Search times using hash tables for records with

non-unique keys

W. B. Samson* and R. H. Davist

Recent research in hash coding (Knott, 1975; Maurer and Lewis, 1975; Severance, 1974) has con-
centrated on unique keys, or uniform distributions of keys. This paper is intended to clarify the
effect of non-unique keys with various distributions on search times in the hash table thus enabling
recommendations to be made to those who must deal with hash tables of this type. It is found that
extreme rank-order frequency distribution of keys, such as the Zipf distribution, result in much
higher access times than more uniform distributions, but it is possible to reduce these to some extent
by loading records with common keys on to the hash table first.
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1. Introduction

1.1 Hash tables

A hash table consists of a number of addressable buckets,
each of which is capable of holding one or more records.
Each record is located in the table by a transformation (or hash)
of its key into an address within the range of bucket addresses.
For example, for a reasonably uniform distribution of key
values it may be possibls to divide the key by the number of
buckets and use the remainder as the bucket address (the range
of key values is, of course, much greater than the range of
bucket addresses). This system may be used in any addressable
storage medium—the most common application areas being
symbol tables for compilers and direct access files.

Clearly, problems occur when the number of records directed
to a particular bucket is greater than the bucket capacity.
Some method ‘of dealing with bucket overflows becomes
necessary. When a bucket overflows, the overflowing records
may be dealt with in one of several ways. The quadratic hash
overflow method of Maurer (1968) is relatively widely used.
This method is efficient and has largely replaced alternative
approaches.

1.2 Non-unique search keys

Up to the present time, all published work on hash tables
assumes either that each record has a unique search key or that
non-unique search keys follow a uniform distribution (Book-
stein, 1974). The problem of a series of non-unique keys is
encountered in many distributions of ‘naturally’ occurring
keys. For example, coded fingerprints form a distribution that
is far from uniform, as do surnames and words in running
speech; Zipf (1949) found that the frequency of the nth most

commonly used word is equal to ;ll of the frequency of the most

common word
ie. f, = f—‘ )
n

where f; is the frequency of the ith most commonly used word.

In this paper, other frequency distributions of keys are
investigated, the need for further research on the subject
of non-unique keys having been highlighted elsewhere (Maurer
and Lewis, 1975). Some small scale experiments were carried
out by Samson (1976b) to examine the need for further
research and these confirmed that the access time for a set of
records whose keys follow the distribution of equation (1) is
likely to be considerably higher than that for a set of records
with unique keys. Furthermore it is apparent that if records
with non-unique keys are to be loaded on to a hash table,

the best search times are achieved by loading the records
on to the table in descending order of key frequency. In the
light of these simple experiments it was decided to investigates
the loading of various frequency distributions of records on toS

a file of standard size for various loading factors;

loading 3

factor being defined as the percentage of the table which isQ
occupied. The objective of the investigation is to determine the=
conditions under which the strategy of loading the records 103

descending order of frequency is significantly superior to the=
random loading of records.
Experiments are described for the loading and searching of a8

e//: sd

hash table not only for a number of theoretical dlstrnbutlonsg
but also for a number of real distributions of records w1th3

non-unique keys. ;3
S

1.3 Frequency distributions of non-unique keys %
The theoretical distributions chosen were of the form g
fu= 1ol @2

where f; is the frequency of the ith most frequent key and 6 is©
the negative slope in the log-log plane. This is a special case of%
the Mandlebrot distribution (1954) which refines the Zipfis

distribution. 0 was chosen to take values 1,

9, -8,

‘1 in@

order to span realistic distributions, three of Wthh wereﬁ

considered, viz.
1.

In order to make the three real distributions and the theoretical=

The number of occurrences of surnames in the Isle of ManS
telephone directory (referred to as the Manx distribution®
for short). <

20€.€/0

. The number of occurrences of keywords in the KWICm

index of a set of Building Science Abstracts (KWIC). §

. The number of files kept by users at Heriot-Watt UniversityZ
(H-W). >

N

ones directly comparable they were each scaled to hold 1000O
records.

