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The static semantic rules of ALGOL60 and BASIC are expressed in a formal notation to
demonstrate that the notation can be used for such languages. This is seen as an aid to both the
compiler writer and the user, partly in that the intentions of the language designer can be com-
municated clearly and unequivocally and partly in that the specification may be used as a guide to
producing a correct compiler or in verifying the correctness of a compiler.
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1. Introduction

In a previous paper (Williams, 1978) a formal notation was
presented for describing the static semantic rules, or ‘context-
sensitive’ rules (Ledgard, 1969) of a language. This notation
was developed to interface with the BNF specification of the
syntax of a language. The notation is based on the use of
strings (either those represented by metalinguistic variables
in the BNF specification or literal strings) and stacks. It is
intended that such a notation should provide the compiler
writer with a guide for the implementation of the language or
give the user an understanding of the details of the language.

In this paper the notation is used to describe the static
semantic rules of two programming languages: ALGOL60
and BASIC. In the case of ALGOLG60, the static semantic
rules are complex and have never been completely specified
in a useful notation for the compiler writer. BASIC, on the
other hand, has relatively simple static semantic rules although
there is no general agreement on the syntax rules.

The fact that the static semantic rules for these two
languages can be expressed completely in this notation means
that the language designer can communicate his intentions
directly and unambiguously to the compiler writer and the
user, rather than attempting to convey his ideas by means of
a set of English sentences which may often give rise to mis-
interpretation. This notation also gives the compiler writer a
clear guide as to how these rules may be implemented.

2. BASIC

Unlike ALGOL60 there is no generally accepted syntax
specification for BASIC. Bull et al. (1973) have produced a
detailed specification which includes all the facilities of a full
BASIC compiler. However, as many BASIC compilers do not
provide all these facilities and since the specification is a little
large to handle here, a specification of a ‘basic’ subset of the
language was sought.

Lee (1972) provides such a specification. The subset of BASIC
which he defines does not include strings, matrix statements,
subprograms, file handling or advanced input/output facilities.
After correction of a few minor errors in Lee’s specification
and conversion of his context-sensitive rules to a context-free
form, one arrives at a specification which is not a strict subset
of Bull’s more general definition. Thus changes were made to
bring the specification more into line with Bull’s definition
(e.g. null programs or empty DATA statements are not valid,
whereas parameterless functions and generalised forms of IF
and ON statements are permitted).

The syntax specifications given by both Lee and Bull rely on
statements being in correct order of line number. However,
this is not very helpful for the compiler writer who is implemen-
ting an interactive BASIC system. He needs a specification
which will check that each statement has the correct form as it
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is read in (whatever the order in which statements are read).
Thus the syntax rules were changed slightly to cater for this.
Finally the resulting set of rules was converted into ‘standard’
BNF notation.

The static semantic rules for BASIC can be summarised a
follows:

peojuoq

1. Line numbers may be entered in any order; duplicate liné®
numbers and null lines may occur. The lines must be sortecﬁ
into line number order, and in the case of duplicate hnes
the last supplied is used. =

(2]
2. The same letter may be used both as a simple variable and>
as a one or two dimensional array. An array is declarecg
either explicitly in a DIM statement or implicitly by it
first appearance in the program. In the case of explicib
declaration all references to the array (subscripted variablesg
must have the same number of subscripts as there arg
dimensions in the declaration; if declaration is implicit alE
references to the array must have the same number o
subscripts as the first reference to the array. A DIM states
ment can occur anywhere in a program.

3. The same array name cannot be used to apply to more tha
one array in a program.

/e/LzRiomey

4. If a function is called in a program, the actual parameters3
supplied must correspond in number, type (relevant wher;
extending the definition of BASIC to include strings andj
string variables) and order to the formal parameters in th%
function definition. A function definition may occurz
anywhere in a program, not necessarily at a lower-numbered
line than that of the function call. 8

5. A function name may be used as a destination for a LET5
statement only within the definition block for that functioni

ludy

6. Function definitions may not be nested.

7. Control may not be transferred from outside a functior>
definition to an intermediate line within it, nor may controlE
be transferred out of a function definition. However, control
may be passed to the first or only line of a definition block.

8. Each FOR statement must have a corresponding NEXT
statement which refers to the same control variable. FOR-
NEXT loops may not overlap.

9. A FOR-NEXT loop may not overlap with a function
definition.

10. For each multiline definition statement DEF <user
function>, there must be a corresponding FNEND
statement.

11. If a user function is called in a program, the function must
be defined somewhere in the program.

12. If a line number is used as a destination line number in a
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program, it must also occur as a line no def somewhere in
the program.

The latter two rules may be regarded as unnecessary. However,
as some BASIC compilers perform these checks at compile
time and some do not, they have been included in this specifi-
cation on the grounds that they can easily be removed if not
required.

The syntax interpretation rules are divided into two passes.
The first pass handles rule 1 above. This accepts lines in any
order, checks that the form of each line is correct and stores it
(overwriting any previous line with the same number). On
encountering the END statement, the program is complete
and lines are sorted into ascending order for the second pass.
The concatenation operation is used to assemble the program
in the correct order for the second pass. In practice the level of
reconstruction will obviously depend on the compiler writer.

The second pass uses the following stacks:

(a) AS (array stack) with entries of form:
(array name, number of dimensions, declared or un-
declared).

(b) APL (actual parameter list) with entries of form:
type of actual parameter.

(c) PARS (parameter stack) with entries of form:

(number of parameters, stack of parameter types, declared
or undeclared).

(d) FS (function stack) with entries of form:

(function name, number of parameters, stack of parameter
types, declared or undeclared).

(e) FPL (formal parameter list) with entries of form:
type of formal parameter.

(f) UFS (user function stack) should either be empty or
contain the name of the current user function being
defined.

(g)- ULOD (undefined line numbers outside )
definitions)

(k) LOD (line numbers outside definitions)

(i) ULWCD (undefined line numbers within
current definition)

have entries
Lof form:
line number.

(j) LWCD (line numbers within current
definition) J

(k) CURLINE (current line) contains the line number of the
current line.

(1) LS (line number stack) contains an entry for each line
number in the program.

(m)FORS (for stack) has an entry of form: (simple variable)
for each unmatched FOR statement encountered thus far
in the current function definition or outer block.

