A hybrid computer performance modelling system

Eric Foxley

Department of Mathematics, University of Nottingham, University Park, Nottingham NG7 2RD

The paper describes a method for modelling computer performance using a combination of analytic
modelling and discrete event simulation techniques. The hybrid method is able to represent a variety
of workloads and scheduling/deadline systems better than either technique separately.

(Received November 1976)

1. Introduction

Most modelling of computer systems falls into one of the

following two categories:

(a) analytic models (usually based on queueing theory), in
which a mathematical model of the system is formulated.
This model assumes a knowledge of the hardware con-
figuration and the statistical distribution of resource
demands by the programs running, and is solved analytic-
ally. Typical examples of this approach are Berners-Lee
(1972), Buzen (1971) and Chen (1975). Other more prag-
matic approaches are possible, such as fitting a function to
a known performance value.

(b) discrete event simulation, in which the detailed operation
of the whole system is simulated at a low level, using as
discrete events program interrupts, and peripheral res-
ponses, for example. A typical example of this approach
was IBM’s research work for the design of the 360/85
cache memory system.

The major advantages and disadvantages of the two approaches
include

1. Analytic Models

The main advantage of these models is the small amount of
computation involved in their solution. Once the model has
been determined analytically, specific solutions are readily
computed. The main drawbacks relate to the statistical assump-
tions that must be made for the model to be solvable analytic-
ally. These assumptions usually include, for example, equili-
brium conditions and exponential distribution of resource
demands. The equilibrium condition is particularly unrealistic,
since the loading of a large core job in a multiprogramming
system can suddenly reduce the number of active jobs signifi-
cantly. The requirement for exponential distribution of resource
demands is now being relaxed in some models (Gaver, 1971;
Kobyashi, 1974; Salman, 1976). Another feature of real
computer systems which is only just beginning to enter
analytic modelling in a restricted form is that of job priorities
and deadlines (Chow, 1975; Mitrani and Hine, 1975; Coffman
and Mitrani, 1975).

2. Discrete event simulations

Such simulations usually run slowly, orders of magnitude
slower than real time, and so are expensive in their computa-
tion demands. However, they do allow a detailed study of
particular hardware features to be made, and are valuable at the
hardware design stage. In addition, time dependencies can be
built in, so that nonequilibrium conditions can be simulated.

It is proposed that, to estimate the performance of a general
purpose computer system whose workload includes a large
variety of jobs, an intermediate method is most likely to offer
the best results in terms of a balance between accuracy and
computation required. The following method has been
designed to fulfil this need, and yet allow the analytic/discrete

Volume 21 Number3

event interface to be moved up or down to obtain optimum
results. The area of ‘hybrid’ simulation has been little explored,
the only known reference being Kimbleton (1974).

The hybrid system to be described involves the simulation of
a workload queue (of jobs with particular statistical distribu-
tions of resource demands) and a programmed job scheduler
(which starts jobs and swaps them in and out if required, thus
defining a current active job mix from the jobs currently in the
queue). After each entry to the job scheduler, an analytic
model is applied to the current active job mix, to determine the
speed of processing of each active job, and the time pattern is
advanced to the next event using discrete event simulation
techniques. Thus a situation in which a single large job has a
pathological effect on the system is passed to the analytic
model as appropriate and becomes included in the overall
performance calculation in a realistic way.

A second reason for the choice of a simulation system
involving a job scheduling algorithm arose from a previous
involvement in defining a benchmarking system. The user

choose
first
event

1

advance
running
costs

compute
.| cost/
perf'ce

set up
config +
workload

estimate
costs

workload Y
complete?

N

what type
N of event?
ae ty (2
b 32 S .
300 s £ 5 proﬁl?’ dag,
change 3

end
job

job
scheduler

enter
new job

adjust no
job action

[2

check
state of
machine

i

analytic
performance
model

Y

predict next
job event

J

Fig.1 Flow diagram of simulation process

20z Iudy 61 U0 188n6 Ag 000ELE/S0Z/E/1LZ/310ME/ULO0/WO0d"dNO" oIS PEDE//:SARY WO PAPEOUMOQ

view of the performance of a computing system involves not
only the performance in terms of total throughput, but the
ability of the system to meet deadlines and provide a good
turnaround time. It is therefore essential to include in any
performance calculations some measurement of the system’s
success in meeting deadlines and one must also define a job
scheduler which makes decisions to balance a possible loss of
throughput against a requirement to meet deadlines.

