
Information transferral within a distributed data base
via a generalised mapping language*

R. H. Bonczek, C. W. Holsapple and A. B. Whinston
Krannert Graduate School of Industrial Administration, Purdue University, West Lafayette,
Indiana, 47907, USA

This paper investigates some of the problems encountered in the management of a data base that is
logically distributed. The term logical distribution is used to connote a situation wherein users in
various locales are responsible for creation and maintenance of their own portions of a data base,
but a user in one locale can access data maintained by a user in another locale. An example of this
situation is drawn from the realm of water quality management. A generalised mapping language
is proposed as a mechanism for information transferral within a distributed data base, and a general
data structure for supporting the mapping function is illustrated. The presented method accom-
modates a variety of user views, is independent of whether the data base is geographically distributed
or centralised, furnishes a straightforward security mechanism and provides a basis for treating
the contingency of uninformed or non-programming users.

(Received November 1976)

In view of the rapidly expanding data base field and the
frequently decentralised organisational environment within
which a data base management system must function, the
issue of distributed data bases is of topical concern. This paper
presents a method for addressing the problem of distributed
data bases. A data base is considered to be distributed if users
in various localities are responsible for creating and main-
taining their own portions of the data base and a user in one
locality can access data maintained by a user in another
locality. Such a situation can arise on a variety of machine
configurations (e.g. .Asenhurst and Vonderoke, 1975; Canady
et al., 1974; Farber, 1975). Although we deal specifically with
the problem of co-ordinating area wide management of water
resources, it should be noted that the method presented is
generally applicable to settings of physical or managerial
decentralisation in both the private and public sectors. The
perspective taken here is logical in nature; the question of
resolving physical or hardware incompatibilities (Schneider,
1975; Anderson et al., 1971) is not within the present scope.
Resolution of incompatible data structures to allow transferral
of data within a distributed data base will serve as our focal
point. Briefly, the methodology being proposed involves the
utilisation of a non-procedural mapping language (Bonczek
and Whinston, 1977) to define a mapping of data values out of
one network data base into another network data base without
requiring user specification of any intermediate data structures.
The user has merely to supply the map; neither preprocessing
nor postprocessing relating to normal forms is required. The
mapping is able to handle special cases of the above situation
such as linear list to tree, linear list to network, tree to network,
network to tree, etc. Prior to detailing the specifics of the
mapping approach, we describe a water resource management
context in which it is useful.

Area-wide water quality planning
Section 208 of the Federal Water Pollution Control Act
Amendments of 1972 calls for area-wide implementation of
technical and management planning, with the objectives of
satisfying 1985 water quality goals and establishing a plan for
municipal and industrial facilities construction over a twenty
year horizon. An emphasis is placed on locally controlled
(area-wide) planning. Our concern here is confined to those
aspects of technical planning which can be enhanced by
utilisation of a data base management system.
A river basin may be conceived as consisting of a number of

areas. To be designated under Section 208, an area must be in
need of a complex control program and must exhibit either
impairment (i.e. water quality within the river segment is
substandard) or a need for preclusion of desired uses. An
area-wide plan is constrained in that it must conform to the
basin-wide plan, must account for existing treatment facility
plans and must be implementable from a managerial stand-
point. The objectives of technical planning within a designated
area are to identify the priorities of water quality problems in
the area; recognise constraints in methods for dealing with
these problems; formulate alternatives for the satisfaction of
stated water quality goals; develop cost data for each alter-
native; select the least-cost feasible alternative, given existing
regulatory authority and qualitative restrictions; and update
the plan as needed.

To satisfy these objectives, the planner for a designated area
must be able to store, manipulate, retrieve and analyse large
volumes of data. It is imperative that the data be stored in a
manner that takes their intricate interrelationships into
consideration. The planner must be able to utilise effectively
a collection of germane application programs which provide
selective retrieval of a multitude of data configurations; which
generate plots, statistical analyses and projections; and which
perform large scale simulations and optimisations. Each of
these programs requires a particular configuration of data for
input. In relatively unstructured decision activities, the types
of analyses and reports which the planner needs are subject to
frequent modification. In traditional file-oriented systems this
requires that a new report generator be written every time a
new type of report is needed. Typically, a local planner is not
a computer programmer; presumably the planner's time is too
valuable to be preoccupied with writing report generators,
writing programs to maintain data files, and interfacing large
scale application programs with data files. A system which
obviates these crude necessities has been described in Holsapple
and Whinston (1976). The planner's interface with the system
occurs through a non-procedural English-like query language
(Bonczek, Haseman and Whinston, 1976a; 1976b).

