many text files make use of
only upper-case characters and a few special symbols for
punctuation and system control. A typical allocation of code
symbols is as follows:

Upper-case characters 26
Numerals 10
Special symbols 14
Unused symbols 206
TOTAL 256

Since more than 200 of the 256 code symbols are unused, this
form of encoding is clearly wasteful of storage. In addition, text
strings contain considerable redundancy due to the disparate
frequency distribution of characters and words. Zipf
(Fairthorne, 1969) has shown that if the different symbols (viz.
characters or words) of a large text sample are ranked in order
of decreasing frequency then the frequency-rank distribution is
hyperbolic. This implies that 50%, of the different words ina
data base occur only once and less than 179 of the different
words occur more than twice (Booth, 1967). The hyper-
bolic distribution of symbols in textual files has been verified
by the work of many investigators (Clare, Cook and Lynch,

Volume 21 Number1

) pepeojumoq

1972; Heaps, 1972; Lynch, Petrie and Snell, 1973; Schuegrag
and Heaps 1973). A typical distribution is shown in Table 1=
Shannon (1948; 1951) measured the amount of mformatloqg
associated with a symbol-set of N different symbols in terms of;
‘entropy’ (viz. degree of uncertainty). The average entropy, Hg_
for a textual file is given by the expression.

olws

Average entropy = H = — Z p, log, p; bits per symbol (1) b

where p; is the probablhty of occurrence of the ith symbog
within the file.

If it were possible to code text symbols with a non-mtegeé
number of physical bits, then the average entropy assomate%
with a symbol-set could be regarded as the minimum code=
length required. Thus, the minimum storage (S,,) requiremen%

-

for a textual file comprising a total of T symbols, is given by =

Minimum storage requirement = S,, = H.T bits (25
The average entropy (H) associated with a symbol-set alsq;J§
provides a measure of the efficiency (or degree of inherent
redundancy) with which the symbol-set supports the stored;
information. Evaluation of equation (1) shows that H reaches:
a maximum value (H,,) when all symbols are equally frequen’trI>

o
-

Table 1 Frequency distribution of characters in the title ﬁelq’:
of the INSPEC data-base ranked in inverse frequency ordeg
(Lynch, 1975).

O

Rank Character Frequency R
1 Space 11,003
2 E 7,497
3 I 6,117
4 T 5,865
23 A 430
24 X 236
25 K 159
26 Q 149
50 % 3
51 ; 2
52 = 1
53 £ 1

45

Compressed
Text

Yy A

[
Y

1y

Disk
to Encoder Decoder
CPU
Coding Coding
Dictionary Dictionary

Fig. 1 Schematic organisation of a text compressor/decompressor
module

For equifrequency
3)

where f; is the frequency of occurrence of the ith symbol. Hence,
for equifrequency

£ = 1Zv for all i

fi 1
Pi="2 = —
T N @
Substituting equations (3) and (4) in equation (1)
H,, = log, N bits per symbol ®)

The maximum value (H,,) of the average entropy (H) of a
symbol-set is a measure of the maximum amount of information
which the symbol-set can represent. Hence, the efficiency of
information representation depends on the degree of equi-
frequency (E) (also known as ‘relative entropy’) which the
symbol-set attains, as defined by the expression

Degree of equifrequency = E = q
Hy

The degree of equifrequency, E, measures the uniformity of the
symbol frequency distribution and has unity value for a uniform
distribution. Hence E provides the measure of coding efficiency,
which is required to analyse the information content of text
files, since if the file is optimally coded it must contain infor-
mation in its most compact form. The value of E for the
characters and words of typical bibliographic data-base is
0-75.

Many text compression techniques have been investigated,
with the objective of reducing the intrinsic redundancy of text
storage. These involve more efficient encoding of characters,
words and word and text fragments (variable-length character
strings). Consequently a text compressor/decompressor module
comprises an encoder in the input channel to the storage
device and a decoder in the output channel. Both the encoder
and decoder sub-modules require rapid access to a coding
dictionary. A schematic organisation for a text compressor/
decompressor module is shown in Fig. 1.

(6)

Character encoding

Shannon (1948; 1951), Huffman (1952) and Fano (1961)
independently devised text compression schemes which involve
the assignment of variable-length binary codes to each
character; the code-length being inversely proportional to the
probability of occurrence of the character. Thus the most
frequent characters are assigned the shortest codes (e.g. a
4 bit code for ‘E’) and conversely, longer codes are assigned to
the less frequent characters (e.g. a 12 bit code for ‘K’). Such

46

codes achieve a near unity value for the degree of equifrequency
and a compression ratio (viz. compressed text: natural text) of
just over 50%,. The coding dictionary would require the 50-odd
entries corresponding to the basic character-set of the data-base.

Word encoding

Ruth and Kreutzer (1972) and Wells (1972) have considered the
use of Huffman codes (1952) for word encoding. Moreover
Gilbert and Moore (1959) have shown that this technique
provides the most compact coding for words. To minimise the
inconvenience of handling variable-length bit-strings, Thiel and
Heaps (1972) restricted code-lengths to an integer number of
bytes. A program for coding was reported (Heaps and Thiel,
1970) and analysis of the storage requirements for such com-
pression coding has been performed (Heaps, 1972). Such
techniques achieve near unity values for the degree of equi-

~ frequency and a compression ratio of just over 167;. Unfor-

tunately, word-encoding requires a large coding dictionary
which is highly data-base dependent and grows with each
update. Hence encoding and decoding are slow in operation
and expensive in storage requirement.

