A compiler compiler and methodology for problem
oriented language compiler implementors

R. V. Evans*, G. S. Lockington*, and T. N. Reid*
ICL Dalaskil, Reading Bridge House, Reading RG1 8PN

The Program Synthesis system is a compiler compiler specially designed to enable the implementors
of application systems to design, implement and issue language-based applications without having
to concern themselves with the technical aspects of compiler construction; and also to ensure that
the resulting systems are easily enhanced and easily portable. The background of the Program
Synthesis system is described as well as its associated methodology and the internal structure of
the system. The proposed enhancements to the system are described together with the reasons for
their consideration. Finally some of the achievements of the system are described.

(Received October 1976)

1. Introduction

The Program Synthesis system (PS) is a compiler writing
system specifically designed to aid the implementation of
problem oriented language (POL) compilers for application
systems.

PS provides many of the routines to be incorporated into
such a compiler as well as a language in which the application
designer can specify the remainder of the compiler.

The strategy adopted by PS is to view the process of compila-
tion as a series of transformations. Some of these transforma-
tions have been written as invariant components of every
compiler that the system produces; others are provided as
table-driven processes for which the application designer
supplies the tables, and the remainder are left to be written
separately for each compiler.

PS provides a system implementation language (SIL)
which has facilities for setting up the tables, coding the
routines and collecting these with the standard parts to pro-
duce the POL compiler. SIL in addition has many of the
properties of a general purpose language and can be used as
such, although its main function is to enable the users of PS
to construct compilers without requiring of them detailed
understanding of compiling techniques.

As the PS system can itself be regarded as an application
system within its own scope the implementation strategy has
been to write the system in SIL and bootstrap it into existence
via a hand compiled version.

2. Background

The design and implementation of user oriented application
systems in a commercial environment is subject to many
adverse influences that increase the resources required for the
task and decrease the usability of the products.

Planning the production of the systems is often hampered
by the adoption of ad hoc techniques that render difficult
the breakdown and estimation of work involved; also the
expertise requirements conflict as personnel are required with
knowledge of the application problem area, system program-
ming and the target machine architecture.

Designing the systems is hampered too by the absence of a
well defined framework on which the design can be based,
with the result that parts of the system which could be con-
ceptually independent become inextricably interrelated with
an attendant increase in complexity.

Implementing systems incurs considerable overheads as the
common parts are rewritten for each system and application
functions are written that already exist in other systems.

The user-images of the systems are often affected by the
failure to apply sufficient application oriented expertise to

*Now at ICL Dataskil, 6 The Forbury, Reading RG1 3EQ

Volume 2¢ Number 2

their design, with the result that the systems appear too
‘DP oriented’.

The versatility of the systems is hindered by the one-off
approach which renders them non-portable, non-enhanceable
and even non-correctable.

In view of all these factors, PS was designed as a system and
an associated methodology for overcoming as many as
possible of the various inefficiencies and difficulties in POL
compiler design both simply and economically. The basic
aim therefore of the Program Synthesis system is to simplify,
standardise and render efficient the design, implementation
and issue of user oriented application systems by personnel
not versed: in the arts of system programming and compiler
construction. The design of PS has been according to its own
philosophy, keeping the needs of the user uppermost. At the
lexical level these needs are slight; simplicity and standardisa-
tion rather than flexibility being important as the user should
not be concerned with the detailed treatment of identifiers,
directives, etc. but merely needs a way of saying what certain
things look like or how they are built up.

At the syntactic level the user’s needs are greater: he should
not have to worry about parsing strategy but will want to
determine the syntax of the language he is designing fairly
precisely and without hindrance, yet at the same time he must
be protected from designing an inconsistent language or one
with ambiguities. At the semantic level, the user needs almost
complete control in order to make the semantics of the lan-
guage problem oriented, although he should be discouraged
from gross inefficiencies and encouraged to make the semantics
match the syntax structurally. The user should not be con-
cerned with details of identifier table maintenance, optimisa-
tion or the nature of the target machine—save that he may
require control over the hardware representations of simple
data types.

