
Toward an understanding of (actual) data structures

William L. Honig* and C. Robert Carlsonf

The myriad data structures provided by contemporary programming languages and data base
management systems can no longer be differentiated by affixing a hopefully unique name to each
one. Instead it is advisable to concentrate on the basic characteristics and qualities which make
one data structure similar to or different from another. This paper proffers a model for common
'aggregate' data structures (including arrays, matrices, n-tuples, sequences, hierarchies, and sets)
based upon this idea.
The data structure model delineates an ^-dimensional space of possible data structures; each

'axis' of the space records one major characteristic for the class of aggregate data structures. Each
axis is expressed as a question and a list of possible answers. The question describes the character-
istic and the set of answers list the variations among the popular aggregates. A particular data
structuring technique may be concretely defined by determining its value along each axis; thus, the
need for individual descriptive names is lessened.
Since this model is motivated by an analysis of the variations observed among a collection of actual

data structures, it is called an 'analysis' model. This kind of model is useful for selecting, com-
paring, and teaching data structures, as well as for simply understanding exactly what a data
structure is.
(Received October 1976)

1. Introduction
Consider arrays, matrices, sets, w-tuples, hierarchies, and
sequences. All these data structures have something in com-
mon: they are techniques for grouping together a collection
of more primitive components. Nevertheless, there are wide
variations among these data structures as they are known
by today's programmers and data base designers. These
variations result from the restrictions and generalisations
imposed on the data structures by contemporary programming
languages and data base management systems. This prolifera-
tion of data organisation techniques and names for them might
be called a 'terminology overload'; it is not unusual for different
programming systems or text books to use the same name
for different data structures and to use unlike names for the
same basic data organisation. Thus it becomes impossible
to speak with precision about a data structure simply by giving
it a name.

What is needed is an understanding of the basic character-
istics of data structures—a means to unveil the differences
and similarities among data structures. The data structure
model presented here describes data structures in a way which
is not dependent upon names for various data organisations.
Instead, a model which makes clear the 'parameters' or
'degrees of freedom' for a class of similar data structures is
denned. With such a model, it is possible to represent a
particular data structure without assigning a (new or old) name
to it, but by specifying a set of proper parameter values.
This paper presents such a model for a large class of data

structures provided by today's programming languages and
data base management systems. The model was developed from
an analysis of the actual characteristics of these data structures
and is thus termed an 'analysis' model. The model takes the
form of a set of questions or 'axes'; each axis records one
characteristic of the data structure.

Section 2 presents further motivation for this kind of model
and introduces some examples to be used throughout the
paper. Section 3 introduces the five axes of the model and
demonstrates their use for modelling a wide variety of data

structures. Section 4 comments on this particular model of
data structures and the analysis-style approach to modelling.
Further motivation of the need for a new type of data structure
model has been presented elsewhere (Honig, 1974).

2. An example using arrays
The ubiquitous array provides a useful example of the current
state of affairs. Figs. 1, 2 and 3 show three uses of data struc-
tures which might be called arrays; each figure shows both
the declarations of the array structure in a programming
language and a pictorial representation of two instances of
the data structures. All three arrays represent information
from a personnel data base containing data about people,
their salaries, and their skills.
Fig. 1 shows a traditional array as it might be expressed in

FORTRAN (American Standards Association, 1966). The
SALHIS ('salary history') array records an employee's five
previous salaries. No one would quarrel with the claim that
Fig. 1 shows an array.

Some people would, however, complain when the data
structure of Fig. 2 is called an array. The SKILLS data
structure records an employee's experience as a collection of
skills and years of experience in each skill. Thus each element
or constituent of SKILLS is itself composed of two sub-
elements (named SKILCODE and SKLYRS in Fig. 2). The
VERS2 declarations (Earley, 1973) shown define SKILLS as a
'sequence' of SKILL data elements; the VERS2 sequence
allows, as one alternative, references to its constituents via
ordinal numbers and is thus VERS2's version of the traditional
array. However, VERS2 allows any data type whatsoever
to occur as elements of a sequence and it permits instances
of a sequence to have unequal numbers of elements. For these
reasons, some people would feel the VERS2 sequence is not
a true array.