A third reason for implementing this system relates to its use
in a university undergraduate operating systems class. It was
felt that although one could teach, for example, core and
processor scheduling the students never obtained a ‘feel’ for the
scheduling problems in the provision of a general purpose
computer service or for the balance between processor power
and core size for optimum performance. A version of the
performance measuring system has been built in which the
student must supply a hardware configuration and a job
scheduler to meet certain workload and cost requirements.

2. Overview
A flowchart of the modelling system is shown in Fig. 1. Each
item in a double lined box represents a module which can be
varied to represent different workloads/computer systems/job
schedulers, etc. and is discussed further in the next section. .

The flowchart represents essentially a simple discrete event
simulation system. After each entry to the job scheduler, the
state of the simulated machine is checked (for example, that
the swap area has not been exceeded), and the analytic model
is applied to the mix of jobs currently running. From this we
determine the rate of processing of each active job, and can
predict the time of the next job event (a job ending or changing
its core demand, for example). This is then compared with
other events (such as jobs being loaded, or time interrupts) and
the first event determined and executed.

The cycle then repeats, and is terminated when the requisite
number of jobs have been completed.

3. The Discrete event/analytic interface
A factor which offers great flexibility in this hybrid method of
performance estimation is that the discrete event/analytic
interface can be varied to provide different levels of analytic
modelling without any fundamental change to the system.
For example, the job scheduler currently being used is in full
control of swapping jobs to and from the drum, and the
simulator checks that the core size and swap area are not
exceeded. This enables a simple queueing model to be used.
However, the interface could easily be moved in a more
analytic direction by allowing the (effect of the) swapping to
be included in the analytic model. The scheduler could now
schedule more than the actual available store and the analytic
model would have to include, for example, some kind of
degradation factor to represent the swapping overheads
incurred when the actual store is exceeded. Such analytic
models for virtual store have been developed by Belady (1967),
Brandwajn (1974), Courtois (1971) and Saltzer (1974).

4. System dependent modules

The four modules indicated with double lines in the flowchart
of Fig. 1 represent between them the system being modelled.
They will now be discussed in more detail.

4.1 The analytic model

Many models have been developed and published in this area.
We require a model which, given the current mix of jobs,
determines the rate of processing of each job. Most models
can be easily amended to give this information.

The analytic model used in the system for teaching under-
graduates is biased so that the performance degradation due

cpu speed in mips

£0, o©

i i Il 1
20Kw S50Kw 100Kw 200Kw SOOKw

main store size

Fig.2 Estimated configuration costs

1000 mins

1 1 1
20Kw S0Kw 100Kw

1 1
200Kw 500Kw

20z 1udy 61 U0 1s8nb Aq 000E.E/S0Z/E/ L Z/310M4e/|ufoo/Wod"dno-olWapeoe)/-Sdny wo.) Pepeefimed

Fig. 3 Time to complete 100 jobs of simple workload

to a CPU/transput balance is exaggerated. This encourages
the students to write schedulers which carefully maintain a
balanced job mix.

4.2 The simulated workload

Each job in the simulated workload has a ‘user specification’
which can be inspected by the scheduler. This consists of a
required completion time and ‘user’ estimates of elapsed time,
core use and 1/O bias (ratio of I/O activity to total activity).
The job then has a runtime profile, taking it through a number
of phases, during each of which its profile (core and I/O bias)
is constant. Some of these phases may violate the user speci-
fication. The scheduler can inspect the instantaneous state of a

The Computer Journal

250 mins |

300 mins

0.5 . Q.5
500 mins
600 mins
\/\M
0.2 b 0.2~]
1000 mins
1 1 { | | 1 1 1 I 1
20Kw SO0Kw 100Kw 200Kw 500Kw 20Kw SOKw 100Kw 200Kw 500Kw
Fig.4 Optimum configurations for simple workload Fig. 6 Time to complete 100 jobs of University workload
T T T T T T T T T T
£30 s) -
5 B 1
!
1
£24 1
£20 /
2 4 2 L ..
£18 .
-
1 . 1 E
0.5 B 0.5 -1
0.2 — 0.2~ 1
| 1 1 ! | 1 1 1 1 1
20Kw 50Kw 100Kw 200Kw S00Kw 20Kw SO0Kw 100Kw 200Kw SO0Kw
Fig. 5 Estimated cost per job for simple workload Fig. 7 Optimum configurations for University workload

job but cannot obtain information in advance of its runtime
profile.