(n) DUMP contains the contents of the for stack while a
function definition is being handled.

Each entry (parameter type) in APL and FPL will always be
‘A’ (arithmetic) for this specification so that mismatched types
cannot occur. However, when extending the language to
include strings, entries will be either ‘A’ or ‘S’ and hence
matching parameter types becomes.important.

The complete specification of syntax and static semantic
rules follows.

2.1 Syntax rules for BASIC
1. <program>::= < statement sequence > < terminal st >
2. <statement sequence> = < statement > |
< statement > < statement sequence >
3. <statement> ::= <line no def> <unnumbered st>
<new line > | <line no def> <new line>
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10.
11.
12.
13.
14.
15.

16.
17.

25.
26.

217.
28.

29.
30.

31.
32.

33.
34.

35.

36.
37.
38.
39.

40.
4].

42.
43.
. <if st> =

45.

. <unnumbered st> ::

. <simple statement > :

. <terminal st> ::
. <line no def>:
. <line no>::

. < expression >

. <integer> ::
. <number> ::

. <exponent> ::=
. <expt>:
. <constant> ::
. <digit>::
. <functionref> ::

= <simple statement > |
<single line def st> | <multiline
def st> | <fn end st>
i=<let st>|<read st> |
<data st> | <print st> |
<goto st>|<on st> | <if st> |
<forst> | <nextst> | <dimst> |
< gosub st> | <return st> |
<restore st> | <stop st> |
<rem st>
= <line no def> END < new line >
1= <line no>
= <digit> | <digit> <digit> | < digit>
<digit > <digit> | <digit> <digit> <digit> <digit> |
<digit> < digit > <digit> <digit> <digit>
= < plusminus > <term> | <term > |
< expressnon > < plusminus > < term >
<term> ::= <factor> | <term> <timesover > < factor >
< factor > ::= < primary > | < factor > { < primary >
<plusminus> =4 =
<timesover>::= x |/
< primary > ::= <constant> | < variable > |
< function ref> |(<expression>)
<variable > ::= <simple variable > |
< subscripted variable >
< simple variable > ::= <letter > | <letter > <digit>
< subscripted variable > :: = <letter > ( < expression > ) |
< letter > (< expression >, < expression > )
= < digit > | <integer > <digit >
= <integer > |. <integer> |
<integer>. <integer >
E < plusminus > <expt> |E <expt>
1= <digit> | <digit> <digit>
= <number > <exponent> | < number >
=0]1|2|314|516]|71819
= < function name > |
< function name > (< actual parameter list >)
< function name > :: = <library function > |
<user function >
< actual parameter list > :: = <expression > |
< actual parameter list >, <expression >
< user function> ::= FN <letter >
< library function > ::= SIN |COS |TAN |ATN |EXP |
ABS |LOG [SQR|INT|RND
<dimst> ::= DIM <array dimension list >
<array dimension list> ::= <array dim > |
<array dim >, <array dimension list>
<array dim > ::= <letter > (< integer > )|
<letter > (<integer>,<integer>)
<letst>::= LET <destination > = <expression > |
< destination > = < expression >
< destination > ::= <variable > | < user function >
< signed number > :: = < plusminus > < constant > |
< constant >
< data list> ::= <signed number > |
< data list >, < signed number >
<data st> ::= DATA <data list>
<restorest> ::= RESTORE
<goto st> ::= GOTO < destination line no >
<on st>::=
ON < expression > < designator > <line number list >
< designator> ::= THEN |GOTO |GOSUB
< line number list > :: = < destination line no > |
< line number list >, < destination line no >
< gosub st> :: = GOSUB < destination line no >
<returnst> ::= RETURN
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IF < condition > < designator > < destination line no >
< destination lineno> ::= <line no >
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46.
47.
48.

49.
50.
51.
52.
53.
54.

55.
56.

57.

S8.

59.

60.

6l.

62.
63.

64.

65.
66.

67.
68.
69.
70.
71.
72.
73.
74.

75.

< condition > ::= <expression > < relation >

< expression >
<relation>::= =|>=|<=|>|<|<>
<for st> ::= FOR <simple variable > = <expression >

TO <expression > |FOR < simple variable > =
< expression > TO < expression > STEP < expression >

<nextst>::= NEXT < simple variable >
<remst> ::= REM <comment> |REM
<comment> ::= < character> |

<comment > < character >
<stopst>::= STOP
<read st> ::= READ <destination list >
< destination list> ::= < variable > |
< destination list >, < variable >
<printst>::= PRINT < print list >
<item sep print list> ::=
< item sequence > < separator sequence > |
<item sep print list > <item sequence >
< separator sequence >
<sep item print list> ::=
< separator sequence > < item sequence > |
< sep item print list > < separator sequence >
< item sequence >

<item list> :: = <item sequence > | < item sep print list > |
< item sep print list > <item sequence >
<sep list> ::= < separator sequence > |

< sep item print list> |
< sep item print list> < separator sequence >
< print list> ::= <item list> | <sep list >
< separator sequence > ::= < print separator> |
< separator sequence > < print separator >
< print separator> ::= ,|;
<item sequence > ::= < message > | < print expression >
< message > < print expression > |
< item sequence > < message > |
< item sequence > < message > < print expression >
< print expression > ::= < expression > |
TAB (<expression>)
< message > ::="‘‘ <character string > "’
< character string > :: = <character > |
< character string > < character >
<character> ::= <letter > | < digit> |
< special character >
<defhead > ::= DEF <user function > ( < formal par
list > ) | DEF < user function >
< formal par list > :: = <simple variable > |
< formal par list >, <simple variable >
< single line def st> :: = < def head > = < expression >
< multiline def st > :: = < def head >
<fnendst>::= FNEND
<letter>::=A|B|CID|E|F|GH|I|J|IK|ILIM|N|O|P|
QIRISITIUIVIWIX|Y|Z
<special character> ::= + |— | x |[/|=DI(|> |< |.|;]
<blank> |$|1]?],
<newline>::= CR

2.2 Static semantic rules for pass 1

3.