3. Application design using PS

The facilities of the PS system would mean little if presented
on their own, so this section will describe them from the view-
point of someone using PS in the intended way. Those parts
of the process not involving the computer system will also be
described.

3.1. Vocabulary

The first stage is to investigate the chosen application area
with a view to compiling a vocabulary of its technical termin-
ology. This is essential to the PS philosophy of talking to the
user in his own terms; it may be a trivial task but when the
application system designer is a tiro in the field of the applica-
tion it is of great importance. This vocabulary should contain

17

$202 14dy 61 U0 1senb Aq €1/ /] L L/Z/LZ/e1oe/|ulwod/woo dno-olwepeoe//:sdiy woij papeojumoq

for each word as complete a definition of the word as possible,
including all implications, assumptions and related information;
it will form the basis for the language syntax and its semantics.

3.2. Language

The appearance of the language can now be decided : it must be
determined whether it will be a command language (algo-
rithmic), a descriptive language (non-algorithmic) or whether
it is to have features of both. The language design is essentially
a process of deciding what sort of object can be talked about,
what can be done to or with these objects and how these
operations on them can be combined. The ‘sentences’ will
probably be either mathematical or scientific equations of some
sort or simple English (or whatever is the everyday language
where the application is to be used) sentences using various
of the vocabulary words in certain positions.

3.3. Syntax
Once the sorts of sentence or construct allowed in the language
have been decided, the syntax can be formalised. SIL accepts
a syntax definition in terms of productions made to look more
like a programming language. The syntax of a SIL production,
in BNF is:

{production) :: = (lhs)> — {(rhs)

{lhs)> = {name)

{rhs)> = {atom) | {rhs) {atom)

{atom) = <{name) | {quote) | {repeat) | {prim)
{repeat) = [(rhs)]

{prim) = NM |ID | QU

{name) = {an identifier)

{quote> 1 = “{sequence of non-quote symbols)”

Thus the following are legal productions:
SUM - TERM “+> TERM
LIST - “(*‘SUM [*,” SUMT")”
TERM - ID NM
The first of these corresponds to the BNF production:
{(SUM) :: = (TERM) + {TERM)

and means that a SUM is a TERM followed by the symbol +
followed by another TERM. The second means that a LIST
is an open bracket, followed by a SUM followed by the con-
tents of the square bracket (comma followed by a SUM)
once or more or not at all, followed by a close bracket. The
third means that a TERM is either an identifier or a number,
as adjacent non-quotes are by convention alternatives. The
three productions therefore define LISTs as things like:

A+1L,B+1,C+ D)
Q27+ 1
(3 + 3, A + FRED)

In addition to the three primitive non-terminals ID NM and
QU, meaning identifier, number and quote, the user may define
his own; these are called reserved operands, to contrast
normal reserved words that appear in quotes in productions
and are regarded as operators. For example, a non-terminal
BOOL could be defined by:

BOOL IS “TRUE”, “FALSE”, “UNDEFINED”

The examples of productions and reserved operands are not
exactly as they would be written in SIL; a link is needed to
the semantic definition. Any proper production, that is one
having at least one quote in the rhs, must be followed by a
colon, a number, a name in brackets and a quote, for example:

SUM — TERM *“+” TERM : 37(RSUM) “SUM”

The number is for identification, the name specifies the relevant
part of the semantic definition and the quote provides a
user oriented name by which the construct can be referred
to in messages (e.g. for automatically generated error messages).

118

Any reserved operand quote must also be followed by an
identification number, for example:

BOOL IS “TRUE” : 1, “FALSE” : 0, “UNDEFINED” : 2

3.4, Lexical

Independently of the syntax, the lexical nature of the language
can be defined. This includes the various sets of characters,
PS needs to know which characters are allowed as:

(a) the first character of a name (identifier, reserved operand
or operator)

(b) the subsequent characters of a name

(c) numeric characters (maybe including decimal point)
(d) quoted string delimiters

(e) layout: space and newline for example

(f) numeric signs (+ and — if required, or prefix meaning
octal, say)
and also needs a list of all the symbols to be used, things like:
1= ¥ (etc

The other information needed for the lexical definition is:
(a) lengths of input and output lines

(b) page size and headings, footings

(c) appearance of comment indicator, continuation marker
(d) end-of-run and end-of-module directives.

