
Proteus—A microcoded multiprocessor system
G. M. Bull, S. Gilbey, Kathleen Levine, A. G. Lippiatt and C. H. C. Machin
Computer Systems Group, The Hatfield Polytechnic, P.O. Box 109, College Lane, Hatfield,
Herts AL10 9AB

This paper describes the development of a microprogrammed, dual processor minicomputer system.
The architecture of the special processor developed for the system is also described. The use of
multiprogramming techniques with the microcode stored in a read/write memory together with a
high speed context switching arrangement, gives rise to a powerful processor. A modular operating
system based on a message/event system for a dual processor system is described.
(Received October 1976)

1. Introduction
Early in 1972 a team of staff in the Computer Science Depart-
ment of The Hatfield Polytechnic decided to design and build
a small computer system. The aims of the project team were:
1. To produce a minicomputer system which was particularly

suitable for use in a teaching environment. The major
characteristics required for teaching seemed to be:

(a) the machine should be able to emulate other machines
efficiently so as to give students experience of program-
ming various types of machine

(b) the machine should be capable of operating in a multi-
program mode with adequate store protection so that
students at later stages in their course could gain first
hand experience at designing operating systems for such
machines. It should also have features, such as segmen-
tation and paging of the store, normally found on a
larger scale machine, again so as to give students first
hand experience of such systems.

2. To design a hardware system which would be cheap to
reproduce, possibly on a small number of standard and/or
custom built large scale integration chips. This would provide
the necessary hardware for research into multiprocessor
systems. Forecasts of what types of devices would be
standard two or three years in the future were difficult to
make, so the prototype is based on standard 74 series TTL
devices which kept down the price whilst giving reasonable
speed.

3. To give staff and students of the department first hand
experience of the realisation of a computer system through
all its stages from initial design discussion to the specification,
design, building, commissioning and documentation of
both the hardware and software. Such a project would
provide a useful source of realistic projects for final year
B.Sc. students and for students researching for a higher
degree.

The software design is based around at least two processors.
It was argued that a well designed multiprogramming operating
system on a single processor should absorb less than 20% of
the processor time so that a single 'operating system processor'
should be able to control five or more 'user processors'. Since
the operating system processor would have all the peripherals
connected to it, it is called the input-output processor. It was
further argued that if the user processors were to be mini-
computers (characterised by a 16 bit word length and a limited
instruction set/direct addressing range) it would be beneficial
to use many of them to cooperate in the processing of user jobs.
Thus one might have user processors acting as string processors,
array processors, compiler processors, etc.

The input-output processor is a PDP11/10 with a disc and
range of slow peripherals. The user processors are attached to

154

theUnibusofthePDPll.
The hardware design team concentrated on the needs of the

user processor. The resultant processor is called Proteus after
the Greek god who was in the habit of appearing in different
forms at different times. In the event Proteus exceeded the
needs of the user processor as initially envisaged and now takes
the form of a powerful, independent processor.
Proteus is provided with a 'soft' microprogramming system

in. which a random access read/write store is used to hold the
microinstructions. It is also equipped with multiple register
banks which include all the processor status information. A
store protection and capability system are currently being
designed.
In using Proteus as a user processor the instruction set (the

first layer of virtual machine above the micro instruction set)
can be changed when a process change occurs so that in practice
all the different types of processor mentioned above can be
realised on each user processor.

2. The hardware development of the Proteus processor
The hardware team were faced with a shortage of manpower,
especially for construction, coupled with a shortage of finance
for components. It was decided, therefore, to design as simple
a processor as possible, but not to design out possible future
enhancements. For example, the initial design does not
incorporate a stack, but care has been taken to make sure that
the design does not inhibit the later addition of a stack.