Fig. 3 depicts a data structure which might also be part of a
personnel data base; the data structure PEOPLE contains
assorted information on each employee (including SALHIS
and SKILLS which have just been considered as independent

•Advanced Programming Technology Department, Bell Laboratories, Naperville, Illinois 60540, USA. Current address: ITT Telecom-
munications Technology Center, 1351 Washington Blvd., Stanford, Connecticut 06902, USA.

•(•Northwestern University, Evanston, Illinois, USA.

98 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/98/477635 by guest on 19 April 2024

FORTRAN

1

2

3

4

5

Fig.l

DIMENSION SALHIS (5)

REAL SALHIS

1333.33

1095.00

925.00

675.33

600.00

1

2

3

4

5

1025.00

912.00

875.12

0.0

0.0

VERS2

SKILL:: <SKILCODE-* !NTf SKLYRS-*]NJ.>

SKILLS- SEQ(SKILL)

1 <1000,5>

2 <1002,l>

3 <1557,3>

4 < 1907,1 >

1 <1000,l>

2 <1001,l>

3 <1021,5>

5 < 1998,2 >

Fig. 2

data structures in Figs. 1 and 2). Almost anyone will agree
that there is more to this data structure than is normally
implied by the term 'array'. Not only does the PEOPLE array
consist of other than atomic elements, but its elements
are of different kinds and some of its elements are themselves
arrays. PASCAL (Wirth, 1971) allows this nesting of 'arrays'
as shown in Fig. 3. The array PEOPLE consists of 999 instances
(one per ID) of data type PERSON, which itself contains
arrays.
Similar variations may be observed among the collection of

data structures termed 'aggregates' (as discussed by Sammet,
1969, pp. 74-75). This collection includes numerous sorts of
data structures which are called arrays, matrices, sets, n-tuples,
hierarchies, and sequences. Such a wealth of data structures
is hard to characterise using individual names for each
distinct technique of data organisation. Additionally, so many
names have already been used that introducing new names just
aggravates the confusion. As it is now, one language's 'array'
(FORTRAN) is another's 'sequence' (VERS2) or 'table'
(COBOL).

3. An analysis model of aggregate data structures
This section presents an axis/answer model for a large class
of aggregate data structures. No enumeration of this class
is provided beforehand since aggregates are well known and
because the following description of the model will make the
class boundaries clear. As has been noted, the model is

sufficiently general to characterise the aggregate data structures
found in most existing programming languages and data base
management systems.
Fig. 4 describes the model; it lists the five axes in the form of

questions and gives a short description (immediately below
each question), an abbreviation, and the list of answers for
each axis (the latter two on the right of the figure). Each axis
will be discussed below; however, an introductory example
will show how they can be used. The simple array, as shown
in Fig. 1, provides structure via indexing for a fixed size
collection of numbers. Such an array could be modelled as
follows (using the abbrevaiations from Fig. 4):

Array Homogeneous: YES
Basic items: YES
Ordered: YES

Number: FIXED
Identification: NUMBER

In other words, the traditional array is modelled as an aggre-
gate data structure which orders a fixed size collection of
homogeneous, indivisible elements each of which is identified
by a number (or 'index').
This modelling exercise defines a 'bare' array; the essence

of 'arrayness' is captured by the values given for each axis
above. What has been described might be called an abstract
data structuring technique; to define a particular data struc-
ture, such as the array of Fig. 1, some additional information
is needed. This additional information and the answers for
each axis are conveniently presented pictorially as shown in
Fig. 5. First, the kind or type of elements which compose the
aggregate are listed at the bottom of the pictorial data defini-
tion. In the case of SALHIS, there is just one kind of element
('Homogeneous' YES). The element's type is enclosed within
an inner box to re-inforce the idea that multiple instances
of that type are present in the array.
Second, additional information provides further, specific

PASCAL

ID = 66001.. 66999
SKILL * RECORD SKILCODE' 1000 .. 1999;

SKLYRS= INTEGER
END;

PERSON = RECORD

EMPNAME' ARRAY
SKILLS •• ARRAY [1 .

SALHIST: ARRAY [1.

END;

PEOPLE = ARRAY

10= 66

1
J.T. SMITH 1 <10

301

00,5 > 1
2<1002,l> 2
3<1557,3> 3
4<1907,1> 4
5<1998,2> 5
6
7
8
9

ft. 201 OF CHAR
.10] OF SKILL
.5] OF 400.0.

