
Computing Dirichlet tessellations in the plane

P. J. Green and R. Sibson
School of Mathematics, University of Bath, Claverton Down, Bath, Avon BA2 7AY

A finite set of distinct points divides the plane into polygonal regions, each region containing one of
the points and comprising that part of the plane nearer to its defining point than to any other.
The resultant planar subdivision is called the Dirichlet tessellation; it is one of the most useful con-
structs associated with such a point configuration. The regions, which we call tiles, are also known as
Voronoi or Thiessen polygons. We describe a recursive algorithm for computing the tessellation in a
highly efficient way, and discuss the problems which arise in its implementation. Samples of graphical
output demonstrate the application of the program on a modest scale; its efficiency allows its
application to large sets of data, and detailed discussion of space and time considerations is given,
based in part on theoretical predictions and in part on test runs on up to 10,000 points.

(Received September 1976, revised March 1977)

1. Introduction
1.1 Definitions
The Dirichlet tessellation is defined most simply as a sub-
division of the plane determined by a finite set of distinct
points: each point has associated with it the region of the plane
nearer to that point than to any other. One might think of the
points as being the locations of the lairs of competitive pre-
dators of equal strength; the region associated with each point
is then the area available to the corresponding predator.
Many analogous illustrations may be given; whether the model
is a good one to describe spatial competition is an empirical
question, and we are using that example here simply to illustrate
the mathematical construct.

This definition applies more generally (indeed, the natural
framework for it is a general metric space), and the construct
is a useful one from a mathematical point of view in any num-
ber of dimensions (see Rogers, 1964). The one dimensional
case is a triviality: the region associated with each point
extends along the line in each direction from the point halfway
towards the next point—or off to infinity at the endpoints.
The exercise of trying to draw the tessellation in two dimen-
sions for a few irregularly spaced points quickly reveals that
the computational problem has already become nontrivial
in the plane, and the object of this paper is to demonstrate an
effective method of doing this computation. In three dimensions
the problem acquires difficulties further to those encountered
in two dimensions: the artifices (see Section 2.1) which make
the two dimensional calculation an efficient one no longer apply
and, although there is no doubt that the higher dimensional
cases could be handled by an algorithm broadly similar to
the one we describe, the detailed working out of such a pro-
cedure would be a formidable task which we make no attempt
to undertake here.
The mathematical properties of the Dirichlet tessellation are

conveniently set out in Rogers (1964). We give a formal defini-
tion slightly different from his. Let Pu P2, . . . , PN be finitely
many points in the plane, no two of which coincide. The tile
of Pn is the set Tn defined by

Tn = {x : d(x, Pn) < d(x, Pm) for all m # n)

where d\s euclidean distance.
Every point of the plane with a unique nearest neighbour

among Plt . . . ,PN will lie in the tile of that nearest neighbour.
Some points, however, will have two or more nearest neigh-
bours, and our definition excludes these from membership
of any tile. Each tile Tn is the intersection of the open half-
planes bounded by the perpendicular bisectors of the lines
joining Pn with each of the other Pm. Thus the tiles are convex
and polygonal and may possibly (at the periphery of the struct-

ure) extend to infinity. Of course not all bisectors play an
effective role in delimiting the tile (only those associated with
'nearby' points, intuitively); those that are effective each pro-
vide a straight line segment which also forms part of the
boundary of a neighbouring tile. These boundary segments
are the only parts of the plane not within any tile, and comprise
precisely those points with two or more nearest neighbours
a m o n g P u . . . ,PN.
Some authors use 'polygon' for 'tile' and the names Dirichlet,

Voronoi, and Thiessen are variously associated with the con-
struction, which we call the Dirichlet tessellation. Tiles which
have a boundary segment in common are said to be contiguous,
as are their generating points. In general tiles meet in threes at
vertices so the lines joining contiguous generating points
define triangles; these triangles can easily be shown to fit
together into a triangulation of the convex hull of the generat-
ing points; the perpendicular bisectors of the edges of this
triangulation give the boundaries of the tiles, and the circum-
centres of the triangles are the vertices of the tiles. The tri-
angulation is called the Delaunay triangulation. Mutatis
mutandis, all of the above extends to higher dimensional cases.
Fig. 1 shows the tessellation and triangulation associated with
a small scale set of points in the plane.