Fragment encoding

In contrast to character and word encoding schemes, in which
basic language elements are assigned variable-length binary
codes, fragment encoding involves the assignment of fixed-length
binary codes to variable-length character strings. Many re-
searchers, notably Lynch (Clare, Cook and Lynch, 1972; Lynch,
Petrie and Snell, 1973; Fokker and Lynch, 1974; 1975).
Schuegraf and Heaps (1973; 1974), have investigated new
symbol sets comprising word or text fragments (often called
n-grams) which are stored and transmitted as fixed-length
codes. For example, an 8-bit byte can support 256 fragment
codes, including the basic character set, as shown in Table 2.
Fragment encoding achieves values for the degree of equi-
frequency in the range of 0-95-0-98 and compression ratios in
the range of 30%-70% depending on the size of the coding
dictionary, which is in the range of 100-2,000 entries.

Most text compression investigations have been mainly
concerned with the creation of the coding dictionary. All
reported text compressor/decompressor modules have been
implemented entirely in software. Few modules have been used
in commercial retrieval systems, although some evaluation
studies have been undertaken using samples of commercial
data bases. The degrees of compression, claimed by investi-
gators, vary from 30% to 84% depending on the encoding
technique and the size of the dictionary.

The advantages of text compression are two-fold:

1. Reduction of 30%-84% in file storage requirement. Hence,
for files held on disk storage:

(a) more records can be stored per track (of particular
advantage for cellular files) (Dodd, 1969; Lefkovitz,
1969)

(b) inter-record distances can be reduced (of particular
advantage for linked and inverted files (Dodd, 1969;
Lefkovitz, 1969)) because head movements per record
retrieval are reduced.

2. Increase of 43%-625% in text transmission speeds when
reading from the disk.

The above advantages are offset by the complexity of the
software implementation of the text compressor/decompressor
module, which incurs overheads in execution time and program
storage. These disadvantages seriously detract from the
advantages of text compression.

This paper considers the implementation of a text compressor/
decompressor in hardware with the objective of achieving a

The Computer Journal

20 udy 0L U0 188n6 A | /GGHH/S/1/1LZ/aI0ME/UlWod/ W00 dno olwspeoe)/:Sdjy Wolj papeojumoq

Compressed
Text

APP

A

Channel
Controller

(Host Computer)

Fig. 2 Schematic organisation of the text compression hardware

Legend
IP = Input Port
OoP = QOutput Port

CHQ = Character Queue
SW1/2 = Text routing switches

APP = Associative Parallel Processor
Control
Data-In signrols
--------------- l ===
DIR
MPS Legend)
MPS = Micro-Program
| Store
BCL Bl DIR = Data Input
l Jl Register
DOR = Data Output
AMA WeL Register

AMA = Associative
Memory Array

BCL = Bit Control Logic
s WCL = Word Control
Logic
TR = Tag Reply

Data-Out

Fig. 3 Organisation of the Associative Parallel Processor

Table 2 The 256 selected n-grams for two different bibliographic
data-bases (Clare, Cook and Lynch, 1972; Lynch, 1975)

n Example INSPEC Chemical
titles titles

1 N 53 47
2 oo 128 136
3 ION 52 49
4 THE[Q 7 10
5 COJANDO 8 6
6 ATION[4 3
7 IONJOFO 2 2
8 OOFOTHEQO 2 2
9 "ATIONCOOFO — 1
[0 = Space

Volume 21 Number1

reasonable degree of compression at a low cost and avoiding
the execution time penalty of the reported software modules.
A survey of text compression techniques resulted in the choice
of an n-gram encoding scheme as reported by Lynch (Clare,
Cook and Lynch, 1972; Lynch, Petrie and Snell, 1973; 1975),
for the following reasons:

1. Convenient text manipulation, since the technique is based
on 8-bit bytes.

2. 509 compression can be achieved with a fairly small coding
dictionary (viz. approximately 200 entries).

3. The coding dictionary is insensitive to changes within a
data-base or between similar data-bases.

4. The size of coding dictionary can be easily controlled.

5. The technique has been thoroughly investigated, results are
consistent and the relevant expertese is easily available.

Using a coding dictionary supplied by Lynch and a copy of the
INSPEC data-base a text compression vehicle has bee
established at Brunel University. Text compression/decom2
pression modules, based on simulations of the Associativ%
Parallel Processor (APP) and a conventional micro- processorsl
have been designed and tested. Further to these mvestlgatlons.
this paper reports that the APP offers a low-cost high- speed
alternative to conventional hardware and software routines fo
text compression and decompression tasks.

peoe//:sdigw

2. System description
The text compression hardware comprises a microprogrammed
Associative Parallel Processor (APP), a Character Queu¢
(CHQ), access ports and switches as shown in Fig. 2. The unit i§
incorporated in a DMA channel of the host computer, whicks
handles all text transfers external to the compression hardware%
A schematic diagram of ihe APP is shown in Fig. 3 and &
description of its operation is given below. The n-grane
dictionary is stored in the associative memory of the APP as ark
arrangement of ordered pairs (viz. {n-gram, code}). Fo%
example the content of the Associative Memory could form th&z
set .S, where,

S = {(TION, o){THE ,>CAN, 6>, ..., (TLy)(OF,¢&)} <
If only the upper case character alphabet (50 characters) is usec§
and the APP has an 8-bit character field then the n-grant]
dictionary has 206 entries. It can be seen from Table 2 thatr
pentagrams and higher order n-grams may provide less tham

6% of the new symbol set. Consequently tetragrams have beerg
chosen for the largest n-gram supported by the text compressxorg
system described in this paper. During compression, the input-
text string is transferred character by character from the lnpu§o>
Port (lP) (see Fig. 2) to the Character Queue (CHQ). When thé&.
CHQ is fully loaded, characters are transferred to the Datas
Input Register (DIR) (see Fig. 3) of the APP, and a search of
the associative memory is initiated. If an n-gram is located, the
corresponding code is transferred, via the Data Output
Register (DOR) and the switch SW2, to the Output Port (OP),
which takes the form of a block buffer. In the event of a mis-
match a single character is transferred from the CHQ, via the
switches SW1 and SW2, to the OP. In either case, the appro-
priate number of new characters are loaded into the CHQ.
Hence, during compression the APP recognises n-grams in the
input text string and replaces them with their corresponding
codes. For example, using the n-gram dictionary shown in
Fig. 4, if the text string at the Input Port (IP) is ... THE
ACTION OF TIN. ... the resulting text string at the Output
Port (OP) would be . .. JAC agyN

The system operates in reverse during text decompression.
As n-gram codes are recognised they are replaced by the corres-
ponding n-gram characters from the dictionary.