2.1 Microprogramming
In conventional computers, the lowest level at which the
programmer can control the machine is at the machine code
instruction set level. Each machine code instruction specifies
a sequence of data transfers within the machine. The timing of
the data transfer sequence (i.e. the sequencing) is performed by
the machine control logic which also sets up the required data
paths. Each of the data transfers can be called a microstep and
the setting of the data path controls for each microstep can be
considered to be a microinstruction. Hence a microinstruction
specifies the setting of the data path controls for the microstep.
A microprogrammed computer does not have a conventional
instruction set, since it allows the programmer to specify the
microinstructions—the setting of the data paths for each
microstep—and it does not have control logic capable of
executing only predetermined sequences of microsteps. The
control logic allows execution of one microstep at a time. One
would expect therefore that the instructions in a micropro-
grammed computer would beless powerful than the instructions
in a conventional computer and would have to be executable
in a shorter time than the instructions in a conventional
machine to allow the machine to cope with the same workload.
This is true if one takes the architecture of a conventional
machine and tries to make it microprogrammed. However,

The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/154/477553 by guest on 19 April 2024



SHifT
RND

SHIFT
HMD

fABSK

AfclTHHE7l£ AMD UKTtC OwiT t 9.LU.I

Urn-/!

Fig. 1 Basic Proteus architecture.

if a microprogrammed machine is the design goal and if the
architecture is chosen to suit microprogramming techniques,
then it turns out that many of the microinstructions are very
powerful, even compared with the instructions in conventional
machines, as well as being executable very rapidly. In such a
machine, and the processor being designed at The Hatfield
Polytechnic is such a machine, the name microinstruction
may be something of a misnomer, since the microinstruction
set is in fact the machine instruction set and these instructions
are very powerful. The basic architecture of the Proteus
processor, as shown in Fig. 1, is very suitable for the applica-
tion of microprogramming techniques.
For each microinstruction two operands are taken from the

operand storage device, passed through a combinational logic
system which operates on the operands, and the result is
stored back in the operand storage device. This requires no
sequencing because all the logic is combinational and each of
the hardware blocks is equipped with control lines, the setting
of which is specified by the programmer. In this machine,
much of the power of the microinstructions is derived from
the use of a large scale integrated Arithmetic Logic Unit (the
74181), which is provided with six control lines, and from the
decision to include a combinational rather than sequential
shift and mask unit in each input path to the Arithmetic Logic
Unit. By shifting, using an integrated circuit multiplexor which
is provided with an enable control, a shift of up to 16 places
may be performed without waiting for the data to ripple
through (a 16-to-l multiplexor is used for each bit) and the
enable control allows the output of the shifter to be forced to
logic zero or to be the input data. Hence all shifts (except the
arithmetic right shift) can be performed by a left rotational
shift with suitable masking.
For example, a right shift of two places is the same as a left

rotational shift of 14 places with masking of the two most
significant bits of the result. This shift-and-mask logic allows
any contiguous group of bits in the word to be output to the
ALU. The group of bits may be zero to sixteen bits in length
and at any position in the word.

2.2 Choosing a microinstruction format
The first difficult decision in the design of the microinstruction
set is the choice of the number of bits in the microinstruction
word. There are two extreme techniques. The first is to draw
the complete block diagram of the machine showing all the
control lines required for each block. The microinstruction
will then contain one bit for each control line. All the controls
in the machine can then be set up simultaneously and data
will be transferred as determined by the control settings. This
is called horizontal microprogramming. The second technique
is to use a short microinstruction, say eight bits, and to go
through a sequence of decoding steps until all the controls in
the machine are set up. This is called vertical microprogramming.
Usually horizontal microprogramming implies a one-for-one
microinstruction bit for machine control correspondence and
vertical microprogramming implies a high degree of encoding

Volume 21 Number 2

r
c

Y

Ooffor

Fig. 2

of information in the microinstruction.
The Proteus processor uses a microinstruction set which is a

compromise between these extremes. Horizontal micropro-
gramming provides great flexibility, but at the cost of a long
microinstruction which has to be stored in an expensive high
speed store. Intelligent examination of the significance of
various controls in the machine indicates that considerable
savings of microinstruction wordlength can be made without
great sacrifice in flexibility of the code, because certain control
combinations in the machine will be mutually exclusive; for
instance, in the case when information is being written to a
register, the setting of the (core) store controls is irrelevant,
provided an initiate cycle signal is not sent.
So microinstructions specifying a register destination need

not be capable of specifying a main store destination. Coding
of control information in the microinstruction may save a
large number of bits, but requires decoding. The main
objection to this is the time required for the decode, but if the
system is carefully chosen, the decoding time required may
add nothing to the microinstruction execution time. For example,
if two blocks X and Y (see Fig. 2) are controlled from the
microinstruction register, provided the control signals for Y
are decoded in less time than the data delay through X then
no data delay will occur in Y due to control decoding.
In the Proteus processor, with the architecture shown in