1.2 Windows
As we have defined it, the Dirichlet tessellation lives in the
whole plane and in fact our definition extends from a finite to a
locally finite set of generating points. In practice, however,
it is usual for the data to be collected or constructed and the
tessellation computed within a restricted 'window'.
If the window excludes part of the plane, but none of the

points, then its effect is literally that of blanking out what goes
on outside it: each windowed tile is the intersection of the
window with the corresponding unwindowed tile. This can
affect the contiguities, for the common boundary segment
of tiles of points near the periphery can begin a long way
outside the convex hull of the set of points. This phenomenon
should not be regarded as any kind of defect; indeed, part of the
merit of working within a window is to prevent the generation
of contiguities which would surely have been eliminated if
observations had been taken over a larger region.
A window which excludes some of the points can have a more

drastic effect; were such a point to be included in the con-
struction its tile could well lie partly within the window,
although it itself lay outside. The behaviour of this effect
cannot be concisely described; we shall not consider it further
in this computational context, but will rather make the con-
vention that points discovered to lie outside the window will be
rejected altogether, the computation proceeding as if they did

168 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/168/477586 by guest on 19 April 2024



not exist. The remaining points are described as accepted.
Fig. 2 illustrates the effects of windowing.

Our formal definition of the tessellation corresponding to
points Pj PN and window E is that the tile T* of the point
Pn is given by

T'n = {x e E : d(x, Pn) < d(x, Pm) for all m * n, Pm e E)

if Pn e E, and is otherwise undefined. If difficulties over dis-
connected tiles are to be avoided, it is desirable to restrict
attention to convex windows and to ensure easy specification
and manipulation to make them polygonal. In fact many
applications call for a square or rectangular window. For tech-
nical reasons we require the window to be a nonempty open
polygonal region defined by some number of strict linear
inequality constraints ax + by + c < 0. Any finite number of
such constraints may be specified: each is described as effective
if its omission would change the content of the window,
otherwise as redundant. Redundant constraints may be
completely ignored. It is positively convenient to operate
within a window that is bounded, and we do in fact insist on
this.

The observation made above about the effect of a window
that contains all of the points shows how to deal with an
arbitrary (non-convex or non-polygonal) bounded window:
simply operate within a convex polygonal window containing
it and impose it afterwards. Similarly, unbounded windows
can be simulated by sufficiently large bounded ones.

1.3 Discussion
Like so many other simple mathematical ideas, the Dirichlet
tessellation has been reinvented on a number of occasions,
sometimes in the context of a particular type of application,

Fig. 1 The Dirichlet tessellation (bold lines) and Delaunay triangu-
lation (fine lines) for a small scale configuration

1 XL

Fig. 2 The effects of windowing: the broken-line window excludes
some contiguities but no points; the dotted-line window ex-
cludes some points but not the whole of their tiles

and this accounts for the diversity of names under which it
may be encountered. Rogers (1964) discusses the mathematical
background. Geographers speak of Thiessen polygons;
applications are described by Rhynsburger (1973). Crystallo-
graphers recognise a number of models for crystal growth:
one of these, which is associated with the name of Meijering,
gives rise to the Dirichlet tessellation; a convenient reference
is Gilbert (1962). The construct is now becoming quite well
known to statisticians: for example, applications in plant
ecology are discussed by Mead (1971); Besag (1974) points
the way towards using the contiguities as a replacement for
the self-evident 'neighbour' relationship of points on a regular
lattice in the construction of probabilistic models for spatial
phenomena; and this has also been explored by Ripley (1977).
Miles (1970) derives various statistical and ergodic properties
of the Dirichlet tessellation and Delaunay triangulation
constructed from a homogeneous Poisson process in the whole
plane. The production of contour maps based on observations
over an irregular grid seems likely to become an important
application (McLain, 1976; Powell and Sabin, 1977). In this
context, Lawson (1972) has suggested the use of triangulations
with the following local equiangularity property: in every
convex quadrilateral formed by two adjacent triangles, the
minimum of the six angles in the two triangles is not less than
it would have been had the alternative diagonal and pair of
triangles been chosen. Sibson (1978) has shown that the Delau-
nay triangulation uniquely possesses this property. We our-
selves intend to explore applications in the fitting of smooth
surfaces (cf. Wahba and Wold, 1975), scaling (c/. Kendall,
1971) and spatial cluster analysis. We feel that it is no exaggera-
tion to claim that the Dirichlet tessellation is one of the most
fundamental and useful constructs determined by an irregular
lattice.

