Improvements in multioutput threshold-logic gates

J. M. Eves* and S. L. Hurstj}

Previous developments by Winn (1975) on the design of single-output threshold-logic gates using
Boolean product-of-sum expansions have been extended to the consideration of multioutput
threshold-logic gates, by searching for optimum factorising of Winn functions to provide common
terms for dissimilar threshold outputs. It has been found that such searches do not yield good
results, but the combination of Winn plus parity functions is more viable. A need for more powerful
digital synthesis techniques to handle multioutput design, with the ability to choose the number of
logic levels per realisation, is found to be desirable for this and all other multioutput design problems.

(Received November 1976)

List of symbols used
x,i=12,...,n independent binary gate inputs each of
which may take the value O or 1

f(x) function of the binary inputs x,, ..., X,

a,i=1,2,...,n independent real number coefficients or
‘weights’  associated  with  inputs
X1, ..., X, respectively

t real number gate output threshold value

To differentiate between Boolean equations and threshold
expressions, the following notations are employed: Boolean
equations employ [ ] for outer brackets, and () and { } for any
necessary internal brackets. Within these defining brackets
+ and . take the normal Boolean meaning of OR and AND,
respectively. The latter is omitted where no ambiguity results.
Threshold expressions employ { ) for outer brackets. Within
such brackets normal arithmetic rules of addition and multi-
plication hold, with the binary input signals x; taking the
numerical values of 0 of 1.

1. Introduction
Threshold-logic gates represent a particular class of digital
logic gates with considerable theoretical attractions, but with
limited practical exploitation to date except for the specific
case of Majority gates (Halligan, 1974). Nevertheless the
continuing study of threshold-logic functions and correspond-
ing realising gates is of significance in the broader context
of the advancement of logic theory and development along
lines not constrained by classic Boolean (AND/OR) techniques.
The function f(x) represented by a single-output threshold-
logic gate is dependent upon the number of binary inputs x;,
1 < i < n, the weighting factor a; of each input, and the gate

n
output threshold value ¢, 1 < ¢ < Y a;x;. The gate output is
i=1

given by the summation:
f(x)_—" lifz aixi>t,
i=1

= 0 otherwise,
which may also be expressed in the form

f(x) =<Ka;x; +ax, +...+ ax,),
Such a gate may be used to realise any linearly-separable
Boolean function by suitable choice of the gate parameters.
Further details of existing theory may be found in several
sources (Dertouzos, 1965; Hurst, 1969; Muroga, 1971).
If a given Boolean function is not linearly-separable, it cannot

by definition be directly realised by one single-output threshold

logic gate, and a multilevel realisation of some kind becomes

necessary. Dertouzos (1965) and others have shown that they
Rademacher-Walsh transform may be applied to Booleans
functions, whilst Edwards (1975) has used the spectral domaing
resulting from the Rademacher-Walsh transform to show thats
further classifications of non-linearly-separable functions mayi
be transformed into a linearly-separable class by the applica-3
tion of the Exclusive-OR operator. Further developments lead=
on to the consideration of threshold-logic gates with multlplen
outputs, each output bemg associated with a particular outputy
threshold value ¢;, giving rise to the powerful concept oﬁ‘i
multioutput threshold-logic gates (Haring and Diephuis, 1967;3
Hampel, 1973 ; Hurst, 1976). At least one practical usage of this;
concept has been pursued (Wooley and Baugh, 1974). Thes
theoretical potential of the multioutput threshold-logic gate3
as a generalised circuit element is therefore established.

The circuit implementation of multioutput gates, howeverz
remains an area of invention. Analogue summation techmqueﬁ\
within the gate structure to achieve the output dlscrxmmatlom
are possible, but with increasing difficulty when mulnoutpuﬁ
facilities are required. All-digital circuit techniques, ngmg;’
rise to Digital-Summation Threshold-Logic (‘DSTL’) gatesy
show advantages in most respects (Hurst, 1973; Winn, 1975):2

The first of the DSTL circuit proposals consists of a regulan‘;
matrix array of identical two-input cells, the number of cellss
required being a function of the number of inputs and maxw—
mum gate threshold value required (Hurst, 1973). The signaig
propagation time through the matrix is also a function of these
parameters, and hence for a large number of inputs or a highg
output threshold value this time may be excessive for certaing
applications. Against this factor, advantages include the>
features that every gate threshold is directly available from=
the full matrix, thus providing multioutput capability; alsm
the matrix array is perfectly regular, involving no Crossovers™
of any cell interconnection paths.