Fig. 1, the microinstruction contains coded information
specifying the number of shifts, the mask format and the
operand sources and destination. Decoding of the operand
source is carried out by high speed logic, but decoding of the
other information is carried out more slowly using slower
logic. The mask is of the form: 0000 1111 1111 0000 where
the Is indicate which bits shall be allowed through to the
ALU inputs.
The width of the block of Is and their position in the word is

specified in the microinstruction by giving, as binary numbers,
the bit positions of the most significant 1 and the least signifi-
cant 1 (bits 11 and 4 in the example above). This requires
eight binary bits, rather than the 16 which would be required
if the mask itself were specified in the microinstruction.
Again referring to Fig. 1, in Proteus the 'operand storage

device' is, in fact, four separate types of device

(a) The registers
(b) The main store
(c) The control store (where the microinstructions are stored)
(d) The peripherals.

Since the architecture shown in Fig. 1 automatically requires
a three address microinstruction (two operand sources and an
operand destination) it was decided to provide sufficient
hardware registers so that references to the main (slow) storage
devices would be relatively infrequent and the most used
microinstruction would then be required to specify the
addresses of three registers plus the state of the controls in the
combinational logic. Sixteen registers appeared to be sufficient.

1S5

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/154/477553 by guest on 19 April 2024



24 23 2» II ILIS 12 11

i t ALU A nee Sue fllH.FT flniD fli.m

teciiTEt

Si flLU A < «

I I I flLU 8e« J^P

II flLU A to 01 p

I/o fcus- gecisrat

INPUT

II flLU 8 be i ie*i STOJC F N NOT USCO

II

Si

IP

flLU

flLU

»(£«

«(<«

Buc

n

Deec

1101 Sroee * ,

IS o

L,T£*,U LlTEZDL B

II ALU
Dior us^b

11

bleu BCEC / / ^

ii «

NOT U5eb n B)

•Jl

M flLU
Her US£O>

a u

NOT
USED

/ *

II 1 1 1

lt> O

H

Fig. 3 Microinstruction set

The number of bits required in the microinstruction would
then be:
(a) For addresses of three registers (A, B and D), 4 bits each

12 bits
(b) For the shifts, up to 15 places on A side and B side 8 bits
(c) For the mask, specify position of most significant bit and

least significant bit required on each of A and B side 16 bits

(d) For ALU function 6 bits

A total of 42 bits

Allowing for the fact that there would be other microinstructions
for addressing store a few bits will be required to specify the
type of instruction, so it seems as if about 48 bits (3 x 16) are
required in the microinstruction if a fixed length micro-
instruction format is used. Three word lengths is an awkward
number so presumably two (32 bits) or four (64 bits) word
lengths would be better.

Some speculative programs were written, which eventually
led to the conclusion that a 32 bit microinstruction would give
a reasonable compromise between cost, efficient use of storage
and the power of the microinstruction set.

2.3 The Proteus microinstruction set
The complete set of microinstructions is shown in Fig. 3. These
fall into four types.
(a) register-register (Modes 00, 01)

(b) register-control store and peripherals (Modes 1100, 1101)
(c) register-main (core) store (Mode 11 1101)

(d) miscellaneous, i.e. halt, literal load register, obey (various
modes).

This division is a consequence of the architecture and the
decision to use a 32 bit microinstruction which is too short to
allow inclusion of more than one store address. The micro-
instruction format is described by the mode bits in the
instruction.