In this paper, we give no further discussion of its application;
we confine ourselves to the problem of its computation. An
illuminating, if slightly distressing, account of the history
if this problem is given by Rhynsburger (1973), who writes
of methods based on subjective judgments or arbitrary (and in
fact incorrect) rules and records the disappointment with
which their inventors encountered re-entrant polygons in the
course of their work! He concludes his paper by proposing
an algorithm which is correct, but admittedly provisional
and inefficient. Several other papers are of computational
interest—Mead (1971), Lawson (1972) and McLain (1976)
are worth noting—but in no case is an efficient general purpose
algorithm offered, and we have not found in the literature
anything which claims to be a definitive treatment of the

Volume 21 Number 2 169

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/168/477586 by guest on 19 April 2024



problem. A general discussion of geometrical algorithms is
given by Shamos (1975); among the many problems which
he considers is that of constructing the Dirichlet tessellation.
He outlines an algorithm for this which might in principle
prove reasonably efficient, but this is difficult to assess in the
absence of any actual implementation, and his proposal is
not given in sufficient detail to make all the steps of an imple-
mentation plain. Finally, we are aware of the existence of one
unpublished and uncirculated program which we believe to be
of reasonable efficiency, using some similar ideas to our
own, and there may be others, but we have had no access to
any such material.

2. The Algorithm
2.1 The recursive step
The algorithm that we implement is a recursive method for
computing contiguities. All other properties of the tessellation,
tile vertex positions and tile areas for example, are easily
calculated from the contiguities and the point coordinates.
Contiguities between tiles were discussed in the introduction;
recording the existence of a contiguity may be regarded as a way
of labelling an edge of a tile. Each edge is part of the boundary
of two tiles and access to it from either side is needed, so for
each member of a pair of contiguous points the contiguity
with the other has to be recorded. For points on the periphery
an extra complication arises: the tile of such a point is bounded
in part by segments of effective constraints rather than by
inter-tile edges. In fact this is simply dealt with, by making
no distinction between constraints and points as far as con-
tiguity is concerned. They are considered together as objects,
and for each object is recorded a contiguity list, that is a list
of the objects to which it is contiguous.
This has the slightly unexpected consequence that each

effective constraint must itself have a contiguity list, some of
the objects in which are points and others—exactly two—
effective constraints. The parallels between points and con-
straints actually carry further than this: when a contiguity
between a point and a constraint is being considered, that
constraint may temporarily be replaced by a virtual point,
namely the reflection in it of the true point; the constraint
is then the perpendicular bisector of the line joining the true
and virtual points. It turns out that this completely resolves
the problem of manipulating constraints, since it is never
necessary to replace a constraint by more than one virtual
point at a time. The obvious need to avoid duplicated points
carries over to the requirement that a point and its reflection
should never coincide; that is why the window must be open.
All of these remarks apply equally to any number of dimen-

sions. What makes the two dimensional case special is that the
contiguities associated with an object can be recorded in
cyclic order (by convention, anticlockwise). For points this
cyclic order has no natural starting point; we have a ring
rather than a list and we break this ring arbitrarily. For
constraints the two adjacent contiguities with other constraints
mark a natural break-point, but it is unnecessary and indeed
inconvenient to maintain this. Cyclic order is more than
an administrative convenience; it is the basis on which the
possibility of economical computation rests.
The method is to scan the points in turn, recursively modifying

the contiguities as each point is added. The recursive step is
straightforward to describe in geometrical terms, although some
care has to be taken over actually implementing it computa-
tionally. The information for recursion consists of the details
of the window, the coordinates of the previously accepted
points and the contiguities that these objects determine.
The coordinates of the new point, which are saved after use,
are used to update the contiguities on the inclusion of the new
point. It is easy to visualise the effect of the new point: it
acquires its tile by winning territory from the tiles of nearby

.K

Fig. 3 Growing the tile round a new point N; its nearest neighbour
is K, and the first point to go on its contiguity list is L

points, in fact of precisely those points with which it subse-
quently proves to be contiguous. It is these points and these
only whose contiguities are affected by the introduction of the
new point.
One point which is certain to be contiguous to the new point

is its nearest neighbour among the old points; this point
(or any such nearest neighbour if there is more than one)
must first be found. The best way to do this is a problem we
discuss in a subsequent section; for the moment, suppose it
done.
The contiguity list for the new point is then built up in reverse