3.5. Testing

At this stage, when the lexical and syntactic definitions are
written, they can be input to PS and checked. The user is
informed of any errors, ambiguities or omissions, and if there
are no fatal ones (PS makes some small assumptions when
minor errors occur) then the tables to drive the analyser of the
POL compiler are created. The process of checking the defini-
tion may have to be repeated several times in the case of a
large syntax as parts may have to be redesigned to remove
ambiguities.

3.6. Semantics

After the language is defined loosely (3.2) and partially
independently of the syntax, the semantics of the POL must
be defined to the PS system. This involves two processes:
the first consists of writing routines to perform the basic
functions of the application and the second consists of writing,
in SIL, routines to process the constructs that are defined in
the syntax as being legal. Writing the basic application func-
tions can proceed at any stage, it is really independent of PS
and would probably be done any way even in an ad hoc imple-
mentation. The semantic processing routines must do two
things: they must be capable of rejecting meaningless but
syntactically valid constructs and they must be able to specify
the meaning of semantically valid constructs.

SIL has as a subset a special programming language for
writing these semantic routines. This semantic language
provides most of the facilities of an ALGOL (Naur, 1963)
or BCPL-like (Richards, 1969) language with the exception
of block structure; it provides in addition several less
common facilities:

1. Heap storage—for dynamically-created data items.

2. Pointers—generalised (typeless) reference variables to heap
data,

3. Structures—similar to ALGOL 68 (van Wijngaarden et al.,
1969) but without its typed references.

The semantic definition consists of semantic routines and pro-
cedures: the latter are quite standard procedures with para-
meters passed by reference, the former have special significance.

The Computer Journal

$202 14dy 61 U0 1senb Aq €1/ /] L L/Z/LZ/e1oe/|ulwod/woo dno-olwepeoe//:sdiy woij papeojumoq

Each name in brackets after a production is the name of a
semantic routine that is responsible for processing any parsed
construct matched by that production. The semantic processing
is top-down, the routine corresponding to the top level (root)
node of the parse tree is entered with the node as a parameter;
subtrees are then processed by a special command in the
semantic language, COMPILE, which causes the Nth subtree
(N being the operand of COMPILE) to be processed by enter-
ing its top level node’s semantic routine. There are several
other commands available within the semantic language:

GENERATE —this generates code for a high level abstract
target machine (the ATM)

DECLARE -—this implements data declaration in the ATM
and takes care automatically of identifier table
structures

PRESET —this sets up the structures for pre-setting

declared data

SEMERROR-—this causes an error message to be output;
details of the erroneous construct, its line
number and character position are incorpo-
rated automatically

Through these commands PS automatically, though still
ultimately under the control of the user, generates and main-
tains the data structures required for the compilation and also
generates the code for the ATM. The process of mapping
from this on to an actual hardware is completely automatic
save in one respect; the user can specify which actual machine
representations are required for the various ATM data types.
The user defines this in a part of SIL called the type table
definition.

3.7. Messages

The actual text of messages output by the semantic routines,
and also that produced on encountering standard syntactic
errors, is specified in the ‘messages’ section of SIL. Each
message text has an associated number (to identify it in the
semantic routines or to the analyser) and a level number to
indicate the seriousness of the cause of the message, one of:
system crash, error, warning, comment and ignore.

3.8. Testing

The semantic routines and procedures, type table and messages,
can be input to PS and compiled separately. When the whole
definition has been processed the data and code modules pro-
duced are collected together with the invariant parts of the
compiler to produce the finished POL compiler ready to be
system tested.