< statement > ::= <line no def> <unnumbered st >

< newline > {#(SS, <line no def>, <unnumbered st> —
Comp2,(<line no def >, <unnumbered st>)|SS}|

<line no def > < newline > {#(SS, < line no def > ,A—
Comp2,( < line no def>,4)|SS)}

6. < terminal st> ::= <line no def > END < newline >

{Z(SS, <line no def>,'"END’—-Comp2,(<line no def>,
‘END’)|SS)}

1. <program> ::= <statement sequence > < terminal st >

{H(SS,SS);A—x;VSS:(y1SS;x.Compl(y).Comp2(y).
‘CR’-x;Compl(y)|LS);x— < program > }

2.3 Static semantic rules for pass I1
17. <subscripted variable > ::= < letter > ( < expression >)

31.

26.

28.

25.

24.

69.

68.

70.

45.

72.

{&(AS, <letter >, if Comp2#°1’ then (if Comp3 = ‘U’
then E1 else E2),
(<letter>,'1’,U’)| AS)} |
< letter > ( < expression >, < expression >)
{Z(AS, <letter>, if Comp2# ‘2’ then (if Comp3=‘U’
then E1 else E2),
(<letter>,2’, ‘U’)|AS)}

<array discussion > ::= <letter> (<integer>)
{L(AS, <letter>, if Comp3=‘D’ then E3
else if Comp2#“1” then E4 else ‘D’—Comp3,
(<letter>, ‘I’, ‘D’)| AS)} |
< letter > (< integer >, < integer >)
{&(AS, <letter >, if Comp3 =D’ then E3 else if
Comp2# ‘2’ then E4 else ‘D’ Comp3,

(<letter >,2’,‘D’)| AS)}

<actual parameter list > :: = <expression> {A’| APL} |
< actual parameter list >, <expression > {ditto}

<library function > ::= SIN{(‘I’,(‘A’),’D’)|PARS} |
COS{ditto} [ TAN{ditto} |ATN{ditto} |EXP{ditto} |
ABS{ditto} |LOG{ditto} |SQR {ditto} |[INT{ditto} |
RND({ditto}

< function name > :: = <library function > | <user
function > {&(FS, < user function > ,(Comp2,Comp3,
Comp4)|PARS,(‘U’,0,0)| PARS)}

< function ref > :: = < function name > {x1PARS; if
Compl(x)="‘U’ then (< function name >,0,0,°U’)| FS
else if Compl(x)#0 then (if Comp3=°‘D’ then ES else
E6)} |
<function name > (< actual parameter list >){x{PARS;
if Compl(x)="‘U’ then ( < function name >, /" (APL),
APL,*U’)| FS else if Comp1(x) # 4" (APL) then (if
Comp3="D’ then E5 else E6)

else (Comp2(x)—y;Vy:(uly;vIAPL; if u#v then E7));
A n APL}

<formal par list> ::= <simple variable > {*A’| FPL;

& (T, <simple variable > ,E20, < simple variable > | T)} |
< formal par list >, <simple variable > {ditto}

<def head > ::=

DEF < user function> (< formal par list>)
{if #(UFS)#0 then E8;%(FS, < user function>, if
Comp4 =D’ then E9 else ‘D’—Comp4;

if Comp2# A (FPL) then E10;Comp3—y;

Vy:(x1y;zl FPL;if x#z then E11),

(<user function >, A" (FPL),FPL,‘D’)|FS);
<user function> |UFS;1  T}|

DEF < user function >

{if #(UFS)#0 then E8;%(FS, < user function >, if
Comp4=‘D’ then E9 else ‘D’— Comp4; if Comp2#0
then E10,( < user function >,0,0,°D’)| FS); < user
function > | UFS}

<single line def st> :: = <def head > = <expression >
{ATUFS}
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. <multiline def st > :: = <def head > {DUMP " FORS}
. <line no def> ::= <line no>

{if #(UFS)=0 then (¥(ULOD, <line no > ,A—Compl,
—);<line no> |LOD) else (¥(ULWCD, <line no>,
A—Compl,—); <line no> |[LWCD); if #(CURLINE)
#0 then AJCURLINE; <line no> |CURLINE}
< destination line no > ::= <line no >
{&#(LS, <lineno>,-,E12);if <lineno> < = CURLINE
then (if /" (UFS)=0 then ¥(LOD, <line no>,—, E13)
else #(LWCD, <line no>,—, El14)) else (if /" (UFS)=0
then #(ULOD, <line no>,—, <line no> |ULOD)
else (ULWCD, < lineno>,
—, <line no> | ULWCD)}
<fn end st>::= FNEND{ATUFS;VULWCD:
(xTULWCD:; if x# A then E14);1 + LWCD; if #/(FORS)
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#0 then E17;DUMP § FORS;A{DUMP}

33. <destination > ::= <variable > | <user function >
{if <user function> #J (UFS) then E15}

48. <for st> ::= FOR <simple variable > = < expression >
TO < expression > { < simple variable> | FORS} |
FOR < ssimple variable > = < expression >
TO < expression > STEP < expression > {ditto}

49. <next st> ::= NEXT <simple variable >
{if #(FORS)=0 then E16 else (x{FORS; if x# <simple
variable > then E16)}

1. <program > ::= <statement sequence > < terminal st >

{VFS:(x1FS; if Comp4(x) ="‘U’ then E18); if /" (FORS)
#0 then E17; if #/(ULOD)#0 then E13; if A" (UFS)#0
then E19}

2.4 Error numbers

1. Number of subscripts of subscripted variable does not
match number of subscripts previously used.

2. Number of subscripts of subscripted variable does not
match number of subscripts declared in DIM statement.

3. Array defined twice.

4. Number of subscripts in array declaration does not match
number of subscripts previously used.

5. Number of actual parameters in a function call does not
match number of formal parameters in function definition.

6. Number of actual parameters in a function call differs
from number of actual parameters used in a previous call
to the same function.

7. Type of an actual parameter in a function call differs from
type previously encountered or defined in that position.

8. Function definition within a function definition.

9. Function defined twice.

10. Number of formal parameters in a function definition does
not match the number of actual parameters previously
used in calls for the function.

11. Type of a formal parameter in a function definition does
not match type previously encountered in that position in
function calls.