(that is, clockwise) order and subsequently, standardised.
We begin by finding where the perpendicular bisector of the
line joining the new point to its nearest neighbour meets the
edge of the nearest neighbour's tile, clockwise round the new
point. Identifying the edge where this happens gives the next
object contiguous with the new point and this is in fact the
first to go onto its contiguity list. The new perpendicular bi-
sector is then constructed and its incidence on the edge of this
new tile is examined to obtain the subsequent contiguous
object; successive objects are added to the contiguity list
in this way until the list is completed by the addition of the
nearest neighbour. Whilst this is being done old contiguity
lists are being modified: the new point is inserted in each and
any contiguities strictly between the entry and exit points of the
perpendicular bisector are deleted, the anticlockwise-cyclic
arrangement of the lists making both this and the determinaton
of the exit very easy. Fig. 3 illustrates the start of this process.
An appealing feature of the recursive nature of our algorithm

is that the coordinates of a point are not needed until that
point is considered for inclusion. Even the number of points
may be a priori unknown, if storage can be arranged dynamic-
ally; and the algorithm could be extended to remove points
as well as add them. This suggests various applications, among
them real time analysis of spatial data and adaptive quadrature
on an irregular grid.

2.2 Degeneracies
It may happen that four or more tiles meet at a vertex; such
a vertex is said to be degenerate. A regular square lattice
determines a tessellation in which every vertex is degenerate;
but there is little need to use a tessellation algorithm in such a
case and it is unlikely that degeneracies would occur in the
kinds of data to which the algorithm would be applied.
What may occur more commonly are near-degeneracies and
the importance of handling degeneracies correctly stems more
from the need to deal consistently with such cases than from
any expectation that actual degeneracies will occur.
The defining points of the four or more tiles meeting at a

170 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/168/477586 by guest on 19 April 2024



degenerate vertex must all lie on a circle with that vertex as
centre. If we consider a vertex of degree four, it can be seen
that degeneracy is a transitional state: the surrounding
contiguities form a quadrilateral and as this is deformed
through cyclic shape, the one diagonal disappears and is
replaced by the other. We believe that it is of little importance
if for numerical reasons the diagonal contiguity is recorded
incorrectly when the situation is close to degenerate. What is
disastrous is to record it inconsistently. An inconsistency
could take the form either of a contiguity being recorded from
one side but not the other; or of both diagonals of the quadri-
lateral being recorded as contiguities. The resolution of these
problems proves to be a natural consequence of efficient
programming in that the way to avoid difficulties is to ensure
that each calculation step is carried out once only with any
necessary information for later use being saved from it;
disaster can strike only if two algebraically equivalent but
numerically distinct calculations are made. We believe that
prudent design of the implementation has made it almost
impossible that numerical errors could lead to inconsistencies,
and we have encountered no difficulties when testing our
program on degenerate data.
Should a vertex turn out to be exactly numerically degenerate

neither diagonal is recorded as a contiguity; recall that tiles
are contiguous only if they meet along a boundary segment
and not just at a vertex.

2.3 Finding the nearest neighbour
We have observed that in the majority of applications, every
vertex has degree three. If this holds, use of the Euler-Poincare
formula faces — edges + vertices = 2 (for the sphere; for the
plane the infinite region is counted as a face) gives an exact
expression for the total number of contiguities which have to
be recorded, namely

4 x (effective constraints) + 6 x (accepted points) - 6 ,

counting each twice, once from each side. Thus not only does
the average number of contiguities per point approach six in
large configurations, irrespective of the positions of the points
provided only that there are no degeneracies, but also the
number of contiguities added by the introduction of a new
point is exactly six. Degeneracies serve only to reduce the total
number of contiguities. Therefore the workload of growing
the tile round a new point once the nearest neighbour has been
found is on average constant—it does not grow with the num-
ber of points previously accepted. We have verified this pre-
diction empirically. This component of the work performed
by the algorithm thus gives rise in the total workload to a term
linear in the number N of points.
It is therefore particularly important to have an efficient

method of finding the nearest neighbour; a naive search would
lead to an O(N) term per point, and thus to an O(N2) term
in the total workload and that is not good enough. The tech-
nique which is obvious as an improvement on this is to use the
tessellation constructed so far as a guide to the relative positions
of the points. Simply start at an arbitrary point and 'walk'
from neighbour to neighbour, always approaching the new
point, until the point nearest to it is found. Implementing this
process is easy; its effectiveness depends on how good a guess
the starting point of the walk is. In some applications the list
of points is automatically in a fairly systematic order because
of the way the data have been collected. Under these circum-
stances the previous point is likely to be close to the new one
and the use of this as the starting point results in an almost
negligible workload. If nothing systematic is known about the
positions of the points, it is sensible to start from a reasonably
central point and one would expect that for each point this
would result in an O(Ni) term, total O(N%). This appears to
be the case in practice. It is the technique used in our implemen-