4. The structure of PS

PS can be viewed at several different levels. Firstly the function
of PS in its intended environment can be examined; secondly
PS can be seen as a modular compiling system subject to its
own design philosophy; thirdly the internal structure of the
system’s components can be looked at.

4.1. PS in its environment

The environment for which PS is intended is one in which a
variety of application systems are to be produced and used
with a variety of different machines. The total system in
such a case will consist of the Program Synthesis System, a set
of compiled language definitions for its applications, and a set
of code generators for the different machines. In this environ-
ment, if a new application is designed and its formal defini-
tion submitted to PS, then the application is available for all
the machines. Similarly if a new code generator is implemented
it becomes available to all the applications, and if an enhance-

Volume 21 Number 2

ment is made to PS, or an increase in efficiency, then it will be
available to all the applications on all the machines.

4.2. PS as an application

As PS can be regarded as an application compiler, it has been
designed in such a way that its user interface is a special POL
for compiler construction.

The basic functions of PS, included in every compiler pro-
duced by the system, are as follows: a table-driven lexical
analyser, to read source text and split it into basic words and
symbols; a table-driven syntax analyser to take the output of the
lexical analyser and parse it into a tree structure; a facility
to organise the processing of the parse tree; a control routine
to provide working store, perform any initialisation, call the
analysers and initiate the tree processing; a set of routines to
provide name and identifier table access, type conversion,
declarative and generative functions. These routines are part
of every POL compiler including the SIL compiler.

The variable parts of PS can be further subdivided into the
part concerning input and the part concerning output. The
former consists of tables and routines formed from a particular
POL definition by the SIL compiler; they are as follows: the
tables to drive the lexical analyser; the tables to drive the
syntax analyser; the routines and procedures for processing
the parse tree; details of the various messages that the system
may have to output. The latter part of the subdivision consists
of the code generator, which varies with machines but not with
applications, and the user-written type table defining the
mapping from the ATM data types onto the target hardware
which is clearly dependent both on machine and application.

4.3. The internal structure of PS

The standard PS lexical analyser is a simple, parametrised
‘Glennie-type’ syntax machine (Glennie, 1960) that processes
its input serially. Elementary syntactic items are output as they
are identified, except when two consecutive operands are
detected, in which case the output must be modified to turn
it into an operator form suitable for the parser by the insertion
of a ‘null’ operator. The only complications are with numbers;
in the expression 4 := —3 the minus sign is best regarded as
part of the number, whereasin 4 := 4 — 3and 4 := —Bit
must be regarded as an operator in its own right. Consequently
the number recogniser must be aware in a small way of the
context before it can make a decision.

The PS syntax analyser is an operator precedence parser
similar to that described by Floyd (1963). Its error recovery
at present is rather primitive in that it can only deal with
precedence clashes by the insertion or deletion of items, and
it makes no attempt at a best fit when faced with an erroneous
construct.

The semantic analysis is under the control of the user, although
he is encouraged (not constrained) to traverse the parse tree
in a logical top-down manner by the nature of the COMPILE
command. The various declarative procedures provided set up
and maintain identifier table entries and associated chains of
information dealing with scope, type, structure and preset
values. The generative procedures organise the generation
of code for the abstract target machine, accessing the identifier
table entries where necessary.

The code generation is of course different for all the possible
actual target machines, although in each case will consist
of several modules including the following: storage allocation,
register allocation, local and global optimisation and module
output.

In addition to the above components, PS has various ancillary
procedures to do with input/output control. Although the
basic 1/O interface must be machine dependent, consisting of
special machine instructions or supervisor calls, PS has stand-
ard procedures for text input, source and message listing, page

119

$202 14dy 61 U0 1senb Aq €1/ /] L L/Z/LZ/e1oe/|ulwod/woo dno-olwepeoe//:sdiy woij papeojumoq

layout, etc. as well as for message construction. The last
consists of attaching to a message its cause, that is the construct
name and line number, and inserting parameters into a pre-
defined string.