[ID] OF PERSON;

ID-661

1333.33 L.A.JONES l<10
1095.00
925.00
675.33
600.00

302

00,1 >
2(1001,1>
3< 1021,5 >
4
5
6
7
8
9

i

.2500.0

l
2
3
4
5

1
1025.00912.00
875.12

10 10

Fig. 3

Volume 21 Number 2 9S

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/98/477635 by guest on 19 April 2024

1 . ARE THE ELEMENTS HOMOGENEOUS ?
ARE ALL INSTANCES OF THE ELEMENTS DRAWN
FROM THE SAME DATA DEFINITION ?

HOMOGENEOUS: YES, NO

2. ARE THE ELEMENTS BASIC ITEMS ?
ARE ALL INSTANCES OF THE ELEMENTS ATOMIC
AND INDIVISIBLE ?

BASIC ITEMS: YES, NO

3. ARE THE ELEMENTS ORDERED ?
IS ANY ORDERING AMONG THE ELEMENT INSTANCES
IMPOSED OR IMPLIED BY THE STRUCTURE ?

ORDERED^ YES, NO

WHAT IS THE NUMBER OF ELEMENTS ?
HOW MANY INSTANCES OF EACH KIND OF ELEMENT ARE
COMBINED IN ONE INSTANCE OF THE AGGREGATE ?

NUMBER: FIXED, LIMITED, UNBOUNDED

WHEN HOMOGENEOUS
KIND OF ELEMENT.

IS NO, NUMBER MAY BE EXTENDED TO SPECIFY A DIFFERENT COUNT FOR EACH

5. HOW IS AN ELEMENT IDENTIFIED ?
HOW IS AN INDIVIDUAL ELEMENT INSTANCE NAMED,
LABELED, OR IDENTIFIED WITHIN AN AGGREGATE
INSTANCE ?

Fig. 4

IDENTIFICATION' NUMBER, NAME,
POINTER, NONE

TRADITIONAL NAME
FOR DATA STRUCTURE

ADDITIONAL
INFORMATION
TO DEFINE

RANGE OF INDEX

ARRAY

NAME OF
DEFINITION

SALHIS

HOMOGENEOUS: YES
BASIC ITEMS: YES
ORDERED: YES
NUMBER: FIXED, 5'
IDENTIFICATION: NUMBER, 1 - 5

REAL IS PREVIOUS SALARY

ELEMENT OCCURS
MULTIPLE TIMES

Fig. 5

KIND OF ELEMENTS COMMENT

details to the answers to the five axis questions. These details
turn an abstract data structuring technique into a concrete
data structure definition. In Fig. 5, the answer to the 'Number'
question specifies that a fixed number of element instances
occur in each array structure; the additional information
indicates that this fixed number is five.
Third, the pictorial data definition of Fig. 5 contains a few

other special features which make it easier to use. The defini-
tion is given a name so that it may be referred to conveniently
and used in other definitions; this name appears on the left

side of the data definition block. A traditional or descriptive
name for the data structuring technique modelled may option-
ally appear above the block. Finally, the special notation 'is'
precedes commentary information.

3.1 The axes of the model
Each axis shown in Fig. 4 will now be explained. Whenever
possible, examples will be drawn from the array examples of
Figs. 1 to 3. The abbreviated axis names from the right of
Fig. 4 will be used in quotes (e.g. 'Homogeneous' for the first
axis) in the following discussion.
The SALHIS array as modelled above contains data elements

of exactly one kind or type so the 'Homogeneous' axis is
answered YES. However, other aggregate structures need not
consist of like elements. The aggregate commonly called a
hierarchy, may also be known as a structure (PL/I), group
(COBOL), class (SIMULA), or record (PASCAL). This data
structure groups together elements of different types. The
PERSON data structure of Fig. 3 (not to be confused with
the PEOPLE array) is of this kind; it groups together three
different kinds of arrays. The hierarchy structure in general
can be modelled :

Hierarchy Homogeneous: NO
Basic items: NO

Ordered: NO
Number: FIXED

Identification: NAME

'Homogeneous' is answered NO because most languages allow
any number of different kinds of elements to be part of a
hierarchy structure. In summary, the 'Homogeneous' axis
notes whether or not all the instances of the aggregate's
elements are drawn from the same definition.
The second axis makes a distinction between atomic and

complex constituents of an aggregate. The term 'basic items'
denotes data which are not themselves further decomposable.
The FORTRAN array of Fig. 1 has only basic items (of one