Each designated area within a basin is responsible for
administering its own data base. This data base contains
information that is applicable to the area, such as the land use
descriptions and plans, the river's state characteristics within
the area, the area water quality characteristics and goals, and
the various area treatment plans. But to simulate an area's
water quality for a given treatment plan, data such as treatment

•Research supported in part by: Office of Water Research and Technology Grant 143460-76 and National Science Foundation Grant
MCS-67-24675

110 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/110/477457 by guest on 19 April 2024

plans and water quality characteristics of other designated
areas within the basin are required. The precise method for
accomplishing this depends upon the nature of the distribution.
In the ensuing section we present a taxonomy for identifying
the basic types of distribution that can occur.

Varieties of data base distribution
The taxonomy is developed within the context of congruent
data base implementations among local data bases. An example
of a local data base is the data base for a particular designated
area of water quality management. An example of a global
data base is the set of local data bases for all designated areas
within a basin. The local data bases may or may not be situated
on the same hardware; as previously noted we are not here
concerned with word size or character representation code
conversions. If on the implementation level, all local data bases
within the global scope utilise the same basic Data Description
Language (DDL) and the same basic Data Manipulation
Language (DML) commands, then we say that they are
congruent. Where there are hardware variations within the
global context, utilisation of a data management system that
is largely machine independent is required (e.g. Haseman and
Whinston, 1977) there may well be variations from one
locality to another in certain non-essential DDL features and
in high level or extended DML commands, but at some
implementational resolution level the DDL and DML are
identical. Another type of interlocality disparity may occur in
user views of the data management system. Even though one
local data base system utilises implementation features iden-
tical to those of another, the users of the first data base system
may have a very different conceptual view and may therefore
utilise different commands than the user of the second system
(Bonczek, Holsapple and Whinston, 1976).

The global data base is characterised according to two
dimensions. The first represents the relative degree of volatility
in underlying logical structures of the local data bases. The
second is indicative of the degree of uniformity of underlying
logical structure among local data bases. The degree of
volatility ranges from static, wherein logical structures of local
data bases are not subject to change over some time horizon,
to dynamic, wherein there are frequent alterations of logical
structures over the time horizon. Uniformity refers to situations
where identical logical structures are defined for all local data
bases; or at least an appreciable subset of the logical structure
of each local data base is identical to a subset of the others.
This framework yields the following four extreme cases:

1. Static structures and uniformity of structures.
2. Static structures and non-uniformity of structures.
3. Dynamic structures plus a desire to maintain uniformity

across all local structures.
4. Dynamic structures with no uniformity.
Prior to describing how these cases can be handled by the
mapping language and processor previously mentioned we
provide a cursory illustration of the mapping procedure (for
greater detail see Bonczek and Whinston (1977)).

Generalised mapping language
The generalised mapping language has the following distinctive
characteristics:
1. A linguistic formulation conducive to structural analysis and

facile implementation of language constructs;
2. A high level of non-procedurality that renders the language

convenient to non-programming users;
3. Generality in the sense of capacity to directly map informa-

tion from one network data structure into another network
data structure, thereby obviating the crude necessity of

constructing intermediate linear data structures;

4. Flexibility in terms of the ability to handle traditional func-
tions of retrieval (typically, network data structure to linear
data structure) and loading (typically, linear to network
data structure); these are actually special cases of the third
characteristic.

The mapping language has a context-sensitive grammar.
Using Chomsky's concept of transformational grammars, the
mapping processor applies inverse transformations to state-
ments in the mapping language in order to arrive at corres-
ponding expressions in a language derived from a context free
grammar. An expression in this context free language is
compiled using well known methods of syntax directed
analysis (Aho and Ullman, 1972). The specific implementation
used, including the precedence tables, is described in Bonczek,
Haseman and Whinston (1976a), and Haseman and Whinston
(1977). Information from the compiled expression serves as
input to network traversal routines (Bonczek, Haseman and
Whinston, 1976b) which make the requested extractions from
one data base and insertions into another (Bonczek and
Whinston, 1977). This is subject to any conditions specified in
the original mapping statement and conditions imposed by the
security system (Cash, Haseman and Whinston, 1976). If a
mapping statement is ambiguous (i.e. does not identify a unique
path in the source data base and a unique path in the target
data base) the mapping processor prompts the user for clarifi-
cation. All of these processes (ambiguous statement resolution,
security, etc.) can be characterised as inverse transformations
on the original mapping command; thus the language pro-
cessing techniques are sufficient for the processing of the map.
The mapping processor utilises a Data Manipulation Language