All the above are part of every PS-based compiler. In addition
to these PS consists of the set of semantic routines for compiling
SIL. The executable parts of the language are processed in
quite traditional ways and consequently will not be described.
The analysis of the syntax definition to produce precedence
tables is a two-pass process: the first pass consistsof traversing
the productions to find the left and right terminals and non-
terminals for each non-terminal in the definition, the transitive
closures of these sets are then found; and the second pass
consists of traversing the productions again using the left
and right terminals to set up the precedence tables.

5. Enhancements to PS

The immediate future work on the system is to complete its
implementation up to full specification; sufficient experience
has however been derived from using the various parts of the
system to enable several enhancements and alterations to be
considered. Thus far none have been decided as certain but all
are possible directions for future development.

The lexical analyser was designed to provide a certain set of
facilities and this has been perfectly adequate for implementing
the sorts of language intended. There are however many
features of existing programming languages that cannot be
implemented, for example hexadecimal numbers, Hollerith
strings, and the use of compiler directives. Consequently
it is being considered whether to adapt the lexical phase to a
more general analyser driven by a special sort of syntax
definition, yielding perhaps a ‘Glennie machine’ (Glennie, 1960)
completely user-defined. It is also being considered whether to
incorporate a macrogenerator into the PS system; although it
is not clear whether this would be best as an integral part of
the lexical analyser or as a freestanding entity.

There are two ways in which the parser could te adapied.
In the present implementation the error recovery is rather
naive; all that is needed however is further work as there are
many good techniques that could be incorporated (Graham
and Rhodes, 1975; James and Partridge, 1973). The main
adaptation under consideration is the provision of a variety
of different parsing strategies; in some circumstances there
may be a need for more powerful though less efficient parsing
when a top-down analyser would be preferable, or one of less
pure design.

The semantic language part of SIL had its design frozen
somewhat later than the analyser and consequently the en-
hancements considered up to that point have been incorporated.
Any additions will now be in the form of ancillary procedures
or amended versions of existing procedures. The grammar
analysis part of the SIL compiler at present merely flags any
errors or ambiguities in the language definition; it would be
useful if in such cases fuller details could be given of how
the errors can be avoided. In the case of correct language
definitions it should be possible to produce a summary of the
syntax, almost in the form of a little manual, together with

References

precedence and other tables.

Taking a longer term view, it would be desirable for PS to be
able to generate interactive compilers and maybe to work
interactively itself. This possibility has yet to be considered
in detail.

A list of possible enhancements, in order of increasing vague-
ness, could go on indefinitely. PS has turned out to be an
excellent generator of potential research topics, as working
with it involves contact with many fields, including language
design, compiler error recovery and reporting, interactive
compilation, optimisation, and machine architecture. It is
hoped that as the system grows in size and power it will also
become nicer to use.

6. Conclusions

The investigations concerned with the development of PS
showed that much of the work in producing application
systems was of a routine nature and could be performed either
once for all or by machine. The PS system is the embodiment
of these findings and the PS methodology developed along
with the system. The PS system implementation language
has been used to define the system itself and this has shown
several things. The syntax definition part has proved capable
of supporting the definition of a large and varied syntax;
it has proved capable of detecting logic errors in that definition
that were missed in a manual checking. The semantic language
part of SIL has been shown quite adequate as a system imple-
mentation language for all the semantic routines written,
and has been found to be clear and rapid to write although
the use of a macrogenerator would considerably reduce the
quantity of code written. The structure of PS has been found
to encourage generality and transparency in the things defined
with it, and the system itself has been able to accommodate
several minor design changes in mid-implementation that
would have caused far-reaching setbacks in a more ad hoc
system. Although a complete application system has not yet
been implemented by PS, several studies of extant and pro-
posed systems have been carried out and it has been found that
PS provides a good framework for rapid and fairly compre-
hensive design studies.