12. Jump to an undefined line number.

13. Jump into a function definition.

14. Jump out of a function definition.

15. Function name used as a destination outside the definition
of that function.

16. Next statement does not have corresponding For statement.

17. For statement does not have corresponding Next statement.

18. Function called is not defined.

19. FN END statement is missing.

20. Formal parameters in a formal parameter list are identical.

3. ALGOL60

In the case of ALGOL60 the syntax rules for the language
were clearly defined in BNF notation by Naur, et al. (1963).
However, the static semantic rules were expressed rather
vaguely as a set of English sentences. As a result there are
situations where the validity of an ALGOL program cannot
be determined from the ALGOLG60 report. This makes the
problem of implementation more difficult for the compiler
writer and the problem of standardisation becomes impossible.
The specification given here defines the static semantic
rules completely. In cases where it was not clear from the
original report what the outcome should be, a decision was
taken one way or another. The specification again consists
of two passes and requires in addition a number of run-
time routines for dynamic checking of parameter types.
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Syntax rules for ALGOL60
. <expression> ::= <arithexp> | <boolexp> | <desexp>
. <variableid> ::= <id >
. <simple var> ::= < variable id >
. <subsexp> ::= <arithexp>
. <subs list> ::= <subs exp> | <subs list>, <sub exp>
. <arrayid> ::=<id>
. <arrayref>::=<id>
. <subs var> ::= <array ref>[<subs list>]
. <var> ::= <subs var> | <simple var >
. <procid>::=<id>
. <functionid> ::= <id>
. <actual par> ::= <string> | <id> | <expression >
. <letter string > ::= <letter > | <letter string> < letter >
. <par delimiter > :: =, |) < letter string > :(
. <actual par list> ::= <actual par> |
<actual par list> < par delimiter > <actual par >
16. <actual par part> ::= <empty > |(<actual par list>)
17. <function des > ::= < function id > < actual par part >
18..<addingop> ::=+ | —
19. <primary > ::= <unsigned integer no> |
< unsigned real no> |<var> | <function des> |
(<arith exp>)
20. <factor> ::= < primary > | < factor > { < primary >
21. <term> ::= <factor> | <term> x <factor> |
<term >/<factor> | <term> - <factor>
22. <simple a e> ::= <term > | <adding op> <term> |
<simple a e> <adding op>-<term >
23. <if clause> ::= if <bool exp> then
24. <arith exp> ::= <simple a e> |
<if clause > <simple a e> else <arith exp>
25. <relationalop> ::= < |<[|=|=]|> |#
26. <relation> ::=
<simple a e> <relational op> <simple ae>
27. <boolean prim > ::= <logical value > | <var> |
< function des > | <relation > |(<bool exp>)
28. <boolean sec> ::= <boolean prim> |
— <boolean prim>
29. <boolean factor> ::= <boolean sec> |
<boolean factor> A <boolean sec >
30. <boolean term > ::= <boolean factor> |
<boolean ter > v <boolean factor >
31. <implication> ::= <boolean term > |
<implication > > <boolean term >
32. <simple boolean > ::= <implication > |
< simple boolean > = <implication >
33. <boolexp > ::= <simpleboolean > |
<if clause > < simple boolean > else <bool exp>
34. <label > ::= <id > | <unsigned integer>
35. <label ref> ::= <id> | <unsigned integer >
36. <switchid> ::=<id>
37. <switchref> ::= <id >
38. <switch des> ::= < switch ref>[ < subs exp>]
39. <simple d e> ::= <label ref> | <switch des> |
(<des exp>)
40. <des exp>::= <simpled e> |
<if clause > < simple d e > else < des exp >
41. <unlabelled basic stm > ::= <assst> | <gotost> |
<dummy st> | <procst>
42. <basic stm > ::= <unlabelled basic stm> |
<label > : <basic stm >
43. <unconditional stm > ::= <basic stm > |
< compound stm> | <block >
44, <stm> ::= <unconditional stm> | <conditional stm> |
<forst>
45. <compound tail> ::= <stm> end |
<stm > ; < compound tail >
46. <begin symbol > ::= begin

btk ok
nNhwWN—O
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47. <block head > ::= < begin symbol > < declaration > [
<block head > ; < declaration >
48. <unlabelled compound > ::= begin <compound tail >
49. <unlabelled block > ::=
< block head > ; < compound tail >
50. <compound stm > ::= < unlabelled compound > |
<label > : < compound stm >
51. <block > ::= <unlabelled block > | <label > : < block >
52. <program> ::= <block > | <compound stm >
53. <left part>::= <subs var> := | <id> :=
54. <left part list>::= <left part> |
<left part list> <left part>
55. <ass st>::= <left part list> <arith exp> |
<left part list> <bool exp >
56. <goto st>::= goto <des exp>
57. <dummy st> ::= <empty >
38. <if st> ::= <if clause > <unconditional stm>
59. <conditional stm> ::= <if st> |<if st> else <stm> |
<if clause > <for st> | <label > : < conditional stm >
60. <for list element> ::= <arith exp> |
<arith exp> step<arith exp> until <arith exp> |
<arith exp> while <bool exp >
61. <for list> ::= <for list element> | <for list>, < for list
element >
62. <for clause> ::= for <var> := <for list> do
63. <for st>::= <for clause> <stm> | <label > : < for st>
64. <proc st>::= <proc id > <actual par part>
65. <declaration> ::= <type decl> | <array decl > |
< switch decl > | < proc decl >
66. <type list>::= <simple var> |
<simple var >, < typelist >
67. <type> ::= real |integer |Boolean
68. <local or own type> ::= <type> | own <type>
69. <type decl> ::= <local or own type> < type list>
70. <lower bound > ::= < arith exp>
71. <upper bound > ::= <arith exp>
72. <bound pair > ::= <lower bound > : <upper bound >
73. <bound pair list> ::= < bound pair> |
<bound pair list>, <bound pair>
74. <array seg> ::= <array id>[<bound pair list>1]|
<array id >, <array seg >
75. <array list>::= <array seg> |
<array list>, <array seg>
76. <array specifier > ::= array | <local or own type> array
77. <array decl>::= <array specifier > <array list >
78. <switch list> ::= < des exp> | < switch list>, < des exp >
79. <switch decl> ::= switch <switch id> : = <switch list>
80. <formal par>::=<id>
81. <formal par list> ::= < formal par> |
<formal par list > < par delimiter > < formal par>
82. <formal par part> ::= <empty > |( < formal par list >)
83. <id list> ::= <id> | <id list>, <id >
84. <value part> ::= <empty > | value <id list> ;
85. <specifier> ::= string| <type> | array |<type> array |
label [switch |procedure | < type > procedure
86. <spec part> ::= <empty > | < specifier > <id list> ; [
<spec part> <specifier > <id list> ;
87. <proc name>::= <id>
88. <proc heading> ::= < proc name> < formal par part>;
<value part> <spec part>
89. <proc body> ::= <stm> |<code>
90. <proc decl> ::=
procedure < proc heading> < proc body> |
<type> procedure <proc heading> < proc body >