The alternative circuit realisation proposed by Winn (1975)
overcomes the propagation delay problem, but is not a
regular array configuration. The gate is instead implemented
in a product-of-sums form, such that the theoretical maximum
path length through the gate is that of three simple Boolean
operations in cascade, independent of the number of inputs
or gate threshold value required. The total number of Boolean
operations per gate, however, may be larger than that of the
matrix assembly, whilst no direct provision for multioutput
capability is present.

Several developments have been proposed to modify the
regular structure cellular array DSTL gate to attempt to im-
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prove its performance (Reddy and Swamy, 1974; Edwards,
1978). All however involve loss of the perfectly regular matrix
configuration and introduce crossovers of signal paths, although
on balance overall improvements are achieved with certain
modifications. Further developments of the sum-of-products
DSTL concept of Winn, particularly to provide multioutput
capability whilst retaining the low propagation delay, are now
disclosed in the following sections.

2. The extension of Winn’s technique to multioutput gates
Before considering the synthesis of multioutput threshold-logic
gates using the basic concepts of Winn, let us very briefly
summarise his approach as applied to single-output gate
assemblies.

Consider the threshold-logic gate shown in Fig. 1(a), which
has six unity-weighted inputs x, . . . , X and a gate output
threshold of ¢ = 2. The Boolean relationship which such a gate
realises is:

f(x) = [x1x, + X1X3 + X1 X4 + X1 X5 + X1 X6 + X2X3
+ ...+ Xsx¢]
which involves in total 15 first-level product (AND) terms plus
the 15-input second-level sum (OR) term. However if this
sum-of-products expression is re-expressed in a product-of-
sums form, we may have
f(x) = [(x; + x2 + x3) (x4 + X5 + X¢)

+ (X, + X, + x4) (x5 + X5 + X¢)

+ (x; + x35) (x2 + X6)] 5
which now involves only 10 Boolean operators in a 3-level
realisation, as shown in Fig. 1(b).* Winn’s work (1975) con-
sisted in determining optimum product-of-sums factorisations
for a wide range of functions, with minimisation of the number
of sum terms being the principle criteria. This optimisation
however was made considering one gate specification, that is
one threshold value ¢, at a time.

Should more than one threshold output be required from a
given set of x; inputs, then clearly some sharing of the Winn
sum terms is desirable. However this may now mean that the
minimum set of such terms for each specific threshold is no
longer the previous optimum, and alternative factorisations
may allow a better sharing of terms between the multioutput
requirements.

Consider a multioutput DSTL gate with eight unity-weighted
inputs x, to xg inclusive, and three threshold outputs, 1 = 2,
t = 3 and t = 4. The optimised Winn product-of-sums
realisation for each threshold considered independently is as
follows:

(i) fort = 2,

F(x) = (xy + X3 + X3 + X4 + X5 + Xg + X7 + Xg)3!
S(X)i=2 = [y + x2 + X3 + X4) (x5 + X6 + X7 + X3)

+ (x; + X, + x5 + x6) (x3 + X4 + X7 + Xg)
4+ (xy + X3 + x5 + X)) (x; + X4 + X6 + Xg)],
= 10 Boolean operations

(ii) for ¢t = 3,
f(x) =<4x; + X3 + X3 + X4 + X5 + X6 + X7 + Xxg)3:
f(X)e=3 = [(x; + x5 + x3) (x4 + x5 + Xe) (X7 + Xg)
+ (x; + x4 + x7) (x2 + x5 + xg) (x5 + Xe)
4+ (x; + x5 + x7) (x3 + x4 + Xg) (xy + xs)
+ (x; + X6 + Xg) (x3 + X5 + X7) (x2 + Xx4)]
= 17 Boolean operations

(i) for t = 4,
f(x) ={x; + x3 +x3 + x4+ X5 + X + X5 + Xg)a:
F()=a = [(x; + x2) (x5 + x4) (x5 + xe) (x7 + xg)
+ (x, + x3) (x3 + x5) (x4 + X7) (X + X3)
+ (%, + x3) (x3 + xg) (x4 + Xg) (x5 + X7)

+ x¢) (x5 + Xg) (X3 + X5) (x4 + Xx7)
+ x7) (x2 + x4) (x3 + x5) (x6 + Xg)

+ (x1 + x3) (X3 + X5) (x4 + x6) (X7 + Xg)