100 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/98/477635 by guest on 19 April 2024

certain kind—regular numbers) as its elements. This array is
modelled in Fig. 5 where 'basic items' is answered YES.
However, many programming languages allow arrays of
arbitrary data types, including other aggregates. The SKILLS
array of Fig. 2 does not consist of basic item elements; each
element can be viewed as a hierarchy structure. Such a view
is represented by the modelling shown in Fig. 6. The SKILLS
array (shown at the top of Fig. 6) has 'basic items' NO because
each element is an instance of the SKILL hierarchy definition.
The SKILL aggregate itself has 'basic items' YES since its
elements are integers.

Encoding this distinction between basic item and more
complex elements as an axis in the model reflects an important
distinction between data structuring techniques. An array of
numbers is basically different from an array of hierarchies.
On the other hand, most people would agree that an array of
reals and an array of integers are both of the same genre.
Most common data structures impose an order on their

constituent elements. This need not always be so. The 'Ordered'
axis makes this distinction explicit. The mathematically-
inspired set structure simply groups together a collection of
elements. Set data structures are provided by several program-
ming languages, including MADCAP VI (Wells and Morris,
1972), SETL (Schwartz, 1973), and VERS2. When an aggregate
imposes no order on its elements, 'Ordered' is answered NO.
Set data structures which are true to their mathematical
heritage may be modelled:

Set Homogeneous: YES
Basic items: NO

Ordered: NO
Number: UNBOUNDED

Identification: NONE

The hierarchy structure discussed above need not imply any
order among its named components. In this case, it may be
modelled as shown in Fig. 6 and Fig. 7. If for any reason an
ordered hierarchy, such as provided by PL/I (IBM, 1972), is
desired, the 'Ordered' answer may be changed to YES to
reflect the true nature of the data structure.
Most aggregate data structures do impose some sort of

order relationship among their elements. The SALHIS,
SKILLS, and PEOPLE arrays of Figs. 1 to 3 are all ordered;
their models in Figs. 5 to 7 all show 'Ordered' YES. Additional
information may be specified with the YES answer to
indicate the kind of ordering if it is not obvious. For
instance, a 2-dimensional matrix could specify either row or
column ordering.
Some programming languages require the user to declare the

number of data element instances which can be in an aggregate
data structure. In the traditional array of Fig. 1, the number of
data element instances must exactly equal the range of the
index. Alternatively, a programming language may allow the
number of component data elements to vary but up to some
specified maximum (which is stated in the data declaration
statement). Such a method is used by PL/I for arrays with the
'varying' attribute. A few languages and several data base
management systems provide aggregate data structures with
varying numbers of components and for which the user need
not specify any upper bound. For example, ALGOL 68
(Lindsey and van der Meulen, 1973) allows 'multiples' (similar
to arrays) of unlimited size using 'flex'. Thus, while the first
three axes are yes/no questions, the 'Number' question allows
three answers—FIXED, LIMITED, and UNBOUNDED.
The VERS2 SKILLS sequence of Fig. 2 (modelled in Fig. 6)
is a data structure of UNBOUNDED 'Number'. (Of course,
some arbitrary limit on the number of components may be
made by the implementation of such languages; however,
the important point is that the programmer is not responsible

ARRAY

SKILLS

HOMOGENEOUS1 YES
BASIC ITEMS: NO
ORDERED:YES
NUMBER^ UNBOUNDED
IDENTIFICATION: NUMBER, 1" N

SKILL IS PERSON'S EXPERIENCE
IN ONE SKILL

HIERARCHY

DATA DEFINITION OF
THE ELEMENT USED
ABOVE

-FOR DATA
INTEGRITY

SKILL

HOMOGENEOUS: N O ^
BASIC ITEMS : YES
ORDERED: NO
NUMBER: FIXED,2 (ONE OF EACH)
IDENTIFICATION: NAME

SKILCODE

INTEGER is SKILL
CODE

SKLYRS

INTEGER IS.YEARS
IN SKILL

Fig. 6

for explicitly limiting the data structure.)
When the 'Homogeneous' question is answered NO, the