/Sy

47

DIR [A CiTiI! |

BCL | Fo F1:F2F3
— Legend
T IEO:N:o(sz\lpal(l:eh
IE— — = Null character

T H'E:o:8 Fn = Field n
AMA|T 1:-:i-'¥

ANi-i-ig

o O!F'oif
DOR[i i i8]

Fig. 4 Storage allocation for the n-gram dictionary in a fixed record
length APP

Legend
TR = Tag Reply
<0123> = Field specification

(x = don’t care)
DIR * CHQ = Transfer of n characters
from CHQ to DIR

Read
(XX X3)

Read
(XXX 3)

COXXX)

Read
(XXX 3)

TR=0

No

Yes

STOP

Fig. 5 Algorithm for text compression with a fixed record length APP

[OPlDORZ

2.1. APP organisation

The APP comprises an Associative Memory Array (AMA)
(also known as a word organised content addressable memory),
Data Input and Output Registers (DIR and DOR), and a
Micro-Program Store (MPS), as shown in Fig. 3. The associ-
ative memory can be considered as a two dimensional array of
identical one-bit processing elements, or cells. Each cell has
storage for one bit, and contains sufficient logic to enable its
content to be compared with the corresponding bit of the Data
Input Register (DIR). All word-rows of the associative memory
can be accessed in parallel by the Word Control Logic (WCL),
and particular bit columns can be selected in parallel by the
Bit-Control Logic (BCL). Three basic operations can be
performed on the contents of the Associative Memory Array:

43

START

Search
(XX23)

Fig. 6 Algorithm for text decompression with a fixed record length
APP

N W s~ O, o ~
1

c
D
4 cD D
c
Y 1
Mis- Di- Tri- Tetra-
match gram gram gram

Fig. 7 Instruction execution counts per character for text compres-
sion (C) and decompression (D) with a fixed record length APP

SEARCH: All the cells in each selected bit column simul-
taneously compare their contents with the corres-
ponding bit of the DIR, and the appropriate match
or mismatch outputs are recorded in a tag register
in the WCL. The output for each word is decided
as follows: the cells in all unselected bit columns
give match outputs and these are logically ANDed
with the output of each selected cell within the
word-row. After the search operation, the contents
of the tag register can be propagated to an adjacent
word or ‘run’ to the end of the memory.

READ: Allthecellsin the ‘tagged’ word-row simultaneously
transfer their contents to the DOR.
WRITE: All the cells in each selected bit-column of all

tagged word-rows change their contents to that of
the corresponding bits in the DIR.

The control signals governing the operation of the Bit and Word
Control Logic units are obtained from the MPS. Branch instruc-
tions operate on a reply (TR) from the memory, which is

The Computer Journal

20 udy 0L U0 188n6 A | /GGHH/S/1/1LZ/aI0ME/UlWod/ W00 dno olwspeoe)/:Sdjy Wolj papeojumoq

Table 3 Example of text compression with a fixed record length
APP

Step Search Output
criteria character

1 THE O B

2 ACTI

3 ACTX

4 ACXX A

5 CTI O

6 CTI X

7 CTXX C

8 TI ON o

9 OOF O e

10 TI N[O

11 TI NX

12 TI XX Y

13 NOOgd

14 NOOX

15 NOXX N

O = Space

Input text string: THE ACTION OF TIN
Output text string: FACaeyN

Table 4 Example of text decompression with a fixed record
length APP

Step Search Output
criteria characters
| X—02s
2 XX—p
3 XXXB THE O
4 X—A
5 XX—A
6 XXXA A
7 X—C
8 XX—C
9 XXXC C
10 X —u
11 XX —a
12 XXXa TI ON
13 X—-:t
14 XX —¢
15 XXXeg OOF O
16 X —y TI
17 X——N
18 XX —N
19 XXXN N
= Null character
O = Space

Input text string: SACaeyN
Output text string: THE ACTION OF TIN

generated by a logical OR operation on the contents of the
tag register. Further information on the structural organisation
of the APP can be found in Lea (1975c).

3. System operation

The operation and performance of the text compression system,
shown in Fig. 2, depends on the organisation of the n-gram
dictionary within the Associative memory. There are two basic
forms, namely the fixed record length and the byte-organised
variable record length (Lea, 1975c).

3.1. Fixed record length n-gram dlcttonary
One word-row of the memory array is allocated to each
ordered pair (viz. {n-gram, code)) and the hardware supports

Volume 21 Number 1

Search-Read operations as primitive functions. If the dic-
tionary is made up of digrams, trigrams and tetragrams, the
Bit Control Logic of the APP is organised to support four
fields, as shown in Fig. 4. The compression and decompression
algorithms for this organisation are shown in Figs. 5 and 6
and their performance criteria are summarised in Fig. 7.
Practical examples for the fixed record length text compression
hardware are given in Tables 3 and 4.

A disadvantage of the fixed record length organisation is the
storage redundancy caused when the n-grams are of different
lengths. The variable record length mode of organisation
avoids this redundancy.