3.2 Static semantic rules for pass I

The first pass is concerned with the construction of a symbol
table with entries for each identifier in the program. This is
done using:

(a) ICBS (Identifiers in Current Block Stack) which has entries
of form: (identifier, type, structure, actual/formal,
n,X,y)
where type = ‘R’, ‘I’, ‘B’ or 0,
structure = ‘V’ (variable), ‘A’ (array), ‘F’ (function),
‘P’ (procedure), ‘S’ (switch), ‘L’ (label)

or ‘STR’ (string),
actual/formal = ‘A’ (actual variable) or ‘F’ (formal
parameter), ’

n = number of dimensions (array) or parameters
(procedure or function),
x = position of formal parameter in formal para-
meter list, and
y = name of procedure or function with formal
parameter list;
(b)) DUMP which stores the contents of the ICBS when enter-
ing an inner block;
(Block Stack) which has entries of form:
(No of level, ICBS for this level)

(d) NBS (Nested Block Stack) which contains level numbers
of each incomplete (nested) block; and

(c) BS

moQ

(e) SS  (Symbol Stack) which contains the ICBS for eachz
level in order. §

Other stacks used are: S
@T (Type stack) contains entries of form: type; S
() SL  (Subscript List) contains count of number of sub-g
scripts; a

(c) L is a stack of identifiers (id or array id); g’
(d) FPL (Formal Parameter List) is a stack of formal para-%
meter identifiers; %

(e) PNL (Procedure Name List) contains the current pro-g

cedure (or function) name;
(f) VL (Value List) contains identifiers called by value;
(g) S (Structure stack) contains entries of form: structure

(‘V’, ‘A’, etc.). '

34. <label> ::= <id> {#(ICBS, <id>,E2,(xid>,0,'L’,'A’,
0,0,0)| ICBS)} |
<unsigned integer > {<#(ICBS, < unsigned integer >,
E2,(<unsigned integer >,0,°L’,A’,0,0,0)| ICBS)}

67. <type> ::=real {'R’|T} | integer {‘I'| T} | Boolean {‘B’| T}

66. <typelist> ::= <simple var> {#(ICBS, < simple var >,
El,(<simple var>, 7(T),’V’,‘A’,0,0,0)| ICBS)} |
<simple var >, < type list > {ditto}

69. <type decl> ::= <local or own type > <type list> {A]T}

73. <bound pair list> ::= <bound pair> {‘I’|SL} |
<bound pair list >, <bound pair > {ditto}

74. <array seg> ::= <array id >[ < bound pair list>]
{<array id>|L;VL:(ytL;#(ICBS,y,El,(y,7 (T),‘A’,‘A’,
A(SL),0,0)|ICBS));A #+ SL}|
<array id >, <array seg> { <array id > | L}

76. <array specifier>::= array {‘R’|T}|
<local or own type > array .

77. <array decl> ::= <array specifier > < array list> {11T}

79. <switch decl> ::= switch <switch id> := <switch list >
{Z(ICBS, <switch id > ,E1,( < switch id >,0,°S’,*A”,0,0,0)|
ICBS)}

87. <proc name>::=<id> {&(ICBS,<id>,El,<id>
PNL)}

80. <formal par>::=<id>{¥(FPL,<id>,E3,(<id>,0,
‘FP’,'F’,0,4/'(FPL),7 (PNL))| FPL)}

83. <id list>::= <id>{<id> |L}|<id list>, <id> {ditto}

84. <value part> ::= <empty> | value <id list> ;{VL:(x1L;
F(VL,x,E4,x|VL))}

85. <specifier>::= string {‘STR’|S;0]T}|<type> {V’|S}|
array {‘A’|S;'R’|T}| <type> array {‘A’|S}|
label {‘L’]S;0/T} | switch {‘S’|S;0|T}|
procedure {'P’|S;0/T} | <type> procedure {‘P’|S}
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86. <spec part>::= <empty> | <specifier> <id list>;
{y1T;z1S;VL:(x1L;‘F’—u; if z=V’ or ‘A’ or ‘L’ then
F(VLx,A->VL;'V’'>u,-);#(FPL,x, if Comp3# ‘FP’
then E5 else (y—Comp2;z—Comp3;u—Comp4),E6))} |
< spec part > <specifier > <id list > ; {ditto}

88. <proc heading> ::= < proc name > <formal par part>;
<value part> <spec part> {y{PNL;x]T;
if A/ (T)=0 then (x{T;(y,0,'P’,*A’,#/"(FPL),0,0)| ICBS)
else (y,x,'F’, ‘A’,#(FPL),0,0)|]ICBS; DUMP # ICBS;
A (BS)|NBS; (A(BS),0)|BS;x # FPL;x ¥ ICBS;
VVL:(x1VL; if x#Athen E7)}

90. <proc decl>::= procedure <proc heading> <proc
body > {x{NBS;y # ICBS;¥(BS,x,y—»Comp2,—);
DUMP { ICBS;A{DUMP} |
< type > procedure < proc heading > < proc body > {ditto}

46. <begin symbol > :: =begin {DUMP # ICBS;.4#"(BS)|NBS;
(#(BS),0)| BS}

49. <unlabelled block> ::= <block head> ; <compound
tail> {xINBS;y t ICBS;%(BS,x,y—>Comp2,—);
DUMP { ICBS;A{DUMP}

52. <program> ::= < block > {VBS:(x1BS;Comp2(x)|SS)} |
< compound stm > {ditto}

3.3 Static semantic rules for pass Il

The result of the first pass is a complete symbol table SS
containing the identifiers declared at each level. This is retained
for use in the second pass. The second pass checks the uses of
identifiers (arrays, procedures, formal parameters, labels, etc.)
against their definitions to ensure that each identifier is used
correctly.