'Number' axis may be extended to specify a cardinality for
each kind of data element. Fig. 8 shows a simple, contrived
example which demonstrates the need for this extension.
Without the extension, the two data structures shown cannot
be distinguished. Both are simple sets consisting of exactly
two elements where the elements may be integers and strings.
However, the lefthand data structure is restricted so that every
instance contains one integer and one string. To maintain
data integrity, this restriction may be made part of the model.
Thus, when 'Homogeneous' is answered NO, 'Number' may
optionally be extended to specify a different count for each
kind of element. This extension is not always needed, as
demonstrated by the righthand data structure in Fig. 8.
'Identification', the last characteristic axis for aggregates,

is also not a yes/no question. The purpose of 'Identification'
is to indicate how a specific constituent data element is named,
pointed to, or labelled. 'Identification' is a general term for this
concept; the possible answers, as listed in Fig. 4, are NUMBER,
NAME, POINTER, and NONE. The traditional array data
structure is indexed or accessed by use of a NUMBER as an
index. In the array of Fig. 1 (modelled in Fig. 5), each element
is labelled with a number from one to five. Users of this sort
of array think of this number as identifying an element of
the array. Similarly, the elements of an H-dimensional matrix
are identified by an ordered n-tuple of numbers.
The concept of the 'Identification' axis results from general-

ising the ideas of an array or matrix index so that it can apply
to other aggregates. A hierarchy structure, as discussed and
modelled above, distinguishes its elements by NAME. For
the SKILL hierarchy of Figs. 2 and 6, these names are SKIL-
CODE and SKLYRS. In contrast, a true mathematical set
does not provide any way whatsoever of identifying its ele-

Volume 21 Number 2 101

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/98/477635 by guest on 19 April 2024

ARRAY

PEOPLE

HOMOGENEOUS: YES

BASIC ITEMS: NO

ORDERED: YES

NUMBER : FIXED, 9 9 9

IDENTIFICATION = NUMBER, 66001" 66999

PERSON]S. ALL THE INFORMATION

ON A SINGLE PERSON

HIERARCHY

PERSON

HOMOGENEOUS: NO

BASIC ITEMS • NO

ORDERED = NO

NUMBER: FIXED, 3

IDENTIFICATION : NAME

EMPNAME

STRING JS_
EMPLOYEE NAME

SKILLS

SKILLS

SALHIST

SALHIST

Fig. 7

ments. In this case, 'Identification' is answered NONE (as
shown above where a set is modelled) because set elements
are manipulated only with operations such as union and
intersection; there is no way to select a specific, individual
element of a set. (VERS2 does, however, provide a limited
way to select or sequence through the elements of a set with
'range expressions'). The programming language PASCAL
originally provided a data structure ('class') which is very
much like a set of limited 'Number' except individual elements
of it may be selected by use of a POINTER which is created
whenever new elements are added.
The four possible answers to 'Identification' do not exhaust

all the possibilities. More detailed answers may be appropriate
in some cases. For example, it might be useful to distinguish
between different kinds of NAME identifiers: unique, system-
wide names versus names which are valid only within a specified
scope. Thus 'Identification' may be adapted, within reason,
to various applications.
The discussion of the five characteristic questions for

modelling aggregates is now complete. The next section pre-
sents some more examples to demonstrate how the model
can be used.

3.2 Using the model
First, consider a few miscellaneous data structures. In the
previous section a set was modelled using the five axes. The
particular data structuring technique selected was true to the
mathematical definition of set in that the members of the set
could be complex, nonbasic items (for examples a set of sets).
However, a set consisting only of basic items may be desirable;
such a set can be easily represented by the model, without
introducing any new names, as follows:

Simple Homogeneous: YES
Set Basic items: YES

4 INSTANCES OF A

SIMPLE SET

HOMOGENEOUS= NO

BASIC ITEMS= YES

ORDERED= NO

NUMBER= INTEGER: FIXED, 1

STRING^ FIXED, 1

IDENTIFICATION: NONE

INTEGER STRING

3 INSTANCES OF B

SIMPLE SET

HOMOGENEOUS: NO

BASIC ITEMS: YES

ORDERED1 N O

NUMBER: FIXED, 2

IDENTIFICATION: NONE

INTEGER STRING

Fig. 8

Ordered: NO
Number: UNBOUNDED

Identification: NONE
(The name on the left is added for convenient reference only.)
Note that only the answer to the 'Basic items' axis is changed
from the mathematical set of Section 3.1. A further possible
modification is to limit the size of the set by changing the
'Number' axis, as follows:

Bounded
Set

Homogeneous:
Basic items:

Ordered:
Number:

Identification:

NO
YES
NO
LIMITED
NONE

The elements of the bounded set must all be the same; however,
a set consisting, say, of both real numbers and integers could
be modelled again by changing just one axis:
Varied Homogeneous: NO

Basic items:
Ordered:
Number:

Set YES
NO
LIMITED

Identification: NONE
The point to be made is that numerous different kinds of sets
can be modelled precisely without any confusion as to exactly
what is implied bythe term 'set'.
Looking at the entire aggregate model in Fig. 4, it is interesting

to speculate on the total universe of data structures as modelled
by the five questions. Clearly there are at least 23 -3-4 = 96
different possible ways of picking an answer for each axis
question (since there are three yes/no questions, three possible
answers to 'Number' when it is not extended for reasons of
data integrity, and at least four possible answers to 'Identifica-
tion'). Thus the model would seem to imply the existence of
96 distinguishable data structuring techniques for aggregates.

102 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/98/477635 by guest on 19 April 2024

Picking a random set of answers as an experiment, consider:

??? Homogeneous: NO
Basic items: YES

Ordered: NO
Number: UNBOUNDED

Identification: NAM E

which seems to indicate an aggregate of different type basic
items selected by name. This data structure seems appropriate
for a symbol table: the identification names are symbol
names used by a direct access technique to retrieve a data
value associated with each symbol. The values may be various
types (e.g. integer, real, address), all of which are basic items.
The aggregate model can be used in a similar manner to

study the universe of possible aggregate data structures. For
example, some axis values can be held constant while others
are varied. This procedure, in effect, explores the various
restrictions and generalisations which are possible from the
original data structure.

4. The role of analysis-style models
The preceding section has introduced a model of aggregate
data structures which captures their true variety as found in
contemporary programming systems. This type of model, based
upon an analysis of existing, practical data structures, is
unusual; this section comments first on the aggregate model
and then on the general use of this sort of modelling method.
The aggregate model of Section 3 is an intelligible, readable,

compact, easy to use model of a fairly large class of data
structures. The model is particularly useful for a 'check list'
approach to data structure design. Each axis can be considered
separately and the proper characteristics for a particular
application selected by picking the proper answer to each
question. Since each axis is independent of the others, the
degrees of freedom available to the designer are kept under
control; at each stage only a single question need be considered.
Such an approach is in direct*contrast to the typical method of
trying to intuit the best date structure from among all those
available.
The data structure model presented here is intended to

represent logical, conceptual data structures. For example,
the unordered sets detailed in Section 3.2 may be modelled as
being truly unordered regardless of the fact that most imple-
mentations will have to store the elements sequentially. Since
the model's chief purpose is to further the understanding of
data structures, it is of paramount importance that users
concentrate on the conceptual data structure and ignore
extraneous details which are assumed by implementations.
As another example, an array can be modelled without
assuming it is stored contiguously in memory. The guideline
should be to make sure no additional, unnecessary organisa-
tion is imposed on the data structure under consideration.
The model facilitates this approach by making clear the choices
which are available for each data structure characteristic.
The aggregate data structure model is a contribution to the

understanding and use of data structures. Specifically, it is
valuable for the following:
1. To teach data structures in a language-independent manner

2. To choose and contrast data structures for practical
programming tasks

3. To design and document data bases in an easy to read
manner.

All these benefits arise from this work's success at modelling
a wide class of common, real world data structures in a way
which reveals their true substance.
A possible extension of the aggregate data structure model

would be its implementation as an 'automatic programming'

system (see Floyd, 1972). The model is a nice, descriptive
technique for describing the logical structure of data. Then,
unfortunately, the user is 'left hanging' as to how to implement
the data structure. It seems that the axes and their answers
could be used to select automatically ways of implementing
a wide class of data structures. A feasible approach may be to
associate a collection of implementation techniques with
individual axis answers. Thus, the answers to each axis would
suggest a set of possible implementations for a given data
structure. Earley suggested a similar idea, termed an 'implemen-
tation facility' (Earley, 1971), for the VERS language. The
resulting automatic programming tool would provide a
replacement for the numerous kinds of data declarations used
now in programming languages and data base management
systems.
At any rate, the general concept of an analysis-style model