3.2. Byte-organised variable record length n-gram dictionary
One word-row in the memory array is allocated to one character
such that each ordered pair, in this case (code, n-gram), is
stored in a group of contiguous memory words; as shown in
Fig. 8. A control-bit which is set in Field 1 marks the beginning
of each n-gram and a control-bit which is set in Field 2 marks
each n-gram code. The association links between the characters
of each ordered pair are represented by the propagation of &
control-bit in Field 3. The variable record length text compres-i
sion hardware supports a microprogrammable instructiomfL
which executes all, or part of, the sequence ‘Search—Clea®
(multi-Write @)—Propagate (Run and Resolve) Tags—Read—=’
Write’. The compression and decompression algorithms for th@
organisation are shown in Figs. 9 and 10 and their performance&
criteria are summarised in Fig. 11. Practical examples for the:
variable record length text compression hardware are given ir§
Tables 5 and 6. 3
The variable record length organisation can be regarded as ang
efficient implementation of the cellular string memory originallye
proposed by Lee (Lee, 1962; Beaven and Lewin, 1972; Lezﬁ
and Wright, 1973).

DIRIT 102 '03' o

3

8

3

N

N

T -

BCL IFm5F1 IF2.F3iF4 £

' 1 1) | %

o 20 2

T G

It & i . o

0f i i . 5

N: v 2

AMA[s! 2} S
Tl
Hi 0 ¢
Ei 0
R
¥i 12 |
Tt b
Ii 1 0
Eh o t2%

DOR[&: | i | |

Fig. 8 Storage allocation for the n-gram dictionary in a variable
record length APP

49

STOP

[optcHo/ [oplpor]

IMUIH-WMEWI Multi-Write(®)
(XXX3X) (XXX34)
Propagate Tags T
Write (3)
C(XXX3X)
[
Resolve Tags
Write () OoP1DOR
(XX X3XY

Multi-Write(0)
(XXX3X>
Propagate Tags

Write (3)
(XXX3X)

Mutti-Write(®)
(XX X34)

Mutti-Write(®)
(XX X34) -
\:/‘I{':t;ciis) Propagate Tags TR'G
XXX Xb) Write (3)
(XXX3X)

TR=1

Resolve Tags

Read
COXXXX)

Resolve Tags
Read
<COXXXX)

Run Tags

Write (4)
XX XXL)

Fig.9 Algorithm for text compression with a byte-organised
variable record length APP

Legend

E = Error condition

4. System performance

A comparative study has been carried out at Brunel University
to investigate the feasibility of the proposed system for text
compression and decompression tasks (Donnelly and Lea,
1975; Donnelly and Mottershead, 1976; Donnelly, 1976a;
1976b). Three assembly language programs were developed for
execution on a PDP 11/40 mini-computer system to provide
three different representations of the n-gram dictionary; these
were:

1. A conventional approach, using binary tree searching and
table look-up routines, as suggested in Byrne and Mullarney
(1972) and shown in the Appendix.

2. A simulation of the fixed record length system, shown in
Figs. 2, 3, 4, 5, and 6.

3. A simulation of the variable record length system shown in
Figs. 2, 3, 8, 9, and 10.

The three programs were applied to various compression and

decompression tasks and their performances, in terms of

instruction execution counts and n-gram dictionary storage

requirements were compared. The results of this investigation

are shown in Table 7.

5. System implementation
Despite numerous research investigations (Hanlon, 1966;

50

Propagate Tags
Read
PXXXX)

Write (3)
(XXX 3X)

[opiDor/ [oplcHa/

Multi-Write(@)
CXXX3X)

Propagate Tags
Read
BXXXX)

Write (3)
XXX 3X)

Fig. 10 Algorithm for text decompression with a byte-organised
variable record length APP

6 Mismatch Match
C +
> c D ¢ ¢
cCD c D C D
L -
(o}
3 .
y |
1 4
0 123 Di- Tri- Tetra- Legend
?hau‘rc;cl?egrs gram - gram . gram + = Including a digram

Fig. 11 Instruction execution counts per character for text compres-
sion (C) and decompression (D) with a byte-organised
variable record length APP

Minker, 1971; Parhami, 1973) the economic manufacture of
high speed associative memories has been regarded as impos-
sible for many years. However, recent advances in LSI fabri-
cation techniques can now be exploited to put an end to this
view. Many designs for both bipolar and especially MOS
Content Addressable Memory (CAM) devices have been
proposed (Lea, 1975a; 1975b; 1976; 1977a; 1977b). Of these,
two particular MOS CAM designs (Lea, 1975a; 1977a; 1977b)
would be suitable for the manufacture of text compression
hardware.

The fixed record length APP could be implemented with the

The Computer Journal

20 udy 0L U0 188n6 A | /GGHH/S/1/1LZ/aI0ME/UlWod/ W00 dno olwspeoe)/:Sdjy Wolj papeojumoq

Table 5 Example of text compression with a byte-organised variable record length APP

Step Search Associative memory content DOR Output
criteria content character
F4
F3
F2 2 2 2 2 2
Fl1 1 1 1 1
FQ a TIONBTHEOyYyTI ¢eJOF
1,2 T F3 3 3 3
3,4 H F3 3
5-7 E F3 3
8-10 Od F3 3
11, 12 F4 44444444444
F3 3 B
13 F4 44444444444
F3 B
14-16 F4
F3
F2 2 2 2 2 2 o
Fl 1 1 1 1 g
F0) «TIONBTHEOyTI ¢OOFO$ B B 5
17-20 A F3 B A g
21-24 C F3 B C)
25, 26 T F3 3 3 3 B 3
27, 28 I F3 3 3 B E
29, 30 F4 44444444444444 2
F3 3 3 y §
31 F4 44444444444444 2
F3 3 y 2
32-34 F4 o
F3 3 y 2
35-37 N F3 3 y g
38,39 F4 444444 3
F3 3 o 3.
=
40-42 F4)
F3)
F2 2 2 2 2 2 N
Fl1 1 1 1 1 =
F)0 oTIONBTHEQOyTI ¢JOFO4 a o g
43, 44 O F3 3 x &
45, 46 (0] F3 3 o N
47-49 F F3 3 x g
50-52 0O F3 3 x e
53, 54 F4 4444444444444444444 43
F3 3 € S
55 F4 4444444444444444444 3
F3 € Z
56-58 F4 N
F3 N
F2 2 2 2 2 2
Fl 1 | 1 1
FO xTIONBTHEOYyTI eJOF$ € £
59, 60 T F3 3 3 3
61, 62 I F3 3 3
63, 64 F4 44444444444444
F3 3 3 v
65 F4 44444444444444
F3 3 i y
66-69 N F4
F3 Y y
70, 71 F3 Y N
O = Space