156

It should be noted that in every case excepting Obey or
Halt/Wait two operands pass through the shift and mask
units and the ALU and data to the destination is always
supplied by the ALU output. All instructions specify the ALU
control settings and a register—the A register—which is the
source of one operand.
The register-register instructions allow shifting and masking

of the A register content only (mode 00) or of both the A and
B registers (mode 01), before the ALU operation. The ALU
output is deposited in the D register. These microinstructions
are the most rapidly obeyed and in the prototype will take
approximately 300 ns which is the worst case data delay
through the system.
In register-control store instructions, the control store

becomes the source of one operand or the operand destination.
Instructions to read the control store cause the control store
output to be substituted for the B register output and instruc-
tions to load the control store cause the ALU output to be
directed to the control store. Under favourable circumstances
in the machine these instructions take an average 450 ns
(because the next microinstruction fetch is delayed). Register-
core store instructions are similar, excepting that the core store
address is held in one of the registers—the B register specified
in the microinstruction—and data read from core is sub-
stituted for the B register output or data written to core is
taken from the ALU output.
The time taken for these instructions is approximately 400 ns

plus core store response time.
Since there are so few microinstruction formats, they are

easily learned. The provision of a microassembler eases the
task of coding programs.

2.4 The Proteus processor architecture
The basic architecture has been shown diagrammatically in
Fig. 1 and used in developing the microinstruction set. The
architecture will now be considered in more detail. This
involves being rather more specific about the nature of the
operand storage device of Fig. 1. This device has emerged as a
mixture of registers, control store, peripherals, and main store.
We shall consider each one in more detail.

2.4.1 The Registers
Sixteen 16 bit registers are provided (but see Section 2.5,
Multiprogramming). All are addressable, some are general
purpose and some are special purpose. The special purpose
registers are:
(a) The Microprogram Counter—register 15

(b) The Processor Status Register—register 14.

The sixteen registers contain all the status information neces-
sary for the running of a particular process.
The register set is provided with two output ports and an

independent input port exactly as is indicated for the operand
storage device of Fig. 1.

2.4.2 The control store and peripherals
This store is used as the principal store for microinstructions,
hence it is 32 bits wide and is a read/write random access store.
Since microinstructions should be retrievable from store at
least as fast as they can be executed, and since in Proteus the
register-register microinstruction takes about 300 ns then the
control store requires a cycle time of the order of 200 ns
maximum. Such store is expensive and has been realised using
bipolar integrated circuits. The store is provided with two
ports: one for the reading and writing of 16 bit words under
the control of the register-control store microinstructions, and
the other as an output port only for the output of 32 bit words
directly to the microinstructions register. Since the register-
control store microinstructions also address peripherals it is

The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/154/477553 by guest on 19 April 2024



fl.L.U.

llo 80S

Fig. 4 Showing the control store position in the system

perhaps not surprising that the control store is connected to
the machine I/O bus. The arrangement is shown in Fig. 4
which also shows that there are two multiplexors (the A and B
selectors) not previously mentioned, in the main data paths.
These multiplexors are used to select the appropriate data
source.
A write control store/peripheral microinstruction causes the

I/O bus controller to send the address bits in the micro-
instruction along the I/O bus with a strobe at the appropriate
time. This causes the receiving device (the control store or a
peripheral device) to be activated in readiness to receive the
data which are given to the I/O bus controller at the end of
the microinstruction and sent by it early in the next micro-
instruction.
A read microinstruction causes a hold up in the processor

until the I/O bus controller indicates that it has obtained the
requested data.
The microinstructions are fetched by the control store at the

request of the fetch logic, which determines the appropriate
time in the machine cycle at which the fetch should be carried
out. Normally the fetch will take place during the execution of
the previous microinstruction, but there are exceptions, for
example when the microinstruction is one which writes to the
microprogram counter or to the control store.

2.4.3 The main (core) store
The main storage medium for immediate access is a core store,
accessed by the Mode 111101 microinstructions shown in
Fig. 3. The store is 16 bits wide and is designed as two inter-
leaved stores each with a maximum 32K word capacity. The
relation of the core store to the rest of the processor completes
the processor block diagram which is shown in Fig. 5. The
core store address is always taken from a register (the B register).
If the core store is to be read, its data output is selected and
passes through the B side of the processor to the ALU. If the
core is being written, the ALU output is sent to its data input.
The core access controller can also deliver a 32 bit word

directly to the microinstruction register. This allows micro-
instructions to be stored in the core store and to be obeyed
directly from there. Although this is a relatively slow process,
it will be useful for program debugging and for hardware-
debugging programs. The fetch logic determines whether the
required microinstruction is in core or in control store and
issues the appropriate orders.