+ (r +x0) (X3 + Xg) (x3 4+ Xq) (x5 + X)e]

= 28 dissimilar Boolean operations.
Thus a simple assembly of the above in one package with
common inputs to provide ¢t = 2, ¢t = 3 and ¢t = 4 would use
a total of 55 Boolean operations. A quick inspection, however,
will reveal two factors in common in the t = 3 and ¢t = 4
listings, thus giving a slightly reduced total of 53 Boolean
operations.
If the ¢ = 2 expression is rewitten as

S(X) =2 = [{(x1 + x3) + (x3 + x4)}
{(xs + x¢) + (x7 + xg)}
+ {(xy + x3) + (x5 + x6)}
{(x3 + x4) + (x7 + xg)}
+ {(xy + x3) + (x5 + x7)}
{(x2 + x4) + (x6 + x5)}],
the resulting two-input OR functions are now all available
from the ¢ = 4 realisation. Unfortunately to sum these 2-input
OR terms to make the required 4-input OR terms for ¢t = 2
would reintroduce as many additional Boolean operations
as were saved by using these common factors.
Tests will readily show that no overall savings are achieved
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Fig. 1 A simple single-output threshold function
fO) =< x1+ x2+ x3+ x4 + x5 + X6 ),
(a) the threshold-logic gate
(b) Winn’s product-of-sums DSTL realisation
(¢) the equivalent cellular-array DSTL realisation, truncated
to amputate threshold outputs higher than r = 2

*Such product-of-sums expressions may of course be converted into all-ENAND or all-NOR form by the application of De Morgan’s laws,
but this will not reduce the total number of terms from that given in the minimal product-of-sums expression.
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by merely factorising all the sum terms of published Winn
functions into smaller sum-of-sum expressions, in order to
obtain common factors for different threshold outputs.
Other means of employing factors of common significance
must be sought, as will now be considered.

3. Detailed considerations of extracting factors

From previous publications (Winn, 1975; Eves, 1976) and
from the above examples it will be noted that an optimised
Winn function for any given output threshold value ¢ consists
of several second-level r-input product (AND) terms, the
inputs to these product terms collectively involving the input
variables x,; to x,. For example see Fig. 1(b). If we therefore
take a Winn function with a given ¢ value, it may be relevant
to select less than ¢ of the second-level input signals to form
components for a function of threshold value less than ¢
This concept is illustrated in Fig. 2(a). Notice that this does
not increase the total number of input/output gating levels in
either threshold output above the optimised 3-level configura-
tion.

Alternatively, or in addition, it may be relevant to sum (OR)
together two (or more) of the higher-threshold second-level
input signals to provide alternative inputs for the lower
threshold product terms, as illustrated in Fig. 2(b). Notice
that unlike the previous arrangement we have now introduced
an additional level of gating in the lower-¢ output realisation
above that of the original optimised Winn configurations.

Should more than two gate outputs be required then selection
of factors from a < t-valued Winn function and from a > t-
valued Winn function may be possible in order to form an
intermediate #-valued threshold function. This concept is
illustrated in Fig. 3, from which it will be noted that if this is
possible then no increase in the number of gating levels is
present for any threshold output.

Examples of multithreshold realisations using these tech-
niques may readily be constructed to illustrate such possi-
bilities, but to date it has not proved possible to develop any
design algorithms which converge towards an optimal or
near-optimal solution. Instead methods to date have been
semi-exhaustive computer searches and listings (Eves, 1976),
similar to those employed by Winn in his work for the single-
output cases. Further fundamental work in this rather intract-
able area of optimal minimisation of multioutput networks
would be of great interest and significance, particularly if not
confined to linearly-separable situations; possible approaches
may be suggested using n-dimensional geometric considera-
tions (Eves, 1976), or certain matrix methods (Robinson and
Hoffner, 1975), or possibly methods involving considerations
of symmetry (Hurst, 1977), but none of these so far seems to
generate a ‘best’ solution without trial runs.

Examples of results which have been obtained by semi-
exhaustive computer searches on simple examples are as
follows, from which further observations and developments
will be made.