The workloads built into the system at present include two
examples specifically. for student use (the first a simple random
workload, the second a ‘real time’ workload of small I/O
bound high priority transactions plus background, all with
accurate user specifications) and a number of workloads based
on the local University Computing Centre’s workload statistics.
Because of the way the latter have been collected, they include
some of the operating system overheads (such as directory
accesses and accounting). If it was required to simulate the
workload, as it would run on a different range of machines,
variations in operating system and compiler overheads would
have to be taken into account.

The simulation of timesharing workloads could easily be
included, but the curremt examples all relate mainly to batch
work.

Volume 21 Number3

4.3 Hardware costs

The formula deducing cost from the configuration specified
is an ad hoc one, devised mainly with a view to student use,
but based roughly on ICL 1900 series prices.

4.4 The job scheduler
There are obviously many objectives which may conflict with
each other in the design of a scheduler. Should one maximise
throughput (maximise core use, or optimise CPU/transput
balance), or minimise the number of late jobs? Should one
abandon jobs which violate their user specification? The
balance between all these features depends on the type of
system being modelled but all realistic systems can be modelled.
The penalties in throughput related to returning jobs on time
are particularly complex. If the overall throughput is reduced
too far average turnarounds must deteriorate and this is particu-
larly significant on small store systems.

207

Z ludy 61 uo 1s9nB Aq 000ELE/S0Z/E/LZ/BI0IE/UlLO0/WO0d"dNO"OILISPEDE//:SARY WO PAPEOUMOQ

o
N
=

Figs. 6, 7 and 8 show the same information as Figs. 3,4 and 5
respectively, but for a workload of statistical distribution
approximately that of the University Computing Centre
workload at Nottingham. The discontinuities below about
7 110K of core store arise from the fact that the scheduler is
forced to abandon the larger jobs of the workload when the
core store falls below this size. Because these are large jobs, to
abandon just one of them makes a significant ‘apparent’
4 change in performance.

5.2 Student use

One of the original intentions of this software was to enable
students to obtain a feel for job scheduling and machine
configurations relative to performance.

The areas which the model brought home most vividly
. include:

(a) problems of store jams—each job involves a main store
overhead, and it is all too easy for jobs to be loaded and
swapped out until there is no space left to swap them in

. again

(b) problems of long jobs related to the mean time betweeno
system breaks—when the total execution time of a longg

| 1 1 job becomes of the same order as the mean time betweeno

1 1
2o o ook 200K ook breaks, jobs which do not have restart points never getQ
Fig. 8 Estimated cost per job for University workload completed.

Wy wouy ps

5. Results of initial experiments 6. Conclusion) . : .
5.1 Cost/performance analyses The system written has achieved its primary ObjCCthC that of?

Using initial approximations in all the areas discussed in the ~ Simulating realistically a varied job mix, using acceptably?
previous section, a number of performance values have been ~ Small amounts of computer time (approximately 1 minute of3
explored over a range of store sizes and CPU speeds. The ICL 1906A mill for 1000 jobs). The system has further shownB
graphs shown in Figs. 2 to 8 are to a logarithmic scale in both itself to be capable of extension to any job mix, scheduler ando
directions, the store scale (horizontal) varying from 10 to 1000 ~ hardware system, provided the appropriate statistics areo

kilowords, and the CPU speed scale (vertical) from 0.1 to available. °
10 MIPS (million instructions per second). It is felt that an important development of the model is in theO

The curves of constant cost configurations are shown in area of user involvement. The model is capable of beings
Fig. 2—obviously the more store one purchases, the less cash extended to include aspects of user sat1sfactlon/dlssat_nsfactnon\
is available for the processor. The curves of constant per- and user responses (for example, repeated resubmission ofz
formance configurations for 100 jobs of a simple workload development jobs a certain time aft@:r completlon of a test run).g
(uniformly distributed between 10 and 20K store demand, and ~ The whole area of user relationships with computing centres.
1 and 5 minutes elapsed time on a | MIP machine) are shown 1S gengrally under.-r.esearched at present, yet is a vital consider-3
in Fig. 3. The time quoted on each line is the total time ationin the provision of a service.
to complete the workload (first job loaded to last job ended).