for the purpose of interfacing with a data base. The DML
which has been implemented (Haseman and Whinston, 1977)
is in FORTRAN and so it is largely machine independent.
FORTRAN is also used for implementation of the mapping
processor proper. Since FORTRAN can serve as a host lan-
guage for the DML, the mapping processor can treat any DML
command as a FORTRAN subroutine. Thus the mapping
processor is able to perform any needed manipulation of a data
base by using appropriate subroutine calls.
The mapping processor is maintained as a collection of

overlays as indicated in Fig. 1. The CONTROL overlay is
responsible for initiating input, buffering internal data and
calling the other overlays of the system. The PARSER is
composed of several parts. The PREPROCESSOR overlay
performs dictionary lookups for synonyms and noise words;
as such it performs inverse transformations. The IT overlay
performs the bulk of the inverse transformations (e.g. re-
structuring the mapping statement and identifying levels of
retrieval when multivariate functions appear in the mapping
statement). The SECURITY overlay also consists of inverse
transformations based upon the security status of the user
issuing the mapping statement. The COMPILER overlay
performs the precedence parsing of the expression (context
free) that results from the inverse transformations, thereby
producing an internal object code for evaluation in the
execution routines.

The components of the PATH FINDER overlay find a
path(s) in a network data base that corresponds to the map
command. This path finding function can be considered to be
an inverse transformation, which suggests that the path finding
phase should precede execution of the COMPILER overlay.
This is precisely what occurs and the compiler makes use of
information from the path finder to order conditional clauses
of the mapping statement in a heuristically optimal fashion.
The INTERACTIVE module of the path finder is also res-
ponsible for resolution of ambiguities as they arise.
The EXECUTION routines consist primarily of two parallel

Volume 21 Number 2 111

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/110/477457 by guest on 19 April 2024

PARSER

- PREPBOCESSOR

- I.T.

- SECURITY

- COMPILER

PATH FINDER

L INTERACTIVE

I— UHFOLDITKJ

L-TRAVERSAL

EXECUTION

-SOURCE

FETCH FBOM PATH

EXJEUTE RETRIEVALt:
_ TARGET

C FTHD Di PATH

EXECUTE STORAGE

— BLACK BOX

Fig. 1 Structure of the mapping processor

REGION

REGION-NAME

STATE

BASIN

BASIN-NAME |

RIVER Js4
STATE-NAME
POPULATION RIVER-NAME

STATE RIVER

LINK

LENGTH

a.) SOURCE data base b.) TARGET dato base

STATE-NAME
POPULATION

RIVER-NAME
BASIN-NAME

Expansion
Map

c.) Xnittal data base d.) FINAL data base

Fig. 2 Data base compaction and expansion

sets of programs: one for retrieval of data from a source data
base(s) and the other for storing information into the target(s).
As data are fetched, they are tested for satisfaction of all
conditions in the compiled map. Data which meet all conditions
are stored into the appropriate path of the target(s). The other
portion of EXECUTION is labelled BLACK BOX. This is
not currently implemented; its purpose is to perform necessary
encoding and decoding of data that is to be transported to a
data base with a physical structure that differs from that of the
source data base. Issues such as word length and character
codes must be considered in this type of operation.
Mapping problems may be partitioned into two categories.

These are data base compaction and data base expansion.
Fig. 2 presents simple examples of these two cases. Each
rectangular box, called a record type, represents a group of
data item types. For instance the record type STATE is
composed of data item types STATE-NAME and POPULA-
TION. Associated with each record type are a number of
record occurrences which contain data values. The record
type STATE forms a template which describes the composition
of each record occurrence associated with it. A sample occur-
rence of STATE is composed of the data item values INDIANA
and 5,000,000. Similarly an example of an occurrence of the
record type RIVER is the data value WABASH. Each arrow
indicates a 'set' which specifies a relationship between occur-
rences of two record types. This is a one-to-many relationship
between occurrences of the 'owner' record type and the
'member' record type. The arrow points from the owner of
the set to the member. In Fig. 2{a) for example set S4 associates
many occurrences of RIVER with each occurrence of BASIN
(i.e. each basin consists of several rivers). Note that there is a
many-to-many relationship between occurrences of STATE