There have been many proposals for further work and
enhancement on PS, the system having turned out to be a good
research problem generator but the directions adopted will
depend on how PS performs in its intended environment,
that is, one of many systems being designed and implemented
for many different application areas and on many different
machines; in such an environment PS should free its users
from routine and repetitive tasks, from reinventing the wheel,
and allow them to concentrate their expertise on the applica-
tion areas or on the target hardware, hopefully bringing the
application user a more efficient, friendly system.

Acknowledgements

The authors would like to thank William Frazer-Campbell
for programming and testing a considerable part of the PS
system.

In addition to those mentioned explicitly in the text, several references are included to works that have to a lesser extent or in less well

defined ways influenced the design and development of the PS system.

Languages
NAUR, P. (Ed.) (1963).
RicHARDS, M. (1969).

Revised report on the algorithmic language ALGOL 60, CACM, Vol. 6, No. 1, pp. 1-17.
BCPL reference manual, Tech. Monograph 69/1, University of Cambridge Computing Laboratory.

VAN WUNGAARDEN, A., MalLLoux, B. J., Peck, J. E. L., and Kosta, C. H. A. (1969). Report on the algorithmic language ALGOL 68,

Numerische Mathematick, Vol. 14, pp. 79-218.

The Computer Journal

$202 14dy 61 U0 1senb Aq €1/ /] L L/Z/LZ/e1oe/|ulwod/woo dno-olwepeoe//:sdiy woij papeojumoq

Syntax analysis

BurGess, C. J. (1972).

FLoyp, R. W. (1963).

GLENNIE, A. E. (1960).
No. 2.

KHABBAZ, N. A. (1974).

LepGaARrD, H. F. (1970).

Compile time error diagnostics in syntax directed compilers, The Computer Journal, Vol. 15, No. 4, pp. 302-307.
Syntax analysis and operator precedence, JACM, Vol. 10, pp. 316-333.
On the syntax machine and the construction of a universal compiler, Carnegie Tech. Computation Centre Report

Multipass precedence analysis, Acta Informatica, Vol. 1, pp. 77-85.
Production systems, a formalism for specifying the syntax and translation of computer languages, Oxford University

Computing Laboratory Programming Research Group Monograph PRG-1.

Error recovery
GRAHAM, S. L. and RHODES, S. P. (1975).
JaMmes, E. B. and PARTRIDGE, D. P. (1973).

Semantics
ABRAMSON, H. (1973).
Grigs, D. (1971).
Mossks, P. (1974).
Monograph PRG-12.

Practical syntactic error recovery, CACM, Vol. 18, No. 11, pp. 639-650.
Adaptive correction of program statements, CACM, Vol. 16, No. 1, pp. 27-37.

Theory and application of a bottom-up syntax-directed translator, Academic Press.
Compiler construction for digital computers, John Wiley.
The mathematical semantics of ALGOL 60, Oxford University Computing Laboratory Programming Research Group

Book review

Computational probability and simulation, by S. J. Yakowitz,
1977; 240 pages. (Addison-Wesley, £18-00 hard cover, £10-00
paper)

Mathematical Modelling and Digital Simulation for Engineers and
Scientists, by J. M. Smith, 1977; 332 pages. (Wiley, £14-50)

Yakowitz v. Smith or Monte Carlo v. The Rest

These two books share a common aim in so far as both are aimed
at finding a numerical solution to a range of problems intractible
to the analytical methods of classical mathematics. However, the
declared objectives of the two authors are quite different. Dr.
Yakowitz is an academic and, armed with this information, your
reviewer was unsurprised to find that his book is based on teaching
material. (Let me quickly add, before my academic friends disown
me, that I do not intend that to be a derogatory remark . . . read on).
Mr. Smith, on the other hand, is in the world of commerce and al-
though he does not say so, I assume his interest is in practical
solutions. Now the paradox is that Mr, Smith has written an
‘academic’ book using mathematical methods of numerical analysis
while Dr. Yakowitz has concerned himself much more with the
practical aspects of simulation.