2. Simulation experiments for theoretical distributions of records
with non-unique keys

The table parameters chosen for the simulation experiments
were as follows:

Number of records:
Overflow method:
Loading factors:
Blocking factor:
Keys used:

1000

quadratic hash

10%, 20%, . . ., 95%
10 records per bucket

the natural numbers 1, 2, 3, .. ., etc.
in descending order of frequency
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Hashing algorithm: bucket address = (k*p) mod n where
k is the key, p is a prime number

and n is the table size.

These choices are justified in the following sections.

2.1 Number of records
The number of records used in the simulation experiments
was chosen as 1000 for the following reasons:

(a) when the mean number of table accesses per search is
calculated the standard error of this mean is small compared
to the fluctuations from other sources and so it may be
ignored

(b) 1000 records represents a realistic table size in many practical
situations

(¢) if the number of records chosen was much more than 1000,
the tables used in the simulation could not have been fitted
into the core of the machine used for the simulation.
The use of backing store would then have made simulation
run times prohibitively long

(d) 1000 is a round figure and so eases the analysis of the results.

2.2 Qverflow method

The overflow method chosen for the simulation experiments
is the quadratic hash method. The particular case chosen is
that for which the ith bucket address in the sequence of over-
flows is

(j + 3i* — }i)mod n

where j is the initial calculated address and n is the table size.
This method was chosen because it is simple, efficient, easy to
check manually and widely used in practice.

There are, of course, simpler overflow methods, for example
linear probing, but these are much less efficient. There are also
more efficient methods, for example direct chaining, but these
are much more complicated and less widely used in practice.

2.3 Loading factor
The loading factor, or density, of a hash table is defined to be
the ratio of the number of records held in the table to the
overall capacity of the table and is usually expressed as a
percentage.
High loading factors normally mean long access times. This
effect is felt most strongly for loading factors in excess of 50%.
Critical loading factors occur at different values for the differ-
ent distribution of records. It is therefore useful to observe
access times over a wide range of possible loading factors.
The range of values chosen is

10%, 20%, 30%, 40%, 50%, 55%, 60%, 65%, 70%,

75%, 80%, 85%, 90%, 95%

It will be noticed that in the critical range over 50%, the loading
factor goes up in increments of 5%.

A subset of this range of values for the loading factor was
chosen by Lum, Yuen and Dodd (1971) when they investigated
the effect of blocking factors on access times.

2.4 Blocking factor
The blocking factor of a table is defined as the number of
records a bucket will hold when it is full.

The blocking factor chosen for these simulations is 10 records
per bucket. This value was chosen for several practical reasons:

(a) the table is represented by an array in the main store of
the computer, one array element representing one bucket.
With 1000 records, a loading factor of 10% and a blocking
factor of 10 the table size is 1000 buckets which fits
nicely in the main store as an integer array. If, now, a
blocking factor of 1 was chosen, the table size would be
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10,000 buckets. This table along with other storage require-
ments for the simulation would not fit in the main store

(b) small blocking factors encourage overflows due to the
random collisions of records, even those with rare keys.
These overflows tend to mask the effect of collisions of
records with the commoner keys, which is the essence of
the present study

(c) blocking factors in practical direct access files may be
of the order of 10

(d) the effect on access times of various blocking factors was
determined in a series of simulation experiments by Lum,
Yuen and Dodd (1971) and it is not difficult to apply these
results to the present experiments to determine the effect
of using other blocking factors.

2.5 Keys
The keys used for the groups of records are the natural numbers
1,2,3,4,...,etc. in descending order of frequency. Thus, the
most common set of records has key = 1, the second most
common has key = 2, and so on. This set of keys is, of course,
an ideal one when it comes to spreading them evenly acrosg
the table. The reason for choosing such keys was that ther
would be no clumpmg for the initially calculated addresses,l
Such clumping is, of course, hard to predict and its effect is tol
increase search times by an unpredictable amount. Fluctuations
of this kind would merely obscure the results which thes
experiments are designed to determine.