Example: n = 8, three outputs t = 4, 3 and 2

The individual optimised Winn functions for these three out-
puts have been given in Section 2. Separately they involve
the following Boolean operations:

n = 8,t = 2: six sum terms, three product terms, one final
summation, total 10

n =8,t=3: twelve sum terms, four product terms, one
final summation, total 17

n = 38,1t =4: twenty sum terms, seven product terms, one

final summation, total 28

With the three-level realisation method of Fig. 2(a) it is pos-
sible to synthesise both the = 2 and the t = 3 outputs from
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Fig. 2 The possibilities of factors from a gate of threshold 7 to
produce gates of threshold < ¢
(a) extraction of product input signals from ¢ to form direct
product input signals for < ¢
(b) extraction and summation of product input signals from
t to form product input signals for < ¢
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Fig. 3 The possibility of factors for threshold  from Winn functions
of <t,>1¢

the + = 4 Winn function factors, without generating any
additional OR (sum) terms. The realisations are as follows:

S =2 = [(x; +x3) (x7 + xg) + (x1 + Xx3) (x5 + X¢)
+ (ey + x2) (x5 + x4) + (x5 + x4) (X7 + Xg)
+ (X3 + x4) (x5 + x6) + (x5 + x6) (x7 + Xg)
+ (x; +x3) (xy +x4) + (x5 + Xx7) (x6 + Xxg)]
JX) =3 =[Oy + x2) (x5 + x4) (x5 + X6)
+ (g + x3) (x5 + x4) (x5 + Xxg)
+ (xy + x3) (x5 + x¢) (x7 + xg)
+ (x3 + x4) (x5 + x6) (X7 + Xg)
+ (x5 + x5) (x4 + x7) (x6 + Xxg)
+ (x3 + xg) (x4 + x6) (x5 + X7)
+ (xy + x3) (x5 + x7) (x6 + Xxg)
+ (g + x3) (x; + x5) (x4 + Xx6)
+ (x; + x6) (x; + X4) (x3 + x5)
+ (xy + x3) (x; + x4) (x6 + x5)] .
With the four-level additional OR realisation method of
Fig. 2(b), several equally optimal realisations for + = 2 and
t = 3 using the ¢t = 4 Winn factors are available. For example:

JX) =2 = [{lxy + x2) + (x5 +x4) + (x5 + X6)} {x7 + x5}

+ {(xs + x6) + (x7 + x5)} {x3 + x4}

+ (x5 + x¢) (X7 + xg)

+ (xy + x3) (x; +x4) + (x5 + x7) (x6 + xg)] .
JX) =3 = [H{x; +x2) + (x5 + x4)} (x5 + x6) (x7 + Xxg)

+ (x; + x3) (x5 + x4) {(x5 + x6) + (x7 + Xg)}

+ {(xy + x2) + (x5 + x4} (x5 + x7) (X + Xg)

+ (O + x3) (xy + x4) {(x5 + x6) + (X7 + X3)}

+ {(x1 + x3) + (x7 + xg)} (x3 + x5) (x4 + Xx6)

+(xy +x7) (x5 + xg) {(x2 + x4) + (x5 + Xx6)}

+ (xy + x3)(x; + x5) {(x4 + x6) +(x7 + xg)}] .
However from such results when we compute what saving
in the total number of Boolean functions has been achieved,
the results are not encouraging. For the above example we
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may compile Table 1.

Further examples similar to that above show that only very
small savings in the total number of Boolean operators can
be found by searching for common sum-of-product factors
for a three or four-level network realisation. The necessary
recombining of common factors to realise the threshold out-
puts tends to require almost as many operators as present
in separate single-output Winn realisations. Particularly
unproductive is the search for useful factors from a Winn
function of threshold 7 to realise any further function of higher

threshold value.

If now we consider using more than one optimised Winn
function for three (or more) threshold outputs, we may
consider network realisations as suggested in Fig. 3. Again,
however, little saving has been found by merely searching for
useful common factors, but an alternative approach can now
be suggested, involving modulo-two summation considerations.

4. Modulo-two (parity) detection

Modulo-two summation of two or more binary inputs x; is
logically equivalent to the Exclusive-OR of the inputs. This
is also equivalent to odd-parity detection. Similarly modulo-
two summation with output inversion is equivalent to
Exclusive-NOR, which in turn is the same as even-parity
detection. This is indicated in Fig. 4. It will be noted that if
2-input Exclusive-OR or NOR functions are considered to be
basic logic gates, as will be discussed in a following Section,
then n-input odd and even parity realisations are possible
from a log,n level assembly, e.g. 3 levels for eight inputs, etc.