Stacks used in the second pass are the following:

(a) ST (Symbol Table) which contains symbol table entries
from SS for current blocks

(b) SL (Subscript List) which counts the number of subscripts
in the subscript list of a subscripted variable

(c) APL (Actual Parameter List) which counts the number of
actual parameters in a procedure or function call

(d) DUMP which stores SL and APL when nesting occurs

(¢) STDUMP which stores one level of symbol table entries
while evaluating dynamic array bound expressions in an
array declaration

(f) FASL (Function Assignment Statement List) which stores
the name of each function while it is being defined, together
with a marker to indicate whether it contains an assignment
statement with the function name as left part

(g) L which is used as a temporary stack

(h) TS (Type Stack) which has entries of form
(type, structure, n, X, y, APL, formal par stack)

where type = ‘R’, ‘I, ‘B’, ‘FP’, ‘FPS’ or 0 (if structure = ‘L’)

structure = ‘VE’, ‘V’,‘A’, ‘P’ or ‘L,

n = number of dimensions or parameters,

X = position in formal parameter list,

y = name of procedure (function) to which
formal parameter ‘belongs’,

APL = actual parameter list (in case of function call)

and formal par stack = stack of all formal parameters
whose type is not determined at any point in an expression;
this has entries of form:
(structure, n, x, y, APL)

(i) LPS (Left Part Stack) which has entries of the same form
asTS

(j) RTFPS (Run Time Formal Parameter Stack) which has
entries of form:

(procedure or function name, stack)

where stack is a stack of entries (one for each formal
parameter) of form:
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(type, structure, value)

where type = ‘R’, ‘I’, ‘B’ or 0,
structure = ‘V’, ‘A’ ‘F’, ‘P’, ‘S’, ‘'STR’, ‘L’ or ‘FP’,
and value = ‘V’or0.

When an identifier is encountered in an expression an entry is
placed on the Type Stack. If the identifier is not a formal
parameter, or if it is a formal parameter whose type is specified,
the Type Stack entry will have ‘R’, ‘I’ or ‘B’ in Component 1
and zeros in all other components. If the identifier is a formal
parameter of unspecified type, the entry has ‘FP’ as first
component and non-zero Components 4 and 5. From the
context in which the formal parameter is used, parameters 2
and 3 are deduced.

When a production is encountered which determines the type
of its dependent formal parameter(s), the appropriate Run
Time Check(s) can be inserted into the object code and the
type stack entry removed or replaced by one with ‘R’, ‘I’ or ‘B’
in Component | and zeros in the other components. If the two
top items of TS are both of type ‘FP’ and the production cannot
deduce what type either should be, the two items are replaced
by a single entry which has ‘FPS’ as Component 1, zeros in
Components 2 to 6 and Components 2 to 6 of the ongmﬁ
two items are placed in the stack in Component 7 of thg
resulting item.

The specification for pass II is as follows:

1. <expression> ::= <arith exp> | <bool exp>
{(‘B’,0,0,0, 0, 0 0)1TS} | < des exp > {(0,°L’,0,0,0,0,0)| TS} :

5. <subslist> ::= <subsexp> {‘1’|SL} | <subs list>, < su
exp > {ditto}

7. <array ref> =<id> {DUMP ¢ SL}

8. <subs var> ::= <array ref>[<subs list >]

{#(ST, < array ref>, if Comp3=°‘FP’ then (‘FP’ ‘Ag
A°(SL),Compé6, Comp7 0,0)| TS else if Comp3#°‘A’ thed
E15 else ((Comp2,0,0,0,0,0,0)|TS; if Comp4="‘A’ the
(if Comp5#.A4°(SL) then E30) else ‘Rtcheck(Comp6s
Comp7, Comp2,'A’, #(SL))’),E10);4 # SL;DUMP ¥ SI%i
ATDUMP}

9. <var> ::= <subsvar> | <simple var >
{& (ST, <simple var>, if Comp3=‘FP’ then (‘FP’, ‘VE3
0,Compé6, Comp700)1TS else if Comp3=‘V’ then (if
Comp4="‘F’ then (Comp2,'VE’,0,Comp6,Comp7,0 O)ng
else (Comp2 0,0,0,0,0,0)] TS) else E14,E9)}

19. <primary> ::= <unsigned integer no> {(‘I’,0,0,0,0,0 Q%

no-oiwep&e)/:sdny wouy pe

erLe/alo!

ITS} g
< unsigned real no > {(‘R’,0,0,0,0,0,0)| TS} | @
<var> {7 (TS)—x; if Compl(x)="B’ then E21} | &
< function des > {7 (TS)—x; if Compl(x)="‘B’ then E22}3

(<arithexp>)

20. <factor> ::= <primary > | <factor > { < primary > {(D}

21. <term> ::= <factor> | <term > x <factor>{(D}|
<term> /< factor > {x1TS;®;x1TS;®;(‘R’,0,0,0,0,0,0)
{TS}]
<term> = < factor > {x{TS; if Compl(x)="‘R’ then E23
else 3);x1TS; if Compl(x)=‘R’ then E23 else 3;
(‘I’',0,0,0,0,0,0)| TS}

22. <simple a e> ::= <term> | <adding op> <term> |
<simple a e> <adding op> <term> {(D}

24. <arithexp> ::= <simpleae> |
<ifclause > <simpleae > else <arith exp> {}

26. <relation> ::= <simple a e> <relational op>
<simple a e> {x1TS;®;x1TS;2)}

27. <boolean prim> ::= <logical value> |<var> {x1TS; if
Compl(x)=°R’ or ‘I’ then E28 else if Compl(x)=‘FP’
then ‘Rtcheck(Comp4(x),Comp5(x),‘B’,Comp2(x),
Comp3(x))’} |
< function des > {x1TS; if Compl(x)=‘R’ or ‘I’ then E29
else if Compl(x)=‘FP’ then (‘Rtcheck(Comp4(x),
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Comp5(x),B’,Comp2(x),Comp3(x))’;
‘Rtparlistcheck(Comp4(x),Comp5(x),Comp6(x))’)} |
<relation> |(<boolexp>)

53. <left part> ::= <subs var> :={LPS{TS} |

<id>:={#(ST,<id>, if Comp3=‘V’A(Comp4="‘A’
or ‘V’) then (Comp2,0,0,0,0,0,0)| LPS else if

Comp3=‘F’ A Comp4="‘A’ then ((Comp2,0,0,0,0,0,0)
ILPS;#(FASL, <id > ,‘1I’->Comp2, E32)) else if
Comp3=‘V’ A Comp4="‘F’ then ((Comp2,0,0,0,0,0,0)
ILPS; ‘Rtcheck(Comp6,Comp7,Comp2,°V’,0)’) else if
Comp3=‘FP’ then (‘FP’,'V’,0,Comp6,Comp7,0,0)]LPS
else E20, E19)}

54, <left part list> ::= <left part> |

5.