The effect of using a non-uniform set of keys is independent:
of the present study but is nevertheless a topic worthy of furthe
research in its own right.

2.6 The hashing algorithm
The hashing algorithm used in the simulation is of the form¢

j = (k*p) mod n

nief|ulwoo/woo dno-olwepedert:sdiPwu®)

where j is the calculated bucket address (before overflow=
if any), k is the key of the record being loaded or searched fora
p is a prime number and » is the number of buckets in the tablem

This algorithm spreads the hashed keys as evenly as possxbhﬁ
across the table. Since n and p are relatively prime, the firs{2
n keys are directed to different buckets. When the number of5
keys exceeds n, the cycle of addresses repeats itself. Thléﬁ
process ensures that no two of the » most frequent keys ar%
directed to the same address, thus relieving the problem of®
collisions between two sets of records with common kcys(D
Such collisions would, again, only serve to obscure the resultﬁ
being sought.

dy 61 uois

2.7 Table size
The choice of table size is crucial when quadratic hash over=
flow is used. The danger in choosing a bad table size is that thé3
sequence of overflow addresses only reaches a small fraction~
of the buckets in the table before it starts to repeat itself.

Hopgood and Davenport (1972) have shown that when the
table size is a power of 2, all the buckets will be visited before
the overflow sequence starts to repeat itself. This holds true
for one particular case of the quadratic hash algorithm—
the case used in the present work. Ecker (1975) has shown that
for any table size, a quadratic hash algorithm may be found
which allows all buckets in the table to be visited.

The size of the table determines the loading factor for a given
number of records. For each of the loading factors indicated
in Section 2.3, the corresponding table size was calculated.
If the calculated table size did not have a long overflow
sequence, then the closest table size with a reasonable overflow
sequence was chosen, using a method described by Samson
(1976a).
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2.8 The simulation
Three programs were used for the simulation of the behaviour
of the theoretical distributions of records in a hash table.
The first simulates table behaviour when the records are loaded
in random order, the second when records are loaded in
descending order of frequency and the last when records
are loaded in ascending order of frequency. The programs
only differ in the order in which the records are blocked,
see Samson (1976b).

The output from each simulation run includes the following:

(a) a histogram showing the distribution of records in the
loaded table

(b) the mean number of buckets to be accessed during the
searches

(c) the loading factor.

If an endless overflow cycle was entered during the loading
of the table, the message ENDLESS BLOCKRUN was
printed. If loading was completed successfully but an endless
overflow cycle was entered during searching, the message
ENDLESS SEARCH was printed.

Simulation experiments were performed for the ten theoretical
distributions for each of the fourteen loading factors. The set
of experiments was performed seven times for various values
of the prime number p in the hashing algorithm (Section 2.6).
There are thus seven results for each experiment. The median
value and interquartile range of each result may be determined
from these results.

The analysis of the results is dealt with in Section 4.1.

3. Simulation experiments for three natural distributions of
records with non-unique keys

The three natural distributions referred to in Section 1.3 were
scaled so that each distribution contains, as nearly as possible

1000 records, thus making simulation results directly compar-
able with those from the theoretical distributions.

The hash table used for these simulation experiments is
identical in all respects with that described in Section 2 for the
simulations of theoretical distributions, that is, hashing
algorithm j = (k*p) mod n, blocking factor = 10, and loading
factors covering the range 109 to 95%. Quadratic hash
overflow of the form ith address = j + i2 — }i is chosen.
Justification of the choice of table parameters is set out in
Section 2.

The programs used for the simulation of the behaviour of
the natural distributions of records are similar to those used
for the theoretical distributions, and the output format is
identical.

In particular, the mean number of table accesses per search
is given for each loading factor.

One simulation run was performed for each of the natural
distributions over the range of loading factors used. It was
not found necessary to perform a series of simulation runs
for different hashing algorithms because the results from a set
of runs are sufficient to indicate that the natural distributions
behave in an exactly similar way to the theoretical ones. In all
cases, the duration of a simulation run was 30 minutes. Such a
run covered the full range of 14 loading factors for a given
input distribution of records.