A single odd-parity circuit will therefore detect when 1, 3, 5, 7,

. . of n binary inputs are at logic 1, but will not distinguish
between these conditions. Similarly an even-parity circuit
will detect but not distinguish between 0, 2, 4, 6, . . . inputs at
logic 1. From this springs the possibility of using separate
optimised Winn functions to generate every other threshold
output, with one common parity circuit to enable detection
of the in-between thresholds to be accomplished. Fig. §

illustrates such possibilities.

Since the number of Boolean operators per Winn function
increases steeply with increasing value of threshold ¢, it is
generally desirable to employ the common parity circuit to
realise the highest threshold value required in any specific
application. Thus Fig. 5(a) is most relevant where f,, is
odd-valued, whilst Fig. 5(b) is most relevant for r,,, even-
valued. The maximum number of gating levels in either
realisation will be seen to be two levels above the Winn or
parity function for the threshold outputs not provided directly

Table 1 A comparison of the different DSTL techniques so far
considered for realising a n = 8, t = 2, 3 and 4 gate (Note, the
cellular array realisation also provides a ¢t =

1 threshold

output)

Realisation Max. no. Total no.
of logic  of Boolean
levels operators

Entirely separate Winn functions

fort = 2,3and 4 3 55

Sharing of any duplicated factors in

the above optimised Winn functions 3 53

Realisations as in Fig. 2(a), based

upon the 7 = 4 Winn function factors 3 48

Realisations as in Fig. 2(b), based

upon the # = 4 Winn function factors 4 51

Cellular array DSTL realisation as in

Fig. 1(c), truncated at ¢t = 4 by one

OR function 10 37
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Fig. 4 Modulo-two networks
(a) odd parity (multi-Exclusive-OR) gate
(b) even parity (multi-Exclusive-NOR) gate
(c) 8-input 3-level even-parity gate compiled from 2-input
Exlusive-NOR functions

by the Winn functions. Hence the representative statistics.of
Table 2 may be compiled. Note that the Boolean operator
count in the relevant optimised Winn functions is as follows
(Winn, 1975):

n=28, t=2 10 operators,
n=28, t =23 17 operators,
n =38, t=4 28operators,
n=28, t=15 37operators,
n =12, t =2 13 operators,
n =12, t =3 29 operators,
n =12, t =4 59 operators,
n =12, t =6 093 operators.

In contrasting the selected results detailed in Tables 1 and 2
it will be seen that the techniques of Fig. 5 are in general
preferable to the previous methods of searching for common
factors in the Winn functions. The principal disadvantage
is that a small increase in the maximum number of gating
levels occurs in the later method. However where a large
number of inputs and/or outputs are involved, for example
n=28,t=1to5o0rthen = 12 cases, then the DSTL array
structure of Fig. 1(¢) still proves more compact, though at the
expense of longer maximum gate propagation times.

5. A comparison of design techniques

It may be noted with interest that the preferable topology of
Fig. 5 in comparison with the concepts of Figs. 2 and 3 was
developed without the guidance of any Boolean algebraic
relationships. The system structure rather than the detailed
binary signals were factors of significance. The odd and the even
parity functions may certainly be given Boolean expressions
to define their input/output relationships, from which final
threshold output equations may be derived, but algebraic
synthesis of the particular configurations of Fig. 5 back from
the Boolean output equations is not straightforward.
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In a similar manner, the regular matrix array type of DSTL
gate of Fig. 1(c) was not developed by any Boolean algebraic
technique, but rather was built up by considering signal
path routing (Hurst, 1973). Should we consider the detailed
Boolean equations involved in such DSTL arrays, which was
not done in the original disclosures, then for, say, a six-input
(n = 6) array as shown in Fig. 1(a) we have the equations
following.

(i) output of the first row of the array (¢ = 1, = OR):

S(X)e=1 = [(((x6 + x5) + x4) + x3) + x3) + x4]

(ii) output of the next row of the array (t = 2):
S(X)i=2 = [{(xex5)} + {(x¢ + x5) x4}
+ {((x + x5) + x4) X3}
+ {(((x6 + x5) + x4) + x3) x,}
+ {((((x6 + x5) + x4) + x3) x2) x4}] .
(iii) output from the third row of the array (¢ = 3), if not
truncated at ¢t = 2:

S)i=3 = 1y2 + 7293 + y3Va + yays] .
where y,, y,, V3, ¥4 and ys are the five terms in

order in the { } brackets of the previous f(x),=,5
equation. s

Similarly for the remaining + = 4, 5 and 6 outputs of them
complete untruncated array. The algebraic build-up of thea
individual threshold outputs is clear from this analysis, but3
the automatic synthesns of this realisation back from the glveni
output equations is not possible with available algebrau:C
techniques, short of exhaustive searching for the common\
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Fig. 5 Winn functions plus parity checking
(a) even-valued Winn functions with odd-parity checking
(b) odd-valued Winn functions with even-parity checking
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Table 2 A comparison of the techniques of Fig. 5 with the array structure of Fig. 1(c) in providing multithreshold outputs from

various n = 8 and » = 12 input sets

Multithresholds Type of realisation Total no. of Boolean Maximum no. of logic

required operators levels, assuming
3 logic levels per
parity unit in Winn
assemblies

n=2_§8 Or + Winn 2 11 4

t =1and2 Truncated DSTL array 15 8

n=2_8 Odd-parity + Winn 2 19 4

t=1,2and 3 Truncated DSTL array 27 9

n=23_ Or + Even-parity + Winn 3 29 5

t = 1 to 4 inclusive Truncated DSTL array 37 10

n=2_8 Odd-parity + Winn 2 + Winn 4 49 5

t = 1 to 5 inclusive Truncated DSTL array 45 11

n=38 Or + Even-parity + Winn 3 + Winn 5 68 5

t = 1 to 6 inclusive Truncated DSTL array 51 12

n=12 Or + Even-parity + Winn 3 41 6

t = 1 to 4 inclusive Truncated DSTL array 31 14

n=12 Odd-parity + Winn 2 + Winn 4 + Winn 6 178 6

t = 1 to 7 inclusive Truncated DSTL array 52 17
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[+ 2] )
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R
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2 [x, 6 Xz]
(b)
Fig. 6 Possible monolithic function realisations
(a) an AND/OR cell

(b) an Exclusive-NOR gate
(Note these circuits may be covered by patent rights)

factorisations.

It may therefore be concluded from several aspects of this
work that Boolean algebra provides a very limited means of
synthesis of multioutput logic networks, particularly where
three or more levels of realisation are permitted and when
maximum sharing of terms between several outputs is desir-
able. More powerful synthesis techniques are needed in this
area; possibly developments of symmetry relationships may
prove to be of significance in this area (Edwards, 1978;
Hurst and Edwards, 1976).

6. Comments and conclusions

Digital methods of realising threshold-logic gates with one or
more outputs may at first appear to be a fundamentally
unprofitable exercise, as a considerable number of Boolean
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operations may be involved per threshold output (see Tables 1
and 2 for example); however with monolithic circuit realisa-
tions the actual number of Boolean operations per circuit
is not of supreme significance—flexibility of the input/output
logic capability per package is of greater importance. In this
respect multioutput threshold gates form just one part of
ongoing research into various possible general purpose logic
packages (Hurst, 1976; Tabloski and Mowle, 1976; Kautz,
1971).

Further, one should certainly not regard an AND operation
or an OR operation in a Boolean equation as necessarily
implying that these must be a separate identifiable AND gate
or a separate identifiable OR gate corresponding to each
Boolean operator. For example, it may be possible to realise
the AND/OR cell of Fig. 1(a), which we have counted as two
separate Boolean terms, by one combined assembly, such as
suggested in Fig. 6(a). Exclusive functions should also not be
regarded as assemblies of separate Boolean gates, but may be
regarded as circuit configurations in their own right, as for
example shown in Fig. 6(5).

Thus although one may express the final design of a complex
gate in conventional AND/OR or NAND or NOR algebraic
form, the translation of such expressions into a monolithic
realisation may not involve a one-to-one translation. However
without considering in detail the precise final monolithic
realisation, a count of the number of Boolean operations and
number of logic levels forms a ready initial comparison of the
efficiency of one gate design against another. But to revert
to the main area of this paper, it has not proved possible to
refactorise the single-output Winn threshold functions in
order to optimally realise multioutput threshold functions;
instead the use of alternate-value Winn functions plus parity
functions provides a more viable alternative.