60.

62.

70.
71.
. <subs exp> ::= <arith exp> {x1TS;®}
10.
11.
12.

240

<left part list> <left part>

{xTLPS;y1LPS; if Compl(y)="‘R’ then (y|LPS; if
Compl(x)="‘T" then E24 else if Compl(x)=‘FP’ then
‘Rtcheck(Comp4(x),Comp5(x),‘R’,Comp2(x),Comp3(x))’
else if Compl(x)=‘FPS’ then (Comp7(x)|L;VYL:(yTL;
‘Rtcheck(Comp3(y),Comp4(y),'R’,Compl(y),
Comp2(y))’))) else if Compl(x)=‘R’ then (x|LPS; if
Compl(y)="‘T" then E24 else if Compl(y)=‘FP’ then
‘Rtcheck(Comp4(y),Comp5(y),'R’,Comp2(y),Comp3(y))’
else if Compl(y)=‘FPS’ then (Comp7(y)|L;VL:(xTL;
‘Rtcheck(Comp3(x),Comp4(x),'R’,Compl(x),
Comp2(x))’))) else if Compl(y)="I" then (y|LPS; if
Compl(x)=‘FP’ then ‘Rtcheck(Comp4(x),Comp5(x),T’,
Comp2(x),Comp3(x))’ else if Compl(x)="‘FPS’ then
(Comp7(x)|L;VL:(yTL; ‘Rtcheck(Comp3(y), Comp4(y),'I’,
Compl(y),Comp2(y))’))) else if Compl(x)=°I" then

(x| LPS; if Compl(y)="‘FP’ then ‘Rtcheck(Comp4(y),
Comp3(y), T’,Comp2(y),Comp3(y))’ else if Compl(y)=
‘FPS’ then (Comp7(y)|L;VYL:(xTL;'Rtcheck (Comp3(x),
Comp4(x),‘I’,Compl(x),Comp2(x))’))) else (if
Compl(y)="‘FP’ then (Comp2(y),Comp3(y),Comp4(y),
Comp5(y),Comp6(y))|L else Comp7(y) ¥ L; (Comp2(x),
Comp3(x),Comp4(x),Comp5(x),Comp6(x))| L;x # L;
(‘FPS’,0,0,0,0,0,x)| LPS)}
<ass st> ::= <left part list> <arith exp> {x1TS;®;
xTLPS; if Compl(x)= "B’ then E25; if Compl(x)=‘FP’
then ‘Rtcheck(Comp4(x),Comp5(x), RI’,Comp2(x),
Comp3(x))’ else if Compl(x)="‘FPS’ then ‘Rtchecklist
(Comp7(x))’} |

<left part list> <bool exp>{x]LPS; if Compl(x)=
‘R’ or ‘I’ then E26; if Compl(x)="‘FP’ then (‘Rtcheck
(Comp4(x),Comp5(x),'B’,Comp2(x),Comp3(x))’; if
Comp2(x)="‘F" then ‘Rtparlistcheck(Comp4(x),
Comp5(x),Comp6(x))’) else if Compl(x)=‘FPS’ then
(Comp6(x)| L;VL:(yTL;‘Rtcheck(Comp3(y),Comp4(y),
‘B’,Compl(y),Comp2(y))’; if Compl(y)=‘F’ then
‘Rtparlistcheck(Comp3(y),Comp4(y),Comp5(y))’))}
<for list element > ::= <arith exp> {x]TS;®} |

< arith exp> step <arith exp> until <arith exp> {x]TS;
@;x1TS;@;x1TS;@} |

< arith exp> while <bool exp> {x1TS;2}
<for clause> ::= for <var>:= <for list> do {x1TS; if
Compl(x)="‘B’ then E27 else if Compl(x)=‘FP’ then (if
Comp2(x)=“VE’ then ‘V’->Comp2(x);
‘Rtcheck(Comp4(x),Comp5(x),'R’,Comp2(x),Comp3(x))’)
else if Comp2(x)=‘VE’ then ‘Rtcheck(Comp4(x),
Comp5(x),Compl(x),V’,Comp3(x))’}
<lower bound > ::= <arith exp> {x1TS;®}
<upper bound > ::= <arith exp> {x{TS;®)}

<procid>::= <id>{DUMP # APL}

<functionid > ::= <id>{DUMP p APL}

<actual par> ::= <string > {(0,°STR’,0,0,0,0)| APL} |
<expression > {x{TS; if Compl(x)=‘FP’ then (0, ‘VE’,
(Comp4(x),Comp5(x),Comp2(x),Comp3(x)),0,0,0)| APL
else if Compl(x)=‘FPS’ then (0,VE’,Comp7(x),0,0,0)

17.

64.

80.
88.

90.

3s.

37.

46.
49.

76.

71.

JAPL else if Comp2(x)# ‘L’ then (Comp1(x),'VE’,0,0,0,0)
|APL else (0,°L’,0,0,0,0)JAPL} |
<id>{¥(ST,<id >, if Comp3=‘F A Comp4="‘A’

then (Comp2,Comp3,Comp5,0,0, <id>)|APL else
(Comp2,Comp3,Comp5,Comp6,Comp7,0)| APL, E18)}

<function des> ::= <function id> <actual par part>
{#'(APL)—y;x + APL;%(ST, < function id >, if
Comp3=‘FP’ then (‘FP’,'F’,y,Comp6,Comp7,x,0)|TS
else if Comp3 # ‘F’ then E17 else ((Comp2,0,0,0,0,0,0)

ITS; if Comp4="A’ then (if Comp5+#y then E31;
‘Rtparlistcheck( < function id >,0,x)’)

else (‘Rtcheck(Comp6,Comp7,Comp2,‘F’,y)’;
‘Rtparlistcheck(Comp6,Comp7,x)’)),E12); DUMP § APL;
A1DUMP}