and RIVER via occurrences of LINK. Each occurrence of
LINK is composed of a data item value that denotes the
length of that portion of a river which is in a state; the parti-
cular state and river associated with a given length (i.e. LINK
occurrence) are indicated by the data values of the occurrence
of STATE and the occurrence of RIVER which respectively
own S2 and S5, each having the LINK occurrence as its member.
The mapping problem is that of specifying the conditions

under which data values organised according to one logical
structure (source data base) are to be inserted into the form of
another logical structure (target data base). Since defining the
logical structures is not strictly a part of the mapping process,
throughout the ensuing discussion all logical structures are
assumed to be previously defined. As can be observed in Fig. 2
the procedures of data base compaction and data base ex-
pansion are of a complementary nature. The most familiar
variety of compaction is data retrieval which extracts data
values from a source data base into a linear target which is
used for display or as input to application routines. The most
familiar variety of expansion is simple data base loading which
'explodes' data values from a linear source into a network
target.
The compaction map of Fig. 2 can be specified as follows:

Taking SOURCE to TARGET, map STATE-NAME to
SNAM, POPULATION to POP, LENGTH to LENGTH,
RIVER-NAME to RNAM, and BASIN-NAME to BNAM
relating SI and S2 with Tl, and S3, S4 and S5 with T2.

The expansion map is:

Taking INITIAL to FINAL, map STATE-NAME to
STATE-NAME, POPULATION to POPULATION,
RIVER-NAME to RIVER-NAME, LENGTH to LENGTH,
BASIN-NAME to BASIN-NAME, relating II to Fl, 12
to F2 and F3.

An important special case of network structure is a linear or
strictly tree-like data structure. In this case, there is only one
possible relationship between two record types; therefore no
relationships need to be specified to execute a map. In a full
network a multitude of relationships may exist between record
types; inclusion of relationship correspondences in the map
command prevents ambiguities that arise in their absence. An
alternative to user specification of relationship correspondences
is to allow the mapping processor to prompt the user in order
to elicit this information (Bonczek and Whinston, 1977).
Finally, we note that conditional restrictions may be included
in a map command to limit the data values which are subject
to the map; this is useful for security purposes as well as
checking for errors in the data. For example the compaction
map for Fig. 2 could be restricted by adding the clause

18,000,000 and..for 1,000,000 < POPULATION <
0 < LENGTH < 375.

Visualisation
We first of all examine how the generalised mapping procedure
is used to handle case I of static and uniform structures within
a distributed data base. Suppose the user of data base A
requires information from data base B. Since there is uniformity
of structure user A needs only to match like names in the
mapping statement, specifying B as the source and A' as the
target. A' is probably a scratch data base for temporary use,
though the data values could be mapped directly into A.
Having the data in this form at A, it is immediately useable
by applications set up to handle analyses of data base A. For
cosmetic purposes it may be desirable to define another
command which does not require redundancy; this is a special
case of the MAP command. Note that MAP is also quite
capable of handling different names for the same attribute

112 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/110/477457 by guest on 19 April 2024

within the context of uniform structures; if the query system
already permits definition of synonyms, accomplishing the
map in this manner adds unnecessary complexity.
In case II, user A is allowed to view data base B as being

uniform with data base A. Since the data bases A and B are
static the data base administrator can devise and store a map
of B into the terms and structure used by A, as a one shot
operation. If this is done then the user can proceed as in case I.
An alternative method, which is more cumbersome for the
user, is the performance of a single direct map; this requires
that the user be knowledgeable in the particulars of other data
bases than his own.
Suppose that in case III changes are made to local data bases

on a weekly basis. Since the changes are to be made uniformly
across all data bases the data base administrator needs to
prepare only a single mapping command which for any
locality will map data base X, into Xl+1. This command is
used simultaneously at all localities and thereby preserves
global uniformity. Data transferral among localities can then
proceed as in case I.
For case IV we store a number of maps in the data base as

depicted in Fig. 3. We first of all note that Map 1, which takes
data base B into a form that is uniform with data base A, also
contains all information necessary to accomplish the reverse
procedure. Also observe that maps are stored only if one area
is permitted to access another (e.g. there is no direct access
between area A and area D). This case is handled just like
case II except there must be a continuing update of stored
maps. Notice that in any instance where one locality makes
a change in its own data structure, no reprogramming is
required in the applications at other localities. At most, all
that is needed is a modification in the appropriate stored map.
The instigator of the change is responsible for modification of
the pertinent stored maps; such modifications may be effected
automatically, since all information needed for the modifications
is present in the locality's specification of the change to its
own data structure.