2.5 Multiprogramming
Proteus has been designed as a multiprogram machine. To
facilitate rapid switching between processes, there is provision
in the design for up to eight sets of 16 registers. Each set of
registers is called a state vector (SV). Since each set of registers
contains all the necessary information for the running of a
process, process switching takes place very rapidly by switching
between register blocks. Protection of registers is achieved by

Volume 21 Number 2

the use of a privilege flag in the processor status register. If
this flag is set, registers belonging to other processes may be
accessed by addressing them as the top 128 peripheral registers.
Only privileged processes may access the peripherals. By using
more than one flag (there are presently unused flags available)
a graded privilege structure could be introduced. Four state
vectors are provided in the prototype.
Although not provided in the first prototype, an early

enhancement will be the provision of hardware main and
control store protection. Some protection is obtainable by
carrying out core store address checking in microcode.

2.6 Interrupts
As the microinstruction is in fact the machine level instruction,
interrupts will be recognised by the hardware at the end of
every microinstruction. Recognition of an interrupt will cause a
state vector (process) switch. Since each interrupt level will be
able to specify which state vector to switch to, high priority
interrupts will receive very rapid service if the operating
system arranges for the service routine to be ready loaded in
the appropriate state vector and control store.

2.7 Direct memory access
Direct memory access for peripheral devices is a possible later
enhancement, but because the processor is capable of high
speed context switching and the microinstruction time is short,
it is estimated that the processor will be capable of handling
data transfers of about 1 million 16 bit words per second under
program control. DMA facilities will, therefore, be required
only in larger scale installations than that currently envisaged.

3. Software development for the Proteus system
The Proteus processor provides a means of implementing
existing designs of instruction sets and of experimenting with
new ones. The microprogram used to realise a given instruction
set may also be used to collect statistics on programs, for
research into programming techniques, and to provide tracing
and debugging facilities not present in the actual processor
being emulated.
The operating system design, as noted earlier, is based on a

multiprocessor system with one of the processors (the input/
output processor) controlling one or more user processors.
This approach has of course had a considerable influence on
our thinking. Thus even though the Proteus processor has
evolved as a two state machine with peripheral channels, and
capable of being operated in a conventional manner, we have
concentrated our efforts on a dual input/output processor/user
processor configuration.

3.1 Microprogram development aids
The microprogram assembler at present being used was pro-
duced by adding a set of macros to an existing macro assembler
(Macro-10 on the DEC systemlO). Each microinstruction
format has a macro whose parameters are the fields within the
microinstruction. A call of one of these macros produces a
word in the output of the assembler containing the micro-
instruction as it is to appear in control store on the micro-
programmed processor. This assembler has proved adequate
so far, mainly because of the small size of microprograms.
All the facilities of the powerful host macro assembler are
made available for very little effort in implementing the special
macros. The main disadvantages are that error checking during
assembly is poor and the assembly listing is sometimes difficult
to interpret.
To help with the development, a simulator for Proteus has

been developed. It provides all the facilities of the hardware,
together with the ability to examine store locations and set
breakpoints in a microprogram.

157

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/154/477553 by guest on 19 April 2024



M»i hit nit UrBLoct

foxTtoU.de
FIKH Rntiss

zio am
•0HTtL.0U.il

LOCK.

Fig. 5 Proteus processor block diagram

3.2 Language implementation
There is currently much interest in systems in which the design
of the overall system and the design of the instruction set of
the processor are considered together. The Proteus processor
allows experiments along these lines. Currently a compiler for
the POP-2 language is being designed which will make use of
instruction sets designed specifically for it. POP-2 was chosen
because it is an interesting language which is difficult to
implement efficiently using conventional instruction sets. The
compiler is being designed to produce the object code using
one of several different instruction sets, depending on the local
characteristics of the program being compiled. The information
about the program will be supplied by the programmer on the
basis of expected and measured performance. The instruction
sets will range from designs having low store requirements to
designs having fast execution rates. It is expected that typical
programs will have significantly reduced space and time
requirements without the extended compilation time needed
by an optimising compiler with similar performance.