tation and although the resultant term is ultimately the domin-
ant one in the workload it is not until over 7000 points have
been added that the work of finding the nearest neighbour
becomes equal to the rest of that of adding a point.
By walking across several generations of tessellations—saving

the tessellation every time the number of points increases by
some suitable factor—one would expect to be able to reduce
O(JV%) to O(N log N), at a cost in storage. Although attractive
in theory this appears to be pointless in practice for problems
of the scale we have considered so far, but if a need for it is
established it would not be difficult to implement. Readers
familiar with sorting algorithms will no doubt find the com-
parison with tessellation interesting; there are both helpful
analogies and significant differences. In both cases it is possible
to think in terms of locating and then inserting a point. The
workload for insertion is constant, but location becomes
more and more difficult as N increases—O(iV) per point for
the bubble sort, O(N'A) per point for the planar nearest neigh-
bour walk. In both cases this workload can be reduced by tak-
ing long steps towards the right position early in the process.
Shell's sorting method does this for all points at once without
using extra storage but we have not been able to devise any
analogue of this for tessellation. The multiple generation scheme
can be implemented both for sorting and for tessellation; there
is a cost in storage, but the recursive property is retained,
and the workload per point may in both cases be expected to
be reduced to O(log A'). Of course, the tessellation problem
has geometrical aspects of far greater complexity than sorting.

3. Implementation
3.1 Preliminary considerations
The fundamental problem encountered in implementing the
algorithm described above arises from the need to store and
update lists of contiguities. No contiguity list is of length less
than three. In principle the only upper limit is the sum of the
number of points and the number of constraints, or at least
something close to that. In practice a point seldom has more
than ten contiguities; in typical data we have found this to
occur about once in six hundred points. Both the content
and length of a list may change on updating.
If the algorithm were being implemented to solve one specific

problem, then clearly it would be appropriate to minimise
programming effort by choosing a language which would
handle automatically all the necessary housekeeping. However
when it is desired to produce a highly efficient, compact,
portable and compatible implementation for regular general
use, such languages seem less attractive. We have not found
it unduly burdensome to work in ANSI FORTRAN in setting
up an implementation and this has allowed us to take full
advantage of the special structure of the problem so as to
reduce as far as possible the space occupied by administrative
information and the time needed to maintain it.
Contiguity lists are kept in a single integer vector, the heap,

with address pointers to and from addressing arrays for points
and for constraints. Rather than modify existing contiguity
lists as points are added new versions of these lists, and all
new lists, are created at the base of the free space in the heap
and old versions are flagged as dead. When the heap becomes
full dead space is returned to the top end as free space by a
straightforward garbage collection routine.
Although these are not FORTRAN-like concepts, they are

easy to set up within FORTRAN; they give rise, for example,
to none of the difficulties which are encountered in any attempt
to handle characters or individual bits.

3.2 Program organisation
Our implementation is in the form of a self-contained family
of ANSI FORTRAN subroutines and functions with no I/O
and extends to about 700 lines of which one-third are comments.

Volume 21 Number 2 171

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/168/477586 by guest on 19 April 2024



Fig. 4 The Dirichlet tessellation for 100 points within a window. The points are realised independently from the uniform
distribution over the window

The user calls a single master subroutine TILE. This calls
internal subroutines which first construct a sensible description
of the window, then set up the data structure on the detection
of the first acceptable point and then add points recursively
until the tessellation is complete. Garbage collection takes
place as required and again before control is returned to the
calling program. The starting point for the nearest neighbour
walk is occasionally updated to lie near the centroid of the
accepted points; this helps to minimise the adverse effect of
any partial systematic order in the labelling of the points.

No substantial numerical difficulties are encountered in the
implementation and single-precision (even 24-bit mantissa)
arithmetic has proved quite acceptable. Care is needed in
arranging the calculation of intercepts of perpendicular
bisectors on one another so that difficulties over degeneracy are
avoided, but we have not succeeded in provoking any un-
acceptable responses from these numerical routines.
Errors in the data may cause various conditions invalidating

the construction of the tessellation. These are detected and
identified, as also is the condition of heap overflow; they cause
an error flag to be set and control is returned to the calling
program.

3.3 Storage and times
The information which has to be stored comprises the point
coordinates, the contiguities and the information for administer-
ing the contiguities. Normally there are only a few constraints
and the space required to handle them may be regarded as
part of the fixed overheads. The data dependent storage is as

follows. For each point we require:

two real locations for its coordinates
one integer location to address its contiguity list in the heap
sufficient space in the heap.