Input text string: THE ACTION OF TIN

Output text string: fACoeyN

Volume 21 Number1

51

Table 6 Example of text decompression with a byte-organised variable record length APP

Step Search Associative memory content DOR Output
criteria content character
F4
F3
F2 2 2 2 2
F1 1 1 1
F)0 a«aTIONBTHEOyYyTI edJOFO4
1,2 B F3 3 T
34 F3 3 H T
5-7 F3 3 E H
8-10 F3 3 O E
11-13 F3 y O
14,15 F4
F3
F2 2 2 2 2
F1 1 1 1
Fo «a TIONBTHEQOyYyTI eJOFO6 y g
16-19 A F3 Y A 3
20-23 C F3 y C §
24, 25 o F3 3 T =
26, 27 F3 3 1 T |
28-30 F3 3 (o) I =
31-33 F3 3 N o 13
34-36 F3 3 B N §
37, 38 F4 g
F3 g
F2 2 2 2 2 5
F1 1 1 1 8
F) a«TIONBTHEQyTI ¢OJOFOSs B %
39, 40 € F3 3 O ‘3
41, 42 F3 3 0 O g
43-45 F3 3 F (0])
46, 47 F3 3 O F N
48-50 F3 3 o O =
&
51, 52 F4 £
F3 %
F2 2 2 2 2 -
F1 1 1 1 S
Fo «a TIONBTHEOYyTI ¢eJOFO6 o 5
53, 54 y F3 T S
55, 56 F3 3 I T S
57-59 F3 3 € I 1
60. 61 F3 € =
62-65 N F3 & N §
O = Space

Input text string: BACaeyN
Output text string: THE ACTION OF TIN

MOS CAM design described in Lea (1975a). This device would
provide 16 words of 8-bits each in a 36-pin plastic dual-in-line
pack. Hence 62 of these packs would be required to implement
the n-gram dictionary (206 words of 40-bits each). Estimated
performance data, for this implementation of the fixed record
length text compression hardware, are shown in Fig. 12.

The byte-organised variable record length APP could be
implemented with the MOS CAM design described in Lea
(1977a). This device known as the Micro-APP, incorporates the
CAM design described in Lea (1975a) and would provide 32
words of 12 bits each in a 40-pin plastic dual-in-line pack.

52

Hence 22 of these packs would be required to implement the
n-gram dictionary (700 words of 12-bits each). Estimated
performance data, for this implementation of the variable
record length text compression hardware, are shown in
Fig. 13.

A conventional implementation of the text compression
hardware was also considered. This system comprised the
DEC LSI 11 microprocessor with 4K words of both Random
Access Memory (RAM) and Read Only Memory (ROM)
support. Comparisons of the estimated costs of materials and
the operating speeds of the three text compression hardware

The Computer Journal

Table 7 Average instruction execution counts and storage
requirements of the three text compression systems

Average instruction execution count per

character
Conventional Fixed record Variable
processor length APP record length
APP
Compression 45 2:5 4-8
Decompression 12 1-8 43
Dictionary storage requirements (K-bits)
Conventional Fixed record Variable
processor length APP record length
APP
Compression 15 82 90

Decompression* 12 — —

*The APP uses the same dictionary for both compression and
decompression tasks

600ns -
500ns A
400ns A
300ns A
cCD
200ns A
100 <
ns 4
D c¢obp D
T
Mis- Di- Tri- Tetra-
match gram gram gram
Fig. 12 Instruction execution times per character for text compres-
sion (C) and decompression (D) with the fixed record length
APP hardware
o
“ismatch
600nS - ismatc Match .
c
c
500ns 4 C
D
C
400ns - c 0 o
300ns A
200ns ¢
cD
100ns 4 I I
! i
0 123 Di- Tri- Tetra-
Matching gram gram gram
characters
Fig. 13 Instruction execution times per character for text compres-

sion (C) and decompression (D) with the byte-organised
variable record length APP hardware

Volume 21 Number 1

Table 8 Estimated costs of materials for
compression hardware implementations

Estimated costs of materials

the three text

Conventional Fixed record Variable
processor length APP record length
APP

AMA (£211)! £ 38* £ 50*

WCL (£124)? £161 —

BCL (including

DIR & DOR) £ 57 £ 16

MPS (including 3

TR) (£ 59) £ 80t £ 921

IP, OP, CHQ,

SW1/2 £ 36 £ 36 £ 36

Assembly (pcbsi

& connectors) £ 87 £116 £ 28

Overall System £517 £488 £222

Assuming 300+ quantities 9

'4K RAM store ?DEC LSI-11 24K ROM store g

*Assuming plastic dual-in-line packaging and rno contributiony

towards LSI chip development costs)

TAssuming maximum speed of operation =

Ipcb = printed-circuit-board (with plated-through-holes) 3
=
©

Table 9 Average execution times for compression and decom-”

1/

pression for the three text compression implementations §
Average execution times per character §
. o
Conventional Fixed record Variable 2
processor length APP record lengthy,
APP
Compression 360 ps 93 ns 594 ns
Decompression 96 ps 61 ns 418 ns

Table 10 Summary of character transmission rates and cost
for the three text compression implementations

Character transmission rates (bytes-per-sec)

LSSYYISYL/LZIeI0he/|ulwod/wo

Conventional Fixed record Variable
processor length APP record length_.
APP -
[0
Compression 1-'1 K 41 M 064M =
Decompression 4-0 K 63 M 091 M >
Processor Cost £520 £490 £220 ;
%
N

implementations are shown in Tables 8 and 9 respectively.x
The figures in Table 9 are derived from the results of Table 7
and estimates of the instruction execution time for each
implementation.