should have wide applicability. The approach allows the
answering of questions arising from data structures as they
actually exist in today's systems. In comparison with other
approaches to modelling, analysis seems to be both more
practical and general. By its very nature, it yields a representa-
tion of the true structure of data bases. In contrast, many
existing models might be called 'prototype' systems; they
provide a single framework which can be used to imitate real
world data structures. Examples of this approach include
VERS, 'data graphs' (Rosenberg, 1971), 'list structures'
(Fleck, 1971), and DIAM (Senko et al., 1973). In addition,
existing higher level approaches to data base management
such as ALPHA (Codd, 1972) and 'structured data structures'
(Shneiderman and Scheuermann, 1974) operate at a higher
semantic level which assumes a structural description is
available. The analysis model for aggregates provides this
structural description.
The analysis approach of examining what already exists has

been applied to two other classes of data structures (Honig,
1975). These two classes ('associations' and 'files'), together
with the aggregates discussed here, represent all the data
structures which were identified in a survey of 21 representative
programming languages and data base management systems.
(The systems surveyed were: ALGOL 68, BLISS, COBOL,
ELI, FORTRAN, MADCAP VI, PASCAL, PL/I, SETL,
SIMULA, a typical assembly language, VDL, VERS2,
ALPHA, CODASYL DBTG, IDS, IMS, LEAP, MacAIMS,
RIQS, and TDMS.) This exercise suggests the generality
of the analysis-style model and will, hopefully, prompt
further use of the method in other areas such as data access
and data integrity.

5. Conclusion
The model of aggregates succeeds in describing data structures
without using either new or old names for each particular
data structure. Instead attention is concentrated on the basic
structural differences between data structures: each question
and its possible answers describe one axis along which data
structures may vary. Thinking about data structures has
been moved to a higher plane, a level above that provided
by individual names. The programmer or designer need no
longer choose between PL/I arrays, PASCAL powersets,
ELI self products, COBOL tables, SETL tuples, CODASYL
DBTG sets, IDS group items, TDMS repeating groups, and
so on, ad infinitum. Instead, a fixed set of relatively independent
questions can be asked and answered one at a time.

6. Acknowledgements
Some previous work on data structures led to the recognition
of 'analysis' as an approach to modelling. These works are
Smith (1972); Prywes and Smith (1972); Hsiao and Harary
(1970); each of these might properly be called analysis models

Volume 21 Number 2 103

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/98/477635 by guest on 19 April 2024

c o v e r i n g d i f fe ren t c lasses o f d a t a s t r u c t u r e s t h a n t h e a g g r e g a t e s aggrega te m o d e l . F ina l ly , we m u s t a c k n o w l e d g e t h a t J a y
p r e s e n t e d h e r e . A l s o , we wi sh t o t h a n k B e n M i t t m a n o f N o r t h - Ear ley ' s w o r k (1971) n o t on ly k ind l ed o u r i n t e r e s t in d a t a
w e s t e r n U n i v e r s i t y for h i s a d v i c e a n d fo r h e l p i n g t o t e s t t h e s t ruc tu res , b u t a l so m o t i v a t e d t h e t i t le .

References
AMERICAN S T A N D A R D S ASSOCIATION (1966). American standard FORTRAN, X3.9-1666, American Standards Association, New York .
C O D D , E . F . (1972). Rela t ional completeness of da t a base sublanguages, Data Base Systems, Rust in , R., ed., Prentice Hall , Englewood Cliffs,

N J , p p . 65-98.
EARLEY , J. (1971). T o w a r d an unders t and ing of d a t a s t ructures , CACM, Vol. 14, N o . 10, pp . 617-627.
EARLEY , J . (1973). Rela t ional level da ta s t ructures for p rog ramming languages, Acta Informatica, Vol. 2, pp. 293-309.
F L E C K , A . C . (1971). T o w a r d s a theory of da ta s t ructures , / . Computer and System Sciences, Vol. 5, N o . 5, pp . 475-488.
F L O Y D , R . W . (1972). T o w a r d interactive design o f correct p rograms , Information Processing 71, N o r t h Holland Publishing Co. , Amsterdam,

p p . 7-10.
H O N I G , W . L . (1974). Bringing d a t a base technology to the p rogrammer . FDT, Vol. 6, N o . 3, pp . 2-15.
H O N I G , W. L. (1975). A model of d a t a s t ructures c o m m o n l y used in programming languages and da ta base management systems, P h . D .