3.3 Operating systems
One of the design goals of the software team was to produce a
system which could be used in teaching operating systems.
The major requirements of such a system are that it can be
used as a model for the detailed study of a particular operating
system design, and that it can provide the basis for practical
work in operating systems. In a relatively short course on
operating systems, it is clear that no student has the time to
write a complete operating system; it is doubtful if a group of
students working together could achieve such a goal. So that
students do not waste their time on irrelevant details, it is
necessary to:
(a) provide a fully documented system
(b) have a standard, well defined interface between processes

(c) write the system in a high level language.
With such provisions, students may be asked to redesign or

replace a given process or set of processes or add new processes
so that they fully understand the function of the processes in
question and their overall role within the system. With the
above in mind, a dual processor operating system has been
designed as a set of asynchronous co-operating parallel
processes, which may communicate via a message/event
system running in the input/output processor.
The kernel of the operating system is the message handler

and is responsible for the scheduling of system processes and

for the creation and deletion of all processes in the system.
Fig. 6 shows the overall structure of the operating system.
The system processes fall into the categories of management

of storage, files, input/output, job control, supervisor call
(SVC) handling, user process scheduling and measurement;
some of these categories will include a number of processes.
The message system provides processes with a message buffer

into which information to be transmitted, for example a
request from one system process for service from another, can
be written together with some identification of the receiver
and of the sender. As the message is 'transmitted' by the
movement of message buffer pointers to a queue associated
with the receiver, a priority is attached to the message to allow
some degree of system process scheduling. The sender may
immediately, or at some time in the future, wait for an answer
to come back or may perhaps wait for a message to arrive
from some other process.
The event system is an extension of the message system which

allows a numbei of processes to be activated on the occurrence
of an event for which they have been waiting. For example,
some activities may generate processes to handle them, each
of which request service from some other process. Each of the
subprocesses generated to handle the initial activities may
need to know the outcome of the same terminal process (for
example swapping device operation to free some core store).
The event system would allow a 'broadcast' of this information
to the processes awaiting it.

INPUT /OUTPUT ?loe.e)5olUS£(t ftoOSM

—

—

—

1

met

HoCesses

INPUT

Uiet ircli

USci SVC

PlHULISft

uitl vtnua
iVlHtttt.

FILINC SWfri

Uiei tiaaa
iCUCDULll

DISK

fa fee. fAte

CONIIOL TTf

HAHbLf £

Fig. 6 Logical interrelationships between representative modules of
the operating system, the kernal and the user processes

Enter with state
vector number

Is it an SVC? No

Yes

Has user process
elected to service
this error?

No Tell kernel to run
standard error
handling process E

Yes

Identify service
process and tell
kernel to run it

Tell kernel to
run process U

Return to kernel Return to kernel
Fig. 7 User processor interrupt analysis

Return to kernel

158 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/154/477553 by guest on 19 April 2024



3.3.1 Interprocessor communications
The user process scheduler is activated as a result of either a
user process requesting an operating system service by means
of an SVC or as a result of a user process fault condition, e.g.
exceeded time allocation, overflow. When a user process
executes an SVC, a bit corresponding to the state vector
number is set in a register and an interrupt is generated to the
input/output processor. On generating this interrupt the state
vector associated with the process which generated the inter-
rupt is marked as busy and a scan is made by the state vector
selection mechanism for a non-busy state vector. If one is
found the user processor is associated with this state vector
and activates the corresponding process. If no non-busy state
vector is found the user process hangs until one is made
non-busy by the input/output processor. When the user
process generates a fault condition, the condition is set in the
processor status register and an interrupt is generated to the
input/output processor as in the case of an SVC.
The input/output processor response to an interrupt from the

user processor is shown in Fig. 7. It first checks the processor
status register and if there is a fault condition indicated, deals
with it appropriately. One of the SVC's available to the user
process enables it to indicate that it would like to deal with
certain fault conditions and to indicate the name of the routine
to deal with them. If no fault condition is indicated then an
SVC is presumed and the appropriate action taken.
When the input/output processor comes to deal with an SVC

the normal action is to: (a) store the contents of the corres-

Process 51
(short SVC)

Carry out service

Process S2
(long SVC)

Process U

Store copy of Reset macro
state vector program

counter in state
vector

Pass results to
state vector

Unset busy flag
on state vector

Set

i—Test recommence—i
bit
Requeue process
in abort queue

Return to kernel

Get copy of Unset busy flag
state vector on state vector
of next process
on process
activate queue

Unset busy flag Return to kernel
on state vector

Requeue original
user process in
wait queue

Unset

Carry out service set
I—Test requeue bit \

Requeue Requeue process
U n s e t • • i • i_ *

original user in abort queue
•-•-process in user

process activate
queue

Return to kernel

Is busy flag ——-
set?