In the wider context of multioutput functions, covering both
threshold and non-threshold functions, more powerful methods
of synthesis are still required, which (ideally) can optimise
function design with any chosen number of levels of realisation.
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Book reviews

Software Metrics, by Tom Gilb, 1977; 282 pages. (Prentice-Hall,
£11-50)
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bugged’. On p. 60, for instance, the ‘Hawthorne effect’ is mentioned?”
twice, but the term is only explained on its second occurrence, not§
the first. P. 60 also refers to ‘lines of source code of PLS (abbreviated‘a’
as LOC in the figure)’. What is PLS? (The meaning of APL isB
given on p. 86, but that of PLS is nowhere explained.) And who mO
his right mind would use LOC as an abbreviation for PLS? Afterg
no small amount of research, it dawned that PLS is a languageo
and LOC is short for ‘lines of code’. 3

These are typical of the obstacles with which the reader mustS
contend in order to dig out the nuggets. Perhaps what is needed=3.
is for someone else to take the information and to write it up in a=
well-structured, easy-to-understand manner. Surely it would bez=
fitting to apply to Gilb’s own work one of his own concepts—a

This is a curate’s egg of a book if ever there was one. Those who
read Tom Gilb’s articles in the computer press in late 1975 will
already be familiar with some of the ideas to be found in this book,
such as ‘bebugging’ (the deliberate seeding of errors in a program)
and ‘dual coding’ (two versions of a program written completely
independently).

Gilb’s aim is the cost-effective design, construction and maintenance
of software. He seeks to apply certain ‘metrics’ in order to monitor
the quality of software. ‘Bebugging’, for instance, may be used to
discover the total number of bugs in a program. You sow the pro-

olue/|u

gram with a fixed number of bugs and set someone to find bugs. that of dual coding. N
From among the bugs discovered you then find out how many were CoLIN DAY (London)=
deliberately implanted. This gives you some idea of the number of §
bugs actually present before you started. It is, in fact, similar to the N
method of finding the total number of fish in a lake by introducing Digital Signal Processing in FORTRAN, by F. Taylor and<

a certain number of tagged fish, and then going fishing. S. L. Smith, 1976; 402 pages. (Lexington Books, £13-25)

Such a simplistic view of things does not, of course, take into
account the fact that bugs (unlike fish) may be astonishingly different
from one another in form. Two cards in the wrong order may be
responsible for one bug, but another may be due to a mismatch
in the interface between modules, and a third may only show up
as an inadequate fix-up after a rare combination of invalid data.
If you think that the author concerns himself with such awkward
complications, you are wrong. He wants a metric, and therefore

to him a bug is a bug is a bug.

anb Aq g0

My first reaction to the title of this book was negative. Here wasc
another title in the already overburdened market for books aboutw
FORTRAN and its applications. However, a closer study of theg
text showed that this was a much more interesting book than usual. —

It describes a comprehensive package, written by the authors>
(in FORTRAN) providing digital filtering algorithms within an<
easy to use, user-oriented, software system called SPECTRUM 1V.»
Full details are given of the structure and use of the package,Y

In fact, sometimes even bigger corners are cut in the search for
something which he can call a ‘metric’. In Fig. 32 (p. 69) the metric
corresponding to ‘EFFECTIVENESS’ is ‘Transactions per cost-
unit’ (which is very reasonable), but the metric corresponding to
‘ROBUSTNESS’ is ‘garbage in does not lead to G. out’ which is
hardly something one can measure (not to speak of the inadequacies
in punctuation).

There are without doubt nuggets of wisdom hidden in this book,
but the form of the book and its style tend to keep them hidden.
Perhaps it is hardly surprising that one who disdains structured
programming should produce a book with so little structure.
The chapters are not numbered, and no page has a running heading,
so one has to resort to a minute comparison of type sizes to
determine when a new chapter is indeed starting. One half of the
book (Part II) reads like a collection of notes and jottings. Many
diagrams appear to be untouched reproductions of foils for an
overhead projector.

As far as the style is concerned, the text seems to have been ‘be-
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and each section is accompanied by a thorough treatment of the
mathematical and information-theoretic background of the algo-
rithms in question.

The software components include features for spectral analysis
(fast Fourier transform, autocorrelation and power spectral density),
bivariate spectral transforms, and various digital filters. These
sections are clearly presented with examples of the use of the
programs, and the graphical output produced.

On the whole, however, 1 feel the book falls between two stools
It contains too much background to be a simple manual of
SPECTRUM 1V, -but the reader seeking to understand digital
filtering techniques is confused by the descriptions of card-decks
required for its use.

The package was written initially for the CDC 3100, but was
subsequently transferred to an IBM 360. The authors generously
offer copies for general use at nominal cost, and an application
form is included in the back of the book.

S. J. GoLpsack (London)