5.1. Additional comments
The cost estimates for the two APP implementations of text
compression hardware assume the maximum speed of oper-
ation for each APP. Where lower levels of performance can be
allowed the cost of the Micro-Program Store (MPS) can be
reduced considerably, for example a 509/ reduction in operating
speed would allow a 50%; reduction in the cost of the MPS unit.
It can be observed from Tables 8 and 9 that the variable
record length text compression hardware is significantly
cheaper and slower than the fixed record length hardware.
This is due to the incorporation of the Word Control Logic
(WCL) and the Associative Memory Array (AMA) within a

53

single Micro-APP chip (Lea, 1977a). This device is based on the
MOS CAM design described in Lea (1975a). A cheaper and
faster version of the Micro-APP could be produced if its
design were based on the MOS CAM design described in Lea
(1975b) instead.

The Micro-APP design is not suitable for the implementation
of the fixed record length APP hardware described in this paper.
However the same LSI chip design technique could be applied
to fixed record length text compression hardware in which the
n-gram dictionary is restricted to:

1. A digram system, as in the systems described in Snyderman
and Hunt (1970); Schieber and Thomas (1971) and Jewell
(1976).

2. A trigram system with a permanent (read-only) n-gram
dictionary.

Such systems could be implemented at a similar cost to that of
the variable record length text compression hardware but
would operate at a slightly lower speed than the fixed record
length hardware.

6. Conclusions

Text compression using a coding dictionary of 200+ n-grams
can provide a reduction of nearly 50% in file storage costs
and an increase of nearly 100, in channel transmission speeds.
However these advantages are offset by the storage requirement
and execution time of the compression and decompression
routines.

The application of special purpose hardware, incorporating
an Associative Parallel Processor (APP), to text compression
and decompression tasks has been reported in this paper. Two
different implementations, based on the fixed record length and
the byte-organised variable record length modes of data
organisation, have been compared with a conventional micro-
processor implementation for text compression hardware.
The results of this work are summarised in Tables 7, 8 and 9.
These results are not optimum but they are indicative of the
considerable processing advantages of APP hardware over
conventional microprocessor hardware for text compression
and decompression tasks.

In contrast to the microprocessor alternative both APP
systems can support realistic data transmission rates. With
reference to Figs. 12 and 13; the worst case compression and
decompression rates for the fixed record length hardware are
SM bytes-per-sec. and for the variable record length hardware
are 1-6M bytes-per-sec. and 2:2M bytes-per-sec. respectively.
A more meaningful assessment of performance is in terms of
the maximum data rate of the disk which the text compressor/
decompressor module can sustain without loss of synchronism.
It is essential that the data flow, to and from a block of con-
tiguous n-gram codes, is uninterrupted, to avoid losses in
execution speed and/or the achieved degree of compression.
Hence, the performance of the three implementations is
summarised in these terms in Table 10. These results show that
the APP implementations can accommodate the data rates of
many disk systems.

Although the speed of the variable record length hardware can
be improved (see Section 5.1) the fixed record length hardware
has a definite speed advantage. By restricting the latter to
digrams (or read-only digrams and trigrams) its cost can be
reduced to compare more favourably with the former. However
for higher order n-grams the variable record length hardware
becomes progressively more attractive.

It can be seen from Table 8 that the cost of the Associative
Memory Array AMA, is not the major component of the cost
of the variable record-length hardware. Thus longer n-grams
can be incorporated in the coding dictionary with much less
than a pro-rata increase in cost. This may be attractive for
increasing the degree of compression by including the most

54

14 0S¢-CH
FOLLOW
DIRECTORY
POINTER

~

OBTAIN
LESS
POINTER

OBTAIN
5 GRTR 4
POINTER

ACCESS

11 | CODE«NCODE 15 0S « NCODE 10 0S « CODE 13 0S¢ CH
ACCESS
NODE +1 CODE€¢0

L |

Fig. 14 Data structure for text compression as used by the con-
ventional algorithm (Donnelly and Lea, 1975)

Legend

English letters

Roman numerals

= Part of the n-gram
= Node numbers
Branch terminator
n-gram codes

-

Other Greek letters

« = ‘Less-than’ pointer

- = ‘Greater-than’ pointer
l = ‘Quality’ pointer

O = Space

= n-grams TA, TE, TH, THE[, TI, TION,
TO, TR, TS, TU

dictionary entry

frequent words within the longer n-grams. Hence if the speed

of the variable record-length implementation is acceptable then

it can be regarded as being better suited to text compression
and decompression tasks.

The investigation has shown that the APP is well suited to text
fragment encoding and decoding. Moreover the results of
Table 10 indicate that a text compressor/decompressor,
incorporating an APP, would effectively double the capacity
and performance of a file-store for only a small extra cost.
However the investigation has assumed:

1. the availability of the appropriate associative memory
building block. Research leading to the development of
cost-effective LSI CAM (Lea, 1975a; 1975b; 1976; 1977b)
and Micro-APP (Lea, 1977a) chips is being undertaken at
Brunel University.

2. adequate control of data transfer between the cpu and disk
via the text compressor/decompressor module. Various
control strategies have been considered. Ideally the module
would be incorporated in the DMA channel between the cpu

The Computer Journal

=

Z Iudy 0| uo3senb Aq | /GG Y/GY/ L/ Z/810Me/|uluod/wod dno-olwspede//:sdiy woly pepeojumoq

o
[}
N

and the disc controller (Donnelly, 1976b). However to avoid
difficulties with maintenance contracts and software com-
patibility the implementation would be best left to the
computer systems manufacturer. Alternatively the module
could be interfaced to existing systems with a separate DMA
channel. Obviously, the control strategy has a major impact
on the cost-effectiveness of text compressor/decompressor
modules.