The optimum performance for a given cost of hardware is 7. Acknowledgements
now the locus of points where a curve of Fig. 2 is tangential .Thanks are due to my colleagues, particularly Dr C. D. Litton
to a curve of Fig. 3. This locus is shown in Fig. 4. We can also for advice during the development of the above ideas, to the
use the curves of Figs. 2 and 3 to produce contours of cost University Computing Centre for workload statistics collected(,,
per job figures. These are shown in Fig. 5, and show graphically ~ for me, and to my students for testing the resilience of myo

=

nb AY 000€LE/S0

the variation of cost/performance over different configurations. system. %

=
References %
BELADY, L. A. and KueHEN, C. J. (1967). Dynamic Space-sharing in Computer Systems, CACM, Vol. 12, pp. 282-288. §

BerNERS-LEE, C. M. (1972). Three Analytic Models of Batch Processing Systems, BCS Conference on Computer Performance, University
of Surrey, Sept. 1972, pp. 43-52.

BRANDWAIN, A., Buzen, J. P., GELENBE, E., and PoTier, D. (1974). A Model of Performance for Virtual Memory Systems, Proc. ACM
SIGMETRICS Symposium, Sept. 1974.

BuzeN, J. P. (1971). Analysis of System Bottlenecks Using Queuing Network Models, Proc. ACM SIGOPS Workshop on System Performance
Evaluation, April 1971, pp. 82-103.

CHEeN, P. P. (1975). Queuing Network Model of Interactive Computing Systems, Proc. IEEE, Vol. 63, No. 6.

CHow, W. M. (1975). Central Server Model for Multiprogrammed Computer Systems with Different Classes of Jobs, IBM J. Res and Dev,
Vol. 19, No. 3, p. 314.

Corrman, E. G. and MiTRANI, 1. (1975). Selecting a Scheduling Rule that Meets Pre-Specified Response Time Demands, Proc. 5th Symp.
on Operating Systems Principles, Austin.

CourTols, P. J. (1971). On the near-complete-decomposability of networks of queues and of stochastic models of multiprogramming
computer systems, Comp. Sci. Dept. Carnegie-Mellon University, Pittsburgh, Pa., Rep. CMU-CS-72-111, Nov. 1971.

GAVER, D. P. and SHEDLER, G. S. (1971). Multiprogramming System Performance Via Diffusion Approximations, IBM Research Report
RJ-938, Yorktown Heights, NY.

KIMBLETON, S. R, (1974). A Fast Approach to Computer System Performance Prediction, Conference on Computer Architecture and
Networks, IRIA, France, August 1974.

208 The Computer Journal

KoBayvasHi, H. (1974).
Vol. 21, No. 2, pp. 316-328.
MitrANI, 1. and HINE, J. H. (1975).

SAL TZER, J. H. (1974).
SAL MAN, O. (1976).

Application of the Diffusion Approximation to Queuing Networks, I: Equilibrium Queue Distributions, JACM,

Complete Parameterised Families of Job Scheduling Strategies, Technical Report 81, Computing
Laboratory, University of Newcastle upon Tyne, October 1975.

A Simple Linear Model of Demand Paging Performance, CACM, Vol. 17, pp. 181-185.

Mathematical Modelling of Computer Systems, Ph.D. Thesis, University of Nottingham.

Book reviews

Managing Software Projects, by J. K. Buckle, 1977;
(Macdonald and Janes, £3-95)

108 pages.

This is a slim volume in the series of ‘Computer Monographs’ pub-
lished by ‘Macdonald and Jane’s, written by British authors, mainly
1 suspect with experience in one way or another of ICL machines
and methods. Mr Buckle, who uses his experience in ICL for the
basis of his 108 pages, does provide some good ideas on writing
software to a planned budget for anyone who is totally new to the
subject. But for a prospective reader who has experienced the
frustrations of actually trying to control large scale program
development, he provides little that is new or concrete and tends to
make do with vague generalisations in the really tricky areas.

The author defines software as being not only computer manu-
facturers’ compilers and operating systems, but also a user’s
implementation of a complex data base; or even a suite of programs
based on a single set of files where intercommunication is important.
But one has the feeling that his heart is really in writing the manu-
facturer’s software and the environment he describes and the methods
he proposes seem less suited to a normal DP installation—see the
discussion on ‘Releases’, ‘Phasing’ and ‘Implementation Tools’.