Fetch macro
instruction

11
Increment macro
program counter

1I
Execute macro
instruction

11
Error/SVC?

h
Set flag
register

i
Set busy bit

-»• Interrupt input/
output processor

1
Attempt state
vector switch

Fig. 8 Interrupt routines

Fig. 9 User processor macro instruction cycle

ponding state vector in the core store of the input/output
processor, (b) mark the appropriate system process which will
deal with the SVC as requiring the input/output processor,
(c) reload the state vector with the status information of the
user process on the front of the user process activate queue,
(d) clear the busy flag for that state vector, and (e) dismiss the
interrupt.
There is however a class of SVC for which the service routine

execution time is small in comparison with the time to unload
and load a state vector. An example of such an SVC is one
which asks for the current time of day. The action taken in this
case is to leave the state vector busy until the 'result' of the
system process for that SVC can be loaded directly into the
state vector. The busy flag for that state vector is then cleared
and the interrupt dismissed.
The action following an interrupt from the user processor to

the input/output processor is shown in Fig. 8.
The input/output processor may wish to abort a running or

runnable user process at any time. Such a user process may be
in one of four states:
(a) Runnable but waiting to be loaded into a state vector. The

process is removed from the user process activate queue
(b) Loaded in a state vector awaiting activation. The busy flag

of the state vector is set and the system process to deal with
this situation is requested to run

(c) Running in a user processor. The busy flag of the state
vector is set. This will be detected on the next macro
(emulated) instruction cycle as shown in Fig. 9

(d) Running as a system process in the input/output processor
as a result of (say) an SVC. The requeue bit for the user
process is set. When the system process running on behalf
of the user process completes, it tests the requeue bit and
if it finds it set, requeues the user process in the abort queue.

Future developments
The Proteus project offers the opportunity for many exciting
developments. In the first instance, a Proteus processor will be
used to replace the initial input/output processor (a PDP11).
No changes to the operating system software will be required

Volume 21 Number 2 159

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/154/477553 by guest on 19 April 2024



since Proteus will simply emulate the PDP11. However, when
this is undertaken, no doubt some or all of the kernel will be
recoded directly into microcode to improve the efficiency.
Other projects under active consideration are the use of a
simple version of Proteus as a general purpose peripheral
controller, as a communication multiplexor, as a computer
network interface and as an interprocessor communication

unit. Further, the investigation of multiple processor systems
in a variety of configurations may be undertaken when the
large scale integration of Proteus has been undertaken. For
example, a single input/output processor controlling a number
of user processors will be investigated as will the intercon-
nection of a number of such systems in both a hierarchical and
a distributed network.

Bibliography
GAINES, R. S. (1972). An operating system based on the concept of a supervisory computer, CACM, Vol. 15, No. 3.
HANSEN, P. B. (1970). The Nucleus of a Multiprogramming system, CACM, Vol. 13, No. 4.
WILNER, W. T. (1972). B1700 Memory Utilisation, AFIPS FJCC.
DTSS SYSTEM REFERENCE DOCUMENTS. Dartmouth College, USA.
DIGITAL EQUIPMENT CORPORATION. PDP11 processor handbook.

Book review
Current trends in programming methodology: Volume I.—Software

specification and design, Edited by Raymond T. Yeh, 1977;
275 pages. {Prentice-Hall, £13-55)

Standardised development of computer software, by Robert C.
Tausworthe, 1977; 379 pages. {Prentice-Hall, £15-95)