Additional considerations
Maps stored for the purpose of providing a user with a uniform
view of all data bases, can also be used as security mechanisms.
Data items or particular paths of a given local data base that
are to be protected from outside scrutiny may be precluded
from all (or some) stored maps that are available to users in
other localities. Since maps may contain conditional clauses,
conditional security (Cash, Haseman and Whinston, 1976)
may also be accommodated. Not only are certain large
portions of the data base protected, but on a more detailed
level, access to a range of data values for a particular data
item type may be effectively restricted.
Thus far we have considered the specification of a map that

takes data from a single source into a target data base. At first
glance, the situation wherein data is to be gathered from

Fig. 3 Storage of maps

multiple sources into a target may seem to be quite complex.
However, by virtue of the utilisation of stored maps which
effectively provide uniformity of data structures, the data
transferral is fairly straightforward. This is particularly true
in the instance where the values of the same data item types
are drawn from all of the sources. For example, a target data
base may be constructed from all (or some, if the map is
conditional) values of the data item type POLLUTER-NAME
that exist in some specified source data bases:

taking AREA-1, AREA-2, AREA-3 to AREA-4 map
POLLUTER-NAME to POLLUTER-NAME . . .

To obtain a target where different data item types are drawn
from various sources a series of maps of this variety may be
needed.
When the types of data stored in data base A (e.g. water quality

data) are incommensurable with those stored in data base B
(e.g. land use data) then the user (or DBA) must define the
target data base. This is not required (though it is allowed)
for the previously examined cases, where the existing local
logical structure furnishes an implicit target that is usable by
existing application routines. When data bases are incom-
mensurable then the source structure (or a view of it according
to an existing map) must be known, the target must be defined
and a map is written accordingly.
The preceding discussions presuppose that the user knows the

location of data to be retrieved. However, the uninformed or
non-technical user may be unaware of the data base(s) which
contain the information required; it could even occur that
such a user is unaware of the logical distribution of the global
data base. Such a state of affairs is not uncommon in situations
where users are planners and managers who typically are not
expected to be experts in data base technicalities.
The solution depends upon the volatility of the types of

information the user needs from other data bases. If the same
type of data is repeatedly required from the same sources then
the appropriate map may be stored and executed in response
to the pertinent user query. For instance to simulate water
quality, the simulation package requires certain types of data
from other locales. The types of data required are invariant,
though the data values undergo frequent modification. A user
query, requesting execution of this application, invokes an
execution of the pertinent stored maps before performance of
the desired simulation; and the entire mapping process is
invisible to the user.
If the types of information requested by the user are subject

to frequent change then the query system must be devised in
such a way as to elicit the information needed to construct
the required map. This involves interactively prompting the
user.

A general data structure for mapping support
A crucial aspect of successful implementation is the existence
of an organised, comprehensive and compact means for
representing information about various user views and the
maps required to support those views. We use the term deep
structure to refer to the description of a locality's data structure
according to which its data values are actually organised.
Surface structure refers to a particular user view of a locality's
data structure. There is one deep structure per locality. Recall
that in the foregoing discussion, the mapping feature has been
used in two ways, namely:

1. It serves as a means for specifying the sources, targets and
conditions of data transferral. As such, it may be

(a) defined by the user at the time of transferral, or

(b) stored if it is subject to frequent use.

2. The mapping facility provides a method for supporting a

Volume 21 Number 2 113

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/110/477457 by guest on 19 April 2024

LOCALITY

VIEW TYPE

|PEEP-or-SURFACE]

VIEW I (SURFACE 8 DEEP)
VIEW-NAME I DEFINED

LOCALITY-NAME | VIEW-UPDATE-INFO1 L"L r"" I l u

SOURCE-ITEM
SOURCE-CONDITION
TARGET-ITEM
TARGET-CONDITION r

RCESESOURCE-SETS TARGET-SETS
|s-SET-NAME] |T-SET-NAME"

a.) Data Structure for
Representation of Maps

RECORD-TYPE

JRECORD-NAME

OWNER

COMPOSED OF

MEMBER

SET-NAME
SET-ORDER

DATA-ITEM ,

ITEM-NAME
DESCRIPTION
ITEM-UPDATE-INFO

b.) Data Structure for
Representation of a
Network

Fig. 4 General data structure for the support of data transferral
within a logically distributed data base