The typical length of a contiguity list is six. Two more loca-
tions per point are required to administer the data, so the
minimal possible heap size is about eight times the number of
points. We find that a heap size of nine times the number of
points gives adequate space for this information together with
the relatively small amount of boundary information also
kept there and also allows enough working space to ensure
that the time taken by garbage collection is kept reasonably
small. Thus twelve locations per point are needed, of which
only four contain administrative information. On a byte-based
machine the heap can consist of two-byte integers, giving a
total storage requirement of thirty bytes per point.
General considerations governing the behaviour of the run

times have been discussed earlier. It may be of interest to
report some actual times. The program proves to be very fast.
We have made many test runs on 1000 points. On the CDC7600
at the University of London Computer Centre, running under
the optimising FORTRAN compiler, such runs take a little
under 0-8 sec. with a heap size of 10,000. Runs on 9000 points
with heap size 90,000 took 9-7 sec. and on 10,000 points with the
same heap size, 11-6 sec. Storage rather than time is clearly
the limiting factor. On other machines we have carried out runs
on up to 12,000 points. Variations in compiler performance
make comparative speed predictions difficult but the usual

172 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/168/477586 by guest on 19 April 2024



Fig. 5 The Delaunay triangulation for the same set of points as in Fig. 4

benchmark comparisons give a first approximation.

3.4 Auxiliary plotting program
The tessellation algorithm may be expected ultimately to enter
into a variety of sophisticated procedures for data analysis,
and the development of such procedures is a matter which will
be explored by the authors in future papers. A general auxiliary
program which is, however, worth mentioning at this stage
is one to plot the tessellation and/or triangulation. We have
prepared a program for this purpose which requires supple-

mentation by local interface routines for particular installa-
tions. We certainly do not claim optimal efficiency for the
plotter program, but it is at least not embarrassingly inefficient;
the amount of pen-up movement is far less than that which
would be generated by a program which did not take the
geometry into account. Figs. 4 and 5 illustrate its output.

3.5 Availability
Potential users of this program are invited to contact the
authors.

References
BESAG, J. (1974). Spatial interaction and the statistical analysis of lattice systems, Journal of the Royal Statistical Society, Series B, No. 36,

pp. 192-225, discussion pp. 225-236.
GILBERT, E. N. (1962). Random subdivisions of space into crystals, Annals of Mathematical Statistics, Vol. 33, pp. 958-972.
KENDALL, D. G. (1971). Construction of maps from 'odd bits of information', Nature, London, Vol. 231, pp. 158-159.
LAWSON, C. L. (1972). Generation of a triangular grid with application to contour plotting, California Institute of Technology Jet Propul-

sion Laboratory, Technical Memorandum # 299.
MCLAIN, D. H. (1976). Two dimensional interpolation from random data, The Computer Journal, Vol. 19, pp. 178-181.
MEAD, R. (1971). Models for interplant competition in irregularly spaced populations, In Statistical Ecology (G. P. Patil et al., eds),

Volume 2, pp. 13-30, Penn State University Press.
MILES, R. E. (1970). On the homogeneous planar Poisson process, Mathematical Biosciences, Vol. 6, pp. 85-127.
POWELL, M. J. D. and SABIN, M. A. (1977). Piecewise quadratic approximations on triangles, ACM Transactions on Mathematical Soft-

ware, Vol. 3, pp 316-325.
RHYNSBURGER, D. (1973). Analytic delineation of Thiessen polygons, Geographical Analysis, Vol. 5, pp. 133-144.
RTPLEY, B. D. (1977). Modelling spatial patterns, Journal of the Royal Statistical Society, Series B, Vol. 39, pp. 172-192, discussion

pp. 192-212.
ROGERS, C. A. (1964). Packing and Covering, Cambridge Mathematical Tracts # 54, Cambridge University Press.
SHAMOS, M. I. (1975). Geometric complexity, Proceedings of the 1th SIGACT Conference, Albuquerque, New Mexico, pp. 224-233.
SIBSON, R. (1978). Locally equiangular triangulations, The Computer Journal, to appear.
WAHBA, G. and WOLD, S. (1975). A completely automatic French curve: fitting spline functions by cross-validation, Communications in

Statistics, Vol. 4, pp. 1-17.

Volume 21 Number 2 173

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/168/477586 by guest on 19 April 2024