4. Simulation results

4.1 Analysis of theoretical distributions

The results of the simulation experiments described in Sections
2 and 3 were punched on to cards and a set of procedures
written -to analyse these results and to plot graphs of them.
Figs. 1, 2 and 3 show isometric projections of the three dimen-
sional graphs of the results of the simulation experiments for
the theoretical distributions. The three axes are:
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Fig. 1 Random order of blocking
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(a) the negative slope of the frequency distribution of records,

in the log-log plane, ranging from 0-1 to 1-0 5
(b) the loading factor, ranging from 109 to 95% %
(c) the mean number of accesses per search (median value over=

seven experiments). ;3

Fig. 1 shows results when records are loaded in random order,>
Fig. 2 when records are loaded in ascending order of frequencyS
and Fig. 3 when records are loaded in descending order ofg
frequency. %
It can be clearly seen that at high values of slope and high%
loading factors there is a clear-cut separation between theZ=
mean access times for the three orders of loading the table. &
Loading records on to the file in descending order of key=
frequency gives much shorter access times than loading themr
in random order, for combinations of high slope and highS
loading factor. S
Loading records on to the file in ascending order of keyRs
frequency gives correspondingly worse results. g
Since the table parameters used in these experiments arec
typical of those encountered in practice, it is of interest to3
determine when the strategy of loading records in descending§
order of key frequency is significantly better then the randoma
order strategy. >
It should be noticed that the mean number of accesses per=.
search does not tend asymptotically to 1-0 as the loading factor S
is reduced. This is because the larger groups of records sharing ™
the same key will always fill several buckets. For example if
key k; is shared by f; records, the number of buckets occupied

fi

will always be greater than or equal to A where b is the blocking

factor. In the limit, as loading factor tends to zero, the mean
number of buckets accessed in a search will be

zf (enim (5 +1)
>

i=1

€/Le

q820

where n is the number of distinct keys.
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ox /LORDING FACTOR
Fig. 2 Rare keys blocked first

4.2 The median test

In Section 2 an account was given of the experiments, using
different hashing algorithms, performed for a range of table
parameters. The central tendency and dispersion of the mean
number of accesses made during search. were measured
using medians and interquartile ranges respectively. The median
test was used to determine whether the strategy of loading
records in descending order of frequency is significantly better
than random loading.

Fig. 4 shows that region of the load-slope plane and the points
where a significant improvement was found. It is of interest
that some points which might be expected to show a significant
improvement (e.g. slope = 0-8, loading = 90%) do not,
although the medians found do indicate an improvement.
This is due to the high interquartile range of the values found
and of course to the small number of experiments.

Despite this, there are sufficient points with this degree of
significance to show that the effect is a real one.

In general, when the slope is 0-7 or greater, there is a good
chance that a significant improvement in table performance
may be obtained by loading records on to the table in descending
order of frequency.

In order to assess the benefits of using the best loading
strategy the amount of improvement in median access time is
indicated in Fig. 4 by specific symbols within the circled points.
‘** represents <309 improvement, ‘+’ represents 20%-30%;
improvement, ‘x’ 10-20%, improvement and no symbol
represents a point where less than 109 improvement was
found.

4.3 Comparison with natural distributions

Results for the three natural distributions referred to in
Section 1.3 can be compared on the log-log plane to the
results for the theoretical distributions. The theoretical
distribution results with negative slope of -6 gave a good fit
to both the Manx and KWIC distribution results, while the
theoretical distribution results with negative slope -85 fitted
the H-W distribution results.

Given any natural distribution, therefore, it would be easy to
predict its behaviour simply by fitting a straight line in the
log-log plane and measuring its slope. The natural distribution
of records would behave in a similar way to the theoretical
distribution with this slope.
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5. Conclusions S
The results of the simulation experiments described show thag
for a hash table containing records with non-unique keys &
significant improvement- in performance can be achieved
by loading records in descending order of frequency of their
keys, provided the negative slope of the distribution in the
log-log plane is high. If, on the other hand, the negative slope
of the distribution is low, there is no significant improvement
in performance and the expense of loading records in descending
order of frequency would not be justified. The area in which a
significant improvement in performance might be expected
is shown in Fig. 4.