variety of surface structures (each subject to its own security
constraints) for a single locality's deep structure; i.e. a map
may serve as a transformation that takes a deep structure
into many surface views. A map is stored for each of the
available surface structures based on a particular deep
structure. There may be
(a) many surface structures that can be used at one locality

with reference to its own data base
(b) many surface structures used at many localities with

reference to a particular locality's data base, and
(c) a given surface structure may be shared among some

localities.
Fig. 4 illustrates a data structure capable of supporting both
of these methods of utilising the mapping feature; some version
of this structure is incorporated into all local data bases.
Furthermore, the depicted structure:
(a) allows the acquisition (subject to security constraints) of a

full description of the logical structure of any deep or
surface view

(b) provides a dictionary facility for detailed description of the
meaning of each data item in each surface or deep structure

(c) provides a mechanism for specification of access privileges
for all data item types (a particular locale's data retrieval
ability is constrained by the views which are available to it)

(d) can accommodate information about the time of the most
recent update of a particular map

(e) can serve as a basis for monitoring the most recent update
to occurrences of a particular data item existing in a parti-
cular user view.

Within the data structure of Fig. 4(6), all deep and surface
structures are represented as networks. Since the relational
data base view has been shown to be equivalent to the network
view (Bonczek, Haseman and Whinston, 1976a), an appro-
priate network surface structure is stored should a relational
view be desired; translation of this structure to give the
appearance of a relational data base is an exercise in cosmetics.
From the figure, we see that each VIEW is DEFINED in

terms of its RECORD-TYPEs. Each RECORD-TYPE is
COMPOSED of zero, one or many DATA-ITEMs; a pair of
RECORD-TYPEs may be associated by declaring one to be
the MEMBER and the other to be the OWNER of a SET.
This information is helpful when a user is devising a map from
one view (or several views) into another, since it provides a
complete description of the structure of each view as well as a
dictionary facility for ascertaining the meaning of any data
item.
The structure depicted in Fig. 3(a) is utilised to store all maps

(see uses 1(6) and 2 outlined above). We first of all notice that
a VIEW may be either deep or surface. Moreover, for a given
LOCALITY, there may be many VIEWs and a particular
VIEW may be used in many LOCALITIES; a LOCALITY is
associated with a VIEW by means of the LOCALITY-VIEW
record type. There may be many TARGET-VIEWS for each
MAP, or there may be many SOURCE-VIEWs. Associated
with each MAP are a series of ITEM-MATCHES and a series
of RELATIONSHIPS, each of which relates a series of
SOURCE-SETS with a series of TARGET-SETS. This general
structure is capable of simplification for specialised purposes,
as well as elaborations for further refinement.
A simple illustration of the schema of Fig. 4 (at the record

occurrence level) may be provided by utilising the two data
structures given in Fig. 2(a) and (b). Suppose that these are
two views which we want to represent in a data base that is
structured as shown in Fig. 4. In this example, we do not
consider whether these are deep or surface views nor whether
they are views of the same or different localities, since the
occurrence level representations of such conditions are
straightforward. Parenthetically we point out that there is
nothing special about the names (TARGET and SOURCE) of
the two views being considered.
Fig. 5 depicts the occurrence level representation for the two

views which corresponds to the data structure of Figure 4(b).
Each oval in Fig. 5 denotes a record occurrence of the type
indicated in the right margin. In some occurrences, data values
for all items are not shown. Arrows emanating from an
occurrence point to occurrences of another record type which
are owned by that occurrence via the set indicated in the right
margin (on the same level with the arrows). For example, two
occurrences of the record type VIEW are shown (SOURCE
and TARGET). Recall from Fig. 2 that there are five record
types in the SOURCE view and three in the TARGET view.
These give rise to the eight occurrences of the record type
named RECORD TYPE. Arrows associated with the set
DEFINED indicate which of these eight occurrences belong to
SOURCE and which belong to TARGET. Recall that on the
occurrence level there must be a one-to-many relationship
between an occurrence of an owner record type and occurrences
of the member record type which are associated with it via a
particular set. In graphical terms this means that no occurrence
may be pointed to by more than one arrow of a given set type.
Two arrows may point to an occurrence if each represents a
distinct set. For instance, the occurrence 'Tl' of the record
type SET is pointed to by two arrows: one of the set type
OWNER and one of the set type MEMBER. This shows that
the set Tl (of Fig. 2(b)) has the record type STATE (of Fig.
2(b)) as its owner and the record type LENGTH (again see
Fig. 2(6)) as its member. In Fig. 5 the row of occurrences of the
record type called RECORD-TYPE appears twice. This is
solely for the purpose of diagrammatic clarity. In the actual
data base each occurrence in the RECORD-TYPE row appears
only once. With further examination of Fig. 5 it can be
verified that the two views of Fig. 2(a), (b) can be accom-
modated by the structure given in Fig. 4(b).