Two books, from the same publisher, with ostensibly similar
subject matter, yet written and produced in apparent ignorance of
each other. For example both have reasonable bibliographies yet
neither mentions the other. Examination also shows that the contents
of these bibliographies are not at all similar: some references appear
in both, but these are limited to such fundamentals as Donald
Knuth on The Art of Computer Programming.
This situation demonstrates something of the dichotomy which

has appeared in publications concerned with programming. On
the one hand we have the academics and research workers who are
attempting (and often succeeding) to penetrate the mystery sur-
rounding programming and to determine how the various tasks
may be performed more accurately and more productively. On
the other hand we have those involved in programming, especially
in a user environment, and providing or applying various tools for
better control of the activity.
It has often been said that the two parties are quite separate and

have little to say to each other. Some DP people, especially, claim
to see little advantage in some of the ideas propounded and suggest
that a pseudo-scientific aura is being created around what is pro-
perly a craft. They further claim that the methods suggested by the
academics have been known and practised for years. Sometimes
one may read academics who pour scorn on DP practices stating
that they have little in the way of theoretical justification. I was once
told, for example, that NCC's Programming Techniques manual
was 'too pragmatic' and therefore of little account.
It is a pity that this dichotomy exists for each camp has much to

discuss with the other. Recognition that it exists is, however, useful
in interpreting the raison d'etre of the two books under review.
In his preface, Raymond T. Yeh states the intention of the series

as 'to bring together a collection of tutorial papers . . . which are
representative of the current trends' (in programming methodology).
This first volume surveys recent developments concerned with
'the systematic design of well structured and reliable software
architecture'. And so we have nine papers in all from: Liskov and
Zilles; Wulf; Robinson; Levitt; Neumann and Saxena; Parnas;
Linger and Mills; Knuth; Randell; Naur; Dijkstra. Six of these
papers have appeared elsewhere we are told, two of them having
since been updated. The material is all of recent date, however, and
this is to be applauded. One grows a little tired of being served the
same old fare, however re-hashed.
Yeh concludes his preface by suggesting the book can be used by

'upper-division' undergraduates or first year graduates in computer
science but, rightly, points out that it should be supplemented by
exercises and projects. He also suggests it should act as a reference
book for 'professional software engineers'.

160

For the first group there is little doubt that this is an excellent
text book. The preface itself provides a good explanation of first
principles and demonstrates how the rest of the book hangs to-
gether. It is also supported by a 214-entry bibliography, which is
well annotated, and the index steers a middle course between identi-
fying only fundamental points in the text and listing every passing
reference made. One might quibble, not so much with what is in-
cluded but with what is omitted. Mills on 'How to write correct
programs and know it' and Wirth's 'On the composition of well
structured programs' should be required reading for any student
wishing to be informed. Both are, of course, well described in the
bibliography.
Whether or not the second group is so well catered for is a matter

of debate. What, in British terms, is a 'professional software eng-
ineer'? The Americans tend to use the term 'software' to mean
everything which is programmed whereas we tend to constrain this
to mean operating systems, compilers and everything that goes with
the machine, i.e. not applications. If we take the British usage
then, yes, the book should be of value to anyone wishing to explore
the theories of program structure. But in all probability the average
applications programmer will find much of the content hard to
read and understand. Such a person would do better to read
Tausworthe's book.
Robert C. Tausworthe is of the Jet Propulsion Laboratory at the

California Institute of Technology, Pasadena. His book (or 'mono-
graph' as he calls it) is based upon standards produced to guide the
work of a team producing a conversational version of a BASIC
compiler. These standards evolved naturally over a period of time,
and much of the book appeared originally as material for computer
science courses at West Coast University and JPL seminars.
The ten chapters examine a number of fundamentals concerning

program structure and behaviour. These are then used in describing
design, development and testing methods in the context of applied
programming. The whole is related, not only to programming
practice but also to the organisation and management of that
practice. Each chapter concludes with a summary and sets a number
of problems to enable the reader to try out what he or she has just
'learned': the use of the book as a training aid is therefore obvious.
Anyone who has tried to keep an eye on programming methodology

will recognise much of what Tausworthe suggests we do. Hierarchies,
step-wise refinement, machine independent design approach, high
level design specification language, team organisation, walkthroughs,
use of a librarian: these and others are all ideas which appear in the
book though not necessarily in those terms. It would be easy to
dismiss the book as 'nothing particularly new'.
But suppose you are an applications programmer, or someone

who runs such people ? Suppose you have not had the time to read
or absorb much of the literature, or indeed are confused by it all ?
This book would help you. It may not be the best book but you will
find it useful, particularly if you want to get down to basics and not
worry too much about philosophic argument. I cannot suggest what

Continued on page 167

The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/154/477553 by guest on 19 April 2024