Text compression systems, similar to those described in this
paper, have been developed at Brunel University and evalu-
ation studies are being carried out using INSPEC files for a
realistic data base.

7. Acknowledgements

The author gratefully acknowledges the assistance of R. K.
Donnelly in the preparation of this paper. Acknowledgement is
also due to Professor M. F. Lynch (Sheffield University) who
supplied the n-gram dictionary and to A. Negus (INSPEC) for
the sample data-base.

The experimental associative processing facility at Brunel
University was developed with the support of the Science
Research Council. The investigation into the application of
associative processing hardware to online text compression
and decompression tasks is supported by the British Library.
Patent protection for the two MOS Content Addressable
Memory (CAM) designs (Lea, 1975a; 1975b; 1977b) and the
Micro-APP design (Lea, 1977a) has been secured by the
National Research Development Corporation (NRDC). An
investigation into the feasibility of fabricating a Micro-APP
using the Plessey Schottky 1L process is being supported by
the Advanced Computer Techniques Project (ACTP).

Appendix: Conventional Text Compression
Algorithm

The text compression algorithm used for the conventional
microprocessor implementation of the text compressor/
decompressor module is similar to that reported by Byrne and
Mullarney (1972) and Donnelly and Lea (1975).

The data structure on which the algorithm operates is shown
in Fig. 14 together with the set of n-grams which begin with the
letter T All characters which start n-grams have an entry in the
directory, which is a pointer to a tree where the remainder of
the n-grams are stored. Each node in the tree is allocated
space for an n-gram character, a code, a branch-terminator, a
‘greater than’ pointer and a ‘less than’ pointer.

The algorithm which operates on this data structure is given
in Fig. 15. It is assumed that text from the natural text domain
is buffered in core and that there are two pointers associated
with it:

1. a ‘character-pointer’ points to the current character being
used to search the dictionary.

2. an ‘n-gram pointer’ points to the start of the substring which
is currently being processed.

With reference to Fig. 15, the mnemonic CH is used to denote
a character but in order to simplify the presentation of the
algorithm, the following conventions are used:

I.when CH is used during the dictionary search, the
‘character-pointer’ is used

References

BEAVEN, P. A. and LEwiIN, D. W. (1972).
Vol. 15, pp. 343-349

BooTtH, A. D. (1967).

BYRNE, J. G. and MULLARNEY, A. (1972).
College, Dublin, Eire

CLARE, A. C., Cook, E. M., and LYNCH, M. F. (1972).

CorLomBo, D. S. and RusH, J. E. (1969).

Volume 21 Number1

A— >
T
iv iii vii X i xiii
ASTe—EET 6—Ix —>ROT—3SAT—>PUpT
-HY Onre
v xi
. " e
vi E¢ O¢ vii
Vii opt Nxt ix
Fig. 15 A conventional text compression algorithm (Donnelly and
Lea, 1975)
Legend
CH = Current character
NODECH = Character in current node
GRTR = ‘Greater-than’ pointer
LESS = ‘Less-than’ pointer
CODE = Temporary storage

NCODE = n-gram code
NODE + 1 Implicit ‘equality’ pointer
(O Output string

([l

Table 11 Operational sequence of the algorithm of Fig. 15 and
data structure of Fig. 14.

CH nodes accessed and operations

T i(1,2)

E it (3, 4, 6) 1ii (3, 7, 8, 10)

T i(l,2)

H ii(3,4,6) iii (3,5,6) v(3, 7,8, 11)

E vi(3,7,12)

a vii (3,7, 8, 15)

T i(l,2)

w ii(3,5,6)x(3,5,6)xii(3, 5, 6)xiii (3, 5, 6,9, 13)

2. when the search for an n-gram is unsuccessful and a character
is passed to the output string, the ‘n-gram pointer’ is used.

The operational sequence of the algorithm is shown in Table
11.

As can be seen in Table 11, a considerable amount of time is
taken up by processes other than successful character com-
parisons: even when an n-gram is found, there are likely to have
been several unsuccessful comparisons and each time this
happens a pointer must be obtained, tested and then followed.
The use of location-address pointers gives rise to both storage
and speed disadvantages. This problem can be eliminated when
an Associative Parallel Processor is used for text compression.

An associative parallel processing system for non-numerical computation, The Computer Journal,

A ‘law’ of occurrences for words of low frequency, Inform. Control, Vol. 70, pp. 386-393
A report on text compression prepared for INSPEC, Department of Computer Science, Trinity

The identification of variable length, equifrequent, character strings in a natural
language data-base, The Computer Journal, Vol. 15, pp. 259-262
Use of word fragments in computer based retrieval systems, J. Chem. Docum., Vol. 3, pp. 47-50

55

20 udy 0L U0 188n6 A | /GGHH/S/1/1LZ/aI0ME/UlWod/ W00 dno olwspeoe)/:Sdjy Wolj papeojumoq

Dobp, G. G. (1969). Elements of data

management systems, Computing Surveys, Vol. 1, pp. 117-133

DonNNELLY, R. K. and LeEA, R. M. (1975). The application of an associative parallel processor to data compression for conventional file

storage systems, Brunel University,
DoNNELLY, R. K. (1976a). The design
C/R/035

Tech. Memo No. C/R/024
of a stand-alone associative processor for text compression, Brunel University Tech. Memo No.