It is possible to make the following recommendations to
systems analysts and programmers who must deal with hash
tables involving records with non-unique keys:

1. determine the shape of the rank order frequency distribution
of records with the same key, by examining a random sample
of the records.
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2. if the negative slope of this distribution in the log-log plane
is greater than, say, 0-6 then perform a simulation as
described below.

3. The simulation should involve the same number of records,
loading factor, blocking factor and overflow method as the
hash table itself. The distribution of records found in (1)
above should be scaled appropriately.

4. The simulation should be performed several times for various
hashing algorithms and the median test applied to determine
whether the performance is significantly better when
records are loaded in descending order of frequency.

5. If a significant difference is found in step (4) above then
provision should be made for loading the table in descend-
ing order of frequency. If the table is a dynamic one, e.g. a
random access file to which records are constantly being
added and deleted, a housekeeping operation should be
performed periodically to reload the current set of records
in descending order of frequency.
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Book reviews

Fundamentals of Data Structures, by E. Horowitz and S. Sahni,
1977; 564 pages. (Pitman, £5-95).

This text is intended for use in a data structures course for students
with some previous programming experience. Its scope is standard
and may be summarised by the chapter headings—after an intro-
duction, chapters follow on arrays, stacks and queues, linked lists,
trees, graphs, internal sorting, external sorting, symbol tables and
files.

This is a comprehensive treatment of standard topics with the
overall approach kept so informal that parts are not sufficiently
rigorous. Many algorithms are given, with some accompanying
correctness proofs and performance analyses that might usefully be
more formal. The algorithms are written in Sparks, the authors’
own ALGOL-like programming language—Sparks is not completely
defined, and attempts to run some of the algorithms given in the
text using the Sparks to FORTRAN translator discussed in Appendix
A would seem fraught with difficulties. The authors do pay some
attention to good structured programming practices, and also to
the idea that data structures should be defined in terms of the
operations applicable to them—this important point may be lost on
some students since the notation used is only briefly discussed.
Numerous exercises are included with no indications of difficulty
or suggested solutions.

The book contains much useful material, but the overall effect is
frequently spoilt by use of a deliberately informal writing style. This
is a useful additional source of ideas for anyone planning a data
structures course, but seems of limited value as recommended
reading for students.

PETER WALLIS (Bath)
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A Concurrent PASCAL Compiler for Minicomputers, by A. C
Hartmann, 1977; 119 pages. (Springer-Verlag, Lecture Notes
in Computer Science, 50, _DM 18,— about £4-50)

Aq gzoeLE/0L 2/l Lz P1E U

This monograph is a description of a seven pass compiler for Per o
Brinch Hansen’s Concurrent PASCAL. It is a postgraduate texta
which will be of interest to those concerned with the implementation @
of PASCAL and languages derived from PASCAL.

The overall structure of each pass is presented: lexical analysis,~
syntax analysis, name analysis, declaration analysis, body analysis, ©
code selection and code assembly. The final code is interpretedS
mainly because of the synchronisation primitives. Such interpretation
aids portability at some cost in processor usage. The detail in theJ
description is rather uneven, giving a complete syntax for the input ™
and output of each pass but no indication of the semantics of the
final machine code. Concurrent PASCAL is not a superset of
PASCAL, it contains no nested procedures or variant records. The
compiler itself is written in Sequential PASCAL which does contain
variant records (which are used heavily in the implementation).
The divergence between the two PASCALS is unfortunate as the
author notes with the lack of classes in Sequential PASCAL. An
interesting statistic from the implementation is that 289 of the
initial errors in the compiler were detected by the interpreter as
variant access errors, i.e. accessing a field of a variant when the tag
field is not set correctly. Since ordinary PASCAL implementations
do not check for this, does this mean that PASCAL is not the
reliable language it is supposed to be?

This book will appeal to a small but appreciative audience.

uo}

B. A. WicHMANN (Woking)
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