From the biographical data given, courtesy Library of Congress, I
infer that both authors entered their careers in the early, golden,
days of computing when there really was a man/machine interface,
particularly in the scientific branch of computing. At that time,
computers showed the way to seemingly endless vistas of computed
solutions while causing immediate problems to arise from lack of
the two main computer resources: space and time. Great ingenuity
was shown then in overcoming these problems by the use of the
more obscure methods of numerical analysis. At the same time,
the shackles of manual computation were thrown off, a machine
could be expected to perform the same arithmetic repeatedly for
hours and Monte Carlo methods were born. Now we have two books
describing precisely those techniques, or at least those techniques
improved by 20 odd years of practical use. Have we at last passed
from the euphoria induced by megabytes of core and picosecond
processing times to being once again concerned in stretching the
resources available to solve the real problems which face us?
1 fear the answer is No! Mr. Smith is preaching the word but
Dr. Yakowitz is more concerned with using the power available to
solve problems intractible by any other method.

Dr. Yakowitz starts his book by describing some of the problems
associated with the generation of pseudo-random numbers. He
highlights the problem of testing for randomness but concludes
that the random number generator used in this book is adequate.
So that the reader (student) may try out the examples, the FORT-
RAN code for a random number generator is given. (The FORT-
RAN used is for a CDC 6400 with a 64 bit word). The book then
introduces probability theory through the medium of throwing
dice. From here the simulation of other functions is only a short

Volume 21 Number 2

step with sample FORTRAN code for one function and sufficient
information in the text to enable other functions to be simulated.
The chapter concludes with justification of an algorithm and some
exercises and references.

This format is repeated in chapters on random walks and gambler’s
ruin (proving, of course, by computer that you can’t win). Up to
this point the book justifies its claim to give an experimental intro-
duction to probability. The last two chapters are somewhat heavier
going, giving the theory of limiting processes and Monte Carlo
integration without the leaven of sample programs. However,
by this time the diligent reader will have learned enough of the
techniques to write his own examples.

A criticism of this book might be that it contains assertions and
justifications but no proof. It does succeed in giving a practical
education to a reasonable standard which is its aim. It gives a wealth
of references and is in the main, a readable book with an enjoyable
practical content.

From a book whose subject was literally created by the computer
to one whose subject appeared destined to become a Cinderella
until the value of fast stable methods of numerical solution was
appreciated. Mr. Smith writes his book from his experience gained
in solving problems arising in engineering. The methods described
in this book are not the classical methods I mentioned earlier but
modern adaptations to suit a wider variety of conditions. For
example, certain classical numerical integration methods are shown
to be the same integrator ‘tuned’ to correct different errors.

Because of its mathematical approach, this book is not light
reading, but the style is clear and subjects are presented in a logical
way. The subject of mathematical modelling is handled in two stages.
The first two chapters describe the problems arising in describing
a physical system in mathematical terms, modelling techniques
considered include Laplace transformations, signal reconstruction,
and even use of simple linear systems. By following the methods
for describing the object system, the modeller will then find methods
for solution in the remainder of the book. This is, perhaps, a simple
view of the problem, but the point being made by Mr. Smith is
that a successful simulation starts with the original formulation
and not at the stage of solving equations. The tools described
include linear and non-linear integration methods, Chebyshev
polynomials fast evaluation techniques and assessments of useful
formulae. The emphasis is on speed with accuracy, stability of
solutions, and control of the growth of errors. I would describe
this as a very useful book both for reference and as an introduction
to mathematical simulation.

Dr. Yakowitz, on page 100, states that the solution of a system of
simultaneous linear equations can be found by a Monte Carlo
method in one sixth of the time taken by Gaussian elimination.
Since the two authors have not covered quite the same ground,
perhaps a reader of this review will accept the challenge and model
a system using both techniques, reporting back in this Journal

R. E. SmaLL (London)

121

$202 14dy 61 U0 1senb Aq €1/ /] L L/Z/LZ/e1oe/|ulwod/woo dno-olwepeoe//:sdiy woij papeojumoq