We now examine the manner in which maps may be stored
in the structure of Fig. 4(a). Fig. 6 continues with the above
example, showing how the SOURCE and TARGET views

114 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/110/477457 by guest on 19 April 2024

SET RECORD
TTOE

REGION)(S1XTE II BASH))(RIVER) (UHK I S&TE

Fig. 5 Example of stored data structures at the occurrence level

VIEW

80CJCE-
VIBJ

TUGET-
VIEW

(A)
Fig. 6 Example of stored maps at the occurrence level

may be related to a particular map, called 'COMPACTION
MAP'. Occurrences of the record type ITEM-MATCHES (e.g.
'STATE-NAME': 'SNAM') correspond to the items matched
in the mapping statement given in a previous section. Fig. 6(b)

Volume 21 Number 2

shows the corresponding matches of set relationships for that
same mapping statement. Observe that Fig. 6(a) includes two
additional occurrences of VIEW, namely 'VIEW X' and
'VIEW Y\ It also includes another occurrence of the record
type MAP (i.e. 'MAP X'). This is used to demonstrate the
occurrence level structure in the case where a map takes two
sources into a target view. As shown in Fig. 6(a), the two
sources of 'MAP X' are 'TARGET' and 'VIEW Y'; the target
is 'VIEW X'. Similar occurrence level structures result for
maps with multiple targets.

A scenario
Finally, we present a scenario of the procedures followed as a
result of query submission. Each locality has its own copy of
the query processor, which includes the mapping processor and
is based on underlying DML (Bonczek and Whinston, 1977;
Bonczek, Haseman and Whinston, 1976a). This supports all
queries that exclusively access the local data base. When a
request is made that requires a map (the map being either
user supplied or drawn by the query processor from the local
data base) that request is analysed by the local mapping
processor and undergoes the following conceptual steps. For
each requested source, the mapping processor generates a
query in compiled form. This query is dispatched to the source,
requesting extraction of data. Upon arrival at the source, the
query is executed (subject to some priority scheme and con-
currency policy) by the query processor of the source locality.
The result is the generation of an extraction file which can be
accessed by the query processor of the target for purposes of
display, insertion into a target network (as specified in the
map), or execution of a local application routine. Further
research is required for a determination of both the machine
configuration(s) most amenable to utilisation of the concepts
outlined herein and the precise protocols to be observed in
update of local data bases.

Conclusion
We have used the term distributed data base to connote a
situation where control (i.e. creation and maintenance) of data
values and data structure is distributed (without overlap)
among users in various localities, but where access is general,
subject to security constraints. The generalised mapping

115

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/110/477457 by guest on 19 April 2024

language was briefly described and shown to be capable of
handling data transferral in the four extreme distributed data
base environments. A generalised data structure for supporting
the mapping function is illustrated. The presented method
accommodates a variety of user views of data base structure,

is independent of whether the data base is geographically
distributed or centralised, furnishes a straightforward security
mechanism and provides a basis for coping with the contingency
of uninformed users who may even be unaware of the logical
distribution.

References
ASENHURST, R. L., and VONDEROKE, R. H. (1975). A Hierarchical Network, Datamation, February 1975.
CANADY, R. H., HARRISON, D., IVIE, E. L., RYDER, J. L., and WEHR, L. A. (1974). A Back-end Computer for Data Base Management,

CACM, October 1974.
FARBER, D. J. (1975). A Ring Network, Datamation, February 1975.
SCHNEIDER, G. M. (1975). DSCL—A Data Specification and Conversion Language for Networks, Proceedings ofACMSlGMOD Workshop,

San Jose, California, May 1975.
ANDERSON, R. D. et al. (1971). The Data Reconfiguration Service—An Experiment in Adaptable Process to Process Communication,

Proceedings of Symposium on Problems in the Optimization of Data Communication Systems, Palo Alto, California, October 1971.
BONCZEK, R. H., and WHINSTON, A. B. (1977). A Generalized Mapping Language for Network Data Structures, International Journal of