thesis, Nor thwes te rn Universi ty, Augus t 1975.
H S I A O , D . a n d H A R A R Y , F . (1970). A formal system for information retrieval from files, CACM, Vol. 13, N o . 2, pp . 67-73.
I B M (1972). P L / I (F) : language reference manua l , In te rna t iona l Business Machines, F o r m GC-28-8201-4.
LINDSEY , C. H . and VAN DER M E U L E N , S . G . (1973). Informal introduction to ALGOL 68, N o r t h Holland Publishing Co. , Amste rdam.
P R Y W E S , N . S . a n d SMITH , D . P . (1972). Organiza t ion of information, Annual Review of Information Science and Technology, Vol. 7, Cuadra ,

C.A. , ed. , Amer ican Society for Informat ion Science, Washington , D C , pp . 103-158.
ROSENBERG, A . L. (1971). D a t a g raphs and addressing schemes, J. Computer and System Sciences, Vol. 5, N o . 3, pp . 193-238.
SAMMET , J . E . (1969). Programming languages: history and fundamentals, Prentice Hal l , Englewood Cliffs, N J .
S C H W A R T Z , J. T. (1973). O n p r o g r a m m i n g : an inter im repor t on the SETL project, instal lmentII , Compute r Science Depa r tmen t ,Couran t

Ins t i tu te of Mathemat ica l Studies, N e w York University, October 1973.
S E N K O , M . E. , A L T M A N , E . B. , A S T R A H A N , M . M. a n d FEHDER , P . L. (1973). D a t a structures and accessing in da ta base systems, I, I I , and

I I I , IBM Systems J., Vol . 12, N o . 1, pp . 30-93.
SHNEIDERMAN , B. and SCHEUERMANN , P . (1974). St ructured da t a structures. CACM, Vol. 17, N o . 10, pp . 566-574.
SMITH , D . P . (1972). A n a p p r o a c h to da t a description and conversion, Ph.D. thesis, University of Pennsylvania, University Microfilms,

o rde r n u m b e r 72-17, 425.
W E L L S , M . B . and MORRIS , J. B. (1972). T h e unified d a t a s t ructure capability in M a d c a p VI, International J. Computer and Info. Sci., Vol. 1,

N o . 3 , p p . 193-208.
W I R T H , N . (1971). T h e p r o g r a m m i n g language Pascal , Acta Informatica, Vol. 1, N o . 1, pp . 35-63.

First Vice-Chancellor for computer profession
E w a n Page was a research s tuden t in the Statistics Labora to ry
at C a m b r i d g e from 1951-54. This was the period when the E D S A C
c a m e in to service and Page was so m u c h taken by it tha t he was
seen as m u c h in the M a t h e m a t i c s L a b o r a t o r y a s in the Statistics
L a b o r a t o r y . H e had a foretaste of later prosperi ty when he won a
prize of £5000 in a football pool , having filled in the coupon ,
so it was r u m o u r e d , with t he a id of T ippe t ' s r a n d o m sampl ing
n u m b e r s . Pe rhaps he felt tha t this was unprofessional behaviour
for a stat ist ician for he decided to m a k e comput ing ra the r than
statistics his life's work .

H e buil t u p the C o m p u t i n g L a b o r a t o r y a t Newcast le a n d it was
here tha t he acquired a taste for university adminis t ra t ion . H e
sha rpened his teeth on the C o m p u t e r Board and in doing so demon
s t ra ted his prowess to such a n extent tha t the Universi ty m a d e
h im a pro-Vice Chancel lor . W h e n D r H e n r y Mil ler died suddenly
in the s u m m e r of 1976 E w a n Page s tepped into the breach and
served wi th dist inction as act ing Vice Chancel lor .

H e n o w becomes a Vice Chancel lor in his own r ight , a t R e a d i n g
Univers i ty , and will be the first Fel low of the British C o m p u t e r
Society t o d o so. All readers of T h e C o m p u t e r Jou rna l will give
h im their best wishes.
M A U R I C E WILKES

104

Professor Ewan Page

T h e Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/21/2/98/477635 by guest on 19 April 2024