DoNNELLY, R. K. (1976b). A study of a disc-based unit for text compression, Brunel University Tech. Memo No. C/R/036
DONNELLY, R. K. and MOTTERSHEAD, C. A.(1976). The internal operation of a compression and decompression unit which uses an associative
memory, Brunel University, Tech. Memo. No. C/R/041

FAIRTHORNE, R. A. (1969). Empirical
J. Docum, Vol. 25, pp. 319-343

hyperbolic distribution (Bradford-Zipf-Mandeibrot) for bibliometric description and prediction,

FaNo, R. M. (1961). Transmission of information, MIT Press and Wiley, Cambridge and New York

Fokker, D. W. and LYNcH, M. F. (1974). Application of the variety-generator approach to searches of personal names in bibliographic
data-bases—Part 1. Microstructure of personal authors names, J. Lib. Autom. Vol. 7, pp. 105-118

GILBERT, E. N. and MoOoORE, E. F. (1959). Variable length binary encoding, Bell. Sys., Tech. J., Vol. 38, pp. 913-967

HANLON, A. G. (1966). Content addressable and associative memory systems—a survey, IEEE trans., Vol. EC-15, pp. 509-521

Heaps, H. S. (1972). Storage analysis of a compression coding for document data bases, Information, Vol. 10, pp. 47-61

Heaps, H. S. and THieL, L. H. (1970).
HurrmaN, D. A. (1952). A method for

Optimum procedures for economic information retrieval, Inform. Stor. Retr., Vol. 6, pp. 137-153
the construction of minimum redundancy codes, Proc. IRE, Vol. 40, pp. 1098-1101

JEweLL, G. C. (1976). Text compaction for information retrieval systems, I[EEE Systems, Man and Cybernetics Society Newsletter, Vol. 5,

pp. 4-7

Lea, R. M. and WRIGHT, J. S. (1973). A novel memory concept for information processing, Datafair Research Papers, Vol. 11, pp. 413-417
Lea, R. M. (1975a). A design for a low-cost high-speed MOS associative memory, The Radio and Electronic Engineer, Vol. 45, No. 4,

pp. 177-182

Lea, R. M. (1975b). Low-cost high-speed associative memory, IEEE Journal of Solid-State Circuits, SC-10, Vol. 3, pp. 179-181
Lea, R. M. (1975¢). Information Processing with an Associative Parallel Processor, I[EEE Computer, Vol. 8, pp. 25-32
Lea, R. M. (1976). The comparative cost of associative memory, The Radio and Electronic Engineer, Vol. 46, No. 10, pp. 487-497

Lea, R. M. (1977a). Micro-APP: A buil
Vol. 47, No. 3, pp. 91-99

ding block for low-cost high-speed Associative Parallel Processors, The Radio and Electronic Engineer,

Lea, R. M. (1977b). Building blocks for associative memory, Electronic Engineering, Vol. 49, pp. 77-80

Leg, C. Y. (1962). Intercommunicating

cells—a basis for a distributed logic computer, Proc. AFIPS (FJCC), Vol. 22, pp. 130-136

Lerkovitz, D. (1969). File structures for on-line systems, Spartan Books
LyNcH, M. F. (1975). Variety generation—a reinterpretation of Shannon’s mathematical theory of communication and its implications for
Information Science, University of Sheffield

LyNcH, M. F., PETRIE, J. H. and SNELL,
Vol. 9, pp. 331-337

M. J. (1973). Analysis of the microstructure of titles in the INSPEC data-base, Inform. Stor. Retr.,

MINKER, J. (1971). An overview of associative or content-addressable memory systems and a KWIC index to the literature—1956-1970,
Computing Reviews, Vol. 12, pp. 453-504
NotLEY, M. G. (1970). The cumulative recurrence library, The Computer Journal, Vol. 13, pp. 14-19

ParHAMI, B. (1973). Associative memo
RutH, S. S. and KREUTZER, P. J. (1972).

ries and processors: an overview and selected bibliography, Proc. IEEE, Vol. 61, pp. 722-730
Data compression for large business files, Datamation, pp. 62-66

ScHieBER, W. D. and THomAas, G. W. (1971). An algorithm for compaction of alphanumeric data, J. of Library Automation, Vol. 4, pp.

198-207

SCHUEGRAF, E. J. and Heaps, H. S. (1973). Selection of equifrequent word fragments for information retrieval, Inform. Stor. Retr., Vol. 9,

pp. 697-711

SCHUEGRATF, E. J. and Heaps, H. S. (1974). A comparison of algorithms for data-base compression by use of fragments as language elements,
Inform. Stor. Retr., Vol. 10, pp. 309-319

ScHwARTZ, E. S. and KLEIBOEMER, A. J.

(1967). A language element for compression coding, Inform. Control., Vol. 10, pp. 315-333

SHANNON, C. E. (1948). A mathematical theory of communication, Bell Systems Tech. J., Vol. 27, pp. 379-423, pp. 623-656
SHANNON, C. E. (1951). Prediction and entropy of printed English, Bell Sys. Tech. J., Vol. 30, pp. 50-64

SNYDERMAN, M. and HunT, B. (1970).
THieL, L. H. and HEeaps, H. S. (1972).
WAGNER, R. A. (1973). Common phra:
WALKER, V. R. (1969). Compaction of

The myriad virtues of text compaction, Datamation, pp. 36-40

Program design for retrospective searches on large data bases, Inform. Stor. Retr., Vol. 8, pp. 1-20
ses and minimum space text storage, CACM, Vol. 16, pp. 148-153

names by x-grams, Proc. Am. Soc. Inform. Sci., Vol. 6, pp. 129-135

WELLS, M. (1972). File compression using variable length encodings, The Computer Journal, Vol. 15, pp. 308-313

WHITE, H. E. (1967). Printed English ¢

ompression by dictionary encoding, Proc. IEEE, Vol. 55, pp. 390-396

WiLLiams, P. W. (1975). Criteria for choosing subsets to obtain maximum relative entropy, Dept. of Comput., UMIST

The Computer Journal

20 udy 0L U0 188n6 A | /GGHH/G/1/LZ/aI0ME/UlWod/Wod dno olwspeoe)/:Sdjy Wolj papeojumoq