Systems.
HOLSAPPLE, C. W., and WHINSTON, A. B. (1976). A Decision Support System for Area-wide Water Quality Planning, Socio-Economic

Planning Sciences.
BONCZEK, R. H., HASEMAN, W. D., and WHINSTON, A. B. (1976a). Structure of a Network Data Base Query Language, Krannert Technical

Report, Krannert Graduate School of Industrial Administration, Purdue University, April 1976.
BONCZEK, R. H., HASEMAN, W. D., and WHINSTON, A. B. (1976b). Automatic Path Determination in a Network Data Base, Krannert

Technical Report, Krannert Graduate School of Industrial Administration, Purdue University, April 1976.
HASEMAN, W. D., and WHINSTON, A. B. (1977). An Introduction to Data Management, Richard Irwin Co., Homewood, Illinois.
BONCZEK, R. H., HOLSAPPLE, C. W., and WHINSTON, A. B. (1976). Extensions and Corrections for the CODASYL Approach to Data Base

Management, InternationalJournal of Information Systems.
CASH, J. I., HASEMAN, W. D., and WHINSTON, A. B. (1976). Security for the GPLAN System, InternationalJournal of Information Systems,

August 1976.
AHO, A. V., and ULLMAN, J. D. (1972). The Theory of Parsing, Translating and Compiling, Vol. 1, Prentice Hall, Englewood Cliffs, NJ.

Book review
Advanced ANS COBOL with Structured Programming, by G. D.

Brown, 1977; 497 pages. {John Wiley, £13-50)

High Level COBOL Programming, by G. M. Weinberg, S. E.
Wright, R. Kauffman and M. A. Goetz, 1977; 252 pages.
(Prentice-Hall for Winthrop, £13-55)

Both these books have the aim of allowing people to produce
programs which are easily readable and maintainable and which are
correctly structured. It is not therefore surprising to find chapters
on structuring, style and testing in each. However their approach dif-
fers greatly.
High Level COBOL Programming takes a philosophical outlook

to the problem. It considers the basic requirements of any program;
the businesslike approach necessary to programming; and the need
for good management in a programming environment. From this
start it considers how programming should be controlled and how
good quality programs can be written, pointing out that only too
often standards are written purely as a result of a programming
disaster of some type and not through any professional process.
Much of the rest of the book is devoted to the ways in which various
tools can aid the programmer. The authors argue that preprocessors
allow programmers to use shorthand, while still producing fully
readable outputs. By the use of macros, they can provide facilities
to overcome some of the trickier COBOL areas, such as DO-WHILE
constructs and the necessity for GO TO statements. The pre-
processor described in the book is MetaCOBOL. This has an exten-
sion which can be used to aid the testing and control of the pro-
gramming.
A further tool described is the source program management

system LIBRARIAN which can be used to update libraries;
maintain security, providing reliable back-up; and to provide
a complete audit trail of changes made. Its ability to do simple
SYNTAX checking and various levels of control listings is also

pointed out.
In its arguments on methods of style to be used, techniques to be

evolved and methods of testing a program, the use of these tools is
presumed. The authors declare their interest in the software tools
in that several of them are from the software house which develop
them. It is a pity that names of similar products were not at least
mentioned.
Advanced ANS COBOL with Structured Programming concentrates

on the advantageous use of some of the more complex areas of
COBOL. The ANS compiler used the latest IBM 370 version,
and any differences from the '74 standard are noted. The book is
well written, with excellent examples of many areas. The information
on the SEARCH verb; the COBOL report writer; and the sort
feature will be of particular assistance to readers and are con-
siderably clearer than in any manufacturers' manual or similar
reference book.
The book could be treated simply as a reference book, but any

COBOL programmer would be likely to gain considerable knowledge
from a thorough study of it. There are some criticisms of the book.
Although structured programming is covered, it is not really dealt
with in sufficient depth to justify the title. A chapter on the types
of diagnostics which arise, even if only on IBM compilers, might
have been of more generai interest than one on IBM JCL and
machine/language interface in general.
To summarise, two well written, easily readable books. Anyone

possessing the software tools mentioned in High Level COBOL
Programming would probably find it invaluable; anyone consider-
ing these or similar tools would find it interesting and others would
probably enjoy reading it even if the cost might be hard to justify.
The second book, Advanced ANS COBOL, wold not be out of place
in anybody's computer library. Any IBM installation might ser-
iously consider what part this book could play in a training pro-
gramme.

J. A. EMERSON (Horsham)

116 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/110/477457 by guest on 19 April 2024