Mr Buckle does not seem to cover the function of the systems
analyst and omits his investigations and work on economic justifi-
cation, in order to concentrate on the job of the project leader of
the programming team. This project leader tends to be depicted
not only as all powerful in controlling the resources, but to be given
the task of producing software without any real need to justify the
project or its total cost. In the real world of commercial DP,
estimates of programming cost and time have to be made at the
initial proposal stage, long before the task is well enough defined
to suit the techniques of Mr Buckle’s project leader. If the project
is given the go-ahead, then it is these initial estimates which tend to
form the project leader’s budget—whatever his subsequent investi-
gations may indicate. Also the project leader has to compete for pro-
grammer resources with all the other projects and suffers from staff
leaving and user departments changing their mind. The author says
‘find a single person who can represent the user departments, and
carry out all negotiations with him’, but most ‘customers’ in firms
would not be willing to entrust one person with their requirements,
and desperately retain the freedom of individual bargaining. Even if
one user by sheer willpower becomes the acknowledged negotiator,
the odds are he will be promoted or transferred before the project
is completed.

The author describes the typical documentation required to record
and control the project, such as the “Functional requirements
specification’, ‘File descriptions’, ‘Module maps’, ‘Testing plans’,
‘Project log’, etc. All these are of course worthwhile and one idea,
the ‘Slip Chart’—to show the different estimated times of com-
pletion at various stages of the project, measure slippage and record
action—is a useful addition. But the crucial problem still arises as
to what to do when there is slippage? What actions are possible if
the estimates of programming time and complexity were wrong?
What can be done if there are no spare programmers or less high
priority projects, or no extra machine time available? How can you
accurately measure progress? Mr Buckle is not very helpful,
especially as he seems to rely on everyone acting logically, un-
emotionally and with great ability.

The difficult process of estimation of programming time and
resources also receives little assistance in the book, reliance being

Volume 21 Number3

placed on basing estimates on the number of lines of code per
average programmer per unit of time. This seems to leave large
scope for errors, especially in deciding how many. lines of code there
will be in the first place. Estimating techniques for software still
seem to be primitive in most installations, including from this
evidence, computer manufacturers.

Mr Buckle likens the development of software to the initial desigh’
and prototype construction of a car or a computer. This may
acceptable to ‘customers’ in computer manufacturers who wilf
realise the problems of prototypes, but it will not be accepted by thg
average department manager of a business concern, who tends to b&
sceptical about using a computer system in the first place and needs
reassurance that the program will really work rather than be aske
to make allowances for the hazards of developing a new products
The computer profession must be able to do better than this or thé
potential benefits will never be accepted in principle nor obtained i 1@
practice.

To sum up, this is an important topic for the computer mdustr§
and the book is easy to read and worth perusing. But it cannot b@
recommended as the solution to the problem, least of all in comS

mercial DP. 8
R. M. PaINE (Londony

o

3.

=2

)

The State of the Art in Numerical Analysis, edited by D. A. HS
Jacobs, 1977; 978 pages. (Academic Press, £20-00) %

This book is based upon the proceedings of a conference of the sam%
title organised by the Institute of Mathematics and its Appllcatlonﬁ
in April 1976. The first residential conference of the IMA was held:,’
in 1965, also with the same title and the proceedings of that con®
ference were also published in book form (Numerical Analysis: arS
Introduction, edited by J. Walsh, 1966; 212 pages. Academic Press)S
Dr Scriven notes in his foreword to the present volume that ‘sinc&
the conference the use of computational methods to solve thé}
mathematical problems arising from a great variety of applicatioro
areas has exploded in keeping with the availability of increase
computing power.” Thus, whereas the aim of the earlier volume‘ﬁ
was to provide ‘a general survey of the principal topics of interest2
without attempting to cover them fully’, the present ‘volumesurveys;,
the theoretical and practical developments across a wide area of®
numerical analysis over the past decade’, and fully justifies its tltle
The material in the book is presented in seven distinct parts which,
with the exception of Part III which is the longest and contains five
chapters, contain three chapters. The topics covered in these seven
parts are 1 Linear algebra, Il Error analysis, III Optimisation and
nonlinear systems, IV Ordinary differential equations and quadrature,
V Approximation theory, VI Parabolic and hyperbolic problems,
V11 Elliptic problems and integral equations; each of the 24 chapters
is written by a‘specialist in the field. A feature of each chapter is the
substantial number of references given. The book is handsomely
bound and printed on good quality paper, although in the interests
of economy the printed page is in the form of typescript photocopy.
The price is probably sufficiently high to deter private subscription,
but anyone who is interested in recent theoretical and practical
developments in numerical analysis should ensure that he has

access to a copy.
N. RiLey (Norwich)

209