< proc st> ::= <proc id > <actual par part> {#(ST,
<procid>, if Comp3# ‘FP’ and ‘P’ then E17; if
Comp4="‘A’ then (if Comp5#.4"(APL) then E31;
‘Rtparlistcheck( < procid > ,0,APL)’)

else CRtcheck (Comp6,Comp7,0,'P’, /" (APL))’;
‘Rtparlistcheck(Comp6,Comp7,APL)’), E12);A t+ APL;
DUMP § APL;A{DUMP} ’

<formal par>::=<id>{#(ST,<id>, if Comp4=*V
then ‘V’—x else 0—x; (Comp2,Comp3,x)| FPL, —)}

< proc heading> ::= <proc name > < formal par part>;
< value part> <spec part>{¥(ST,<proc name>, if
Comp3="F’ then (< proc name>,0)|FASL,-);y t FPL;
(< proc name >,y)| RTFPS}

<proc decl> ::=

procedure < proc heading> < proc body > {A1ST} |
<type> procedure < proc heading> < proc body >
{A1ST;x1FASL; if Comp2(x) =0 then E33}

<label ref> ::= <id > {¥(ST, <id>, if Comp3#°‘L’ and
‘FP’ then E13, E8)}|

<unsigned integer > {#(ST, <unsigned integer >,

if Comp3#‘L’ then E13, E8)}

<switch ref>::=<id>{#(ST,<id>, if Comp3#°S’
and ‘FP’ then E16, E11)}

< begin symbol > ::= begin {ST{SS}

< unlabelled block > ::= <block head > ; <compound
tail > {A1ST}

<array specifier> ::= array {STDUMP1ST}|
<local or own type > array {ditto}

<array decl> ::= <array specifier > <array list >
{STISTDUMP}

where
@ = x1TS; y1TS; if Compl(y)="‘R’ then (y|TS; @) else if

Compl(x)="‘R’ then (x| TS; y—>x;2) else

if Compl(y) =T’ then x| TS else if Compl(x)="‘T"
then y| TS else

if Compl(y)=‘FP’ then ((Comp2(y),Comp3(y),
Comp4(y),Comp5(y),Comp6(y))|L;

if Compl(x)="°FP’ then (Comp2(x),Comp3(x),
Comp4(x),Comp5(x),Comp6(x))| L

else Comp7(x) ¥ L;x & L; (‘FPS’,0,0,0,0,0,x)|TS) else
if Compl(x)="‘FP’ then ((Comp2(x),Comp3(x), "
Comp4(x),Comp5(x),Comp6(x))|L;

Comp7(y) ¥ L;x # L;(‘FPS,0,0,0,0,0,x)| TS) else
(Comp7(x) ¥ L;Comp7(y) ¢ L;x # L;(‘FPS’,0,0,0,0,0,x)
{TS)

@ = if Compl(x)="FP’ then (‘Rtcheck(Comp4(x),Comp5(x),

‘RI’,Comp2(x),Comp3(x))’;

if Comp2(x) = ‘F’ then ‘Rtparlistcheck(Comp4(x),
Comp5(x),Comp6(x))’) else

if Comp1(x)=‘FPS’ then (Comp7(x)|L; VL: (y{L;
‘Rtcheck(Comp3(y),Comp4(y),'RI’,Compli(y),
Comp2(y))’; if Compl(y)="‘F’ then *
Rtparlistcheck (Comp3(y),Comp4(y),Comp5(y))’))

@ = if Compl(x)="‘FP’ then (‘Rtcheck(Comp4(x),Comp5(x),
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‘I',Comp2(x),Comp3(x))’; if Comp2(x)="°F" then
‘Rtparlistcheck(Comp4(x),Comp5(x),Comp6(x))’) else
if Compl(x)="‘FPS’ then (Comp7(x)|L;VL:(y1L;
‘Rtcheck(Comp3(y),Comp4(y),'I’,Compl(y),
Comp2(y))’; if Compl(y)=‘F’ then ‘Rtparlistcheck
(Comp3(y),Comp4(y),Comp5(y))’))

3.4 Run time routines

The format of these is not defined by the notation; however,
the action performed by them can be expressed by means of
the notation. Two stacks are used: RTFPS (Run Time Formal
Parameter Stack) which is set up in Pass II, and RTAPS (Run

Ti

me Actual Parameter Stack) which is maintained by the run

time routines.

Rtparlistcheck (i, j, APL) =

{if j=0 then i—k else (¥(RTAPS,j,Comp2 § Z,—);
L(Z,i,Comp5—k,—);A t Z);#(RTFPS,k,Comp2| X, —);
VX:(x1X;yTAPL; if Comp2(y)="‘FP’ then #(RTAPS,
Comp5(y),Comp2 | Z,—);¥(Z,Comp4(y),Comp2—
Compl(x);Comp3—Comp2(x) ; Comp4—>Comp3(x);
Comp5—Comp6(x),—);A t+ Z); if Comp2(x) = ‘FP’ then
(#(X),Compl(y),Comp2(y),Comp3(y),Comp6(y))|PARS
else if Comp2(y) # ‘VE’ then (if CompI(y)=Comp1(x) A
Comp2(y) = Comp2(x) then (4#"(X),Comp1(y),Comp2(y),
Comp3(y),Comp6(y))| PARS else E34) else (if Compl(y)=0
then (Comp3(y) 4 Z;VZ:(z1Z; ‘Rtcheck(Comp1(z),Comp2(z),
Compl(x),Comp3(z),Comp4(z))’); if Comp2(x)#~‘V’ then
E35) else if Compl(y)# Compl(x) v Comp2(x)#‘V’ then
E35; if Comp3(x) =V’ then (4" (X),Compl(x),’V’,0,0)| PARS
else (A(X),Compl(x),'VE’,0,0)|PARS)); x # PARS;

(k,x)| RTAPS}

Rtcheck(x,y,1,j,k) =

{#(RTAPS,y,Comp2|S,—);Z(S,x, if Comp3#‘VE’Vv
Comp2 #0 then (if (i#‘RI’ v Comp2;é R’ and T’) A
Comp2#1i then E36 else if Comp3 #jv Comp4#k then E37)
else (if j # ‘VE’ then E38; Comp4 § TEMP; VTEMP:
(t1TEMP; ‘thheck(Compl(t) Comp2(t),i, Comp3(t),
Comp4(1))’)), —);4 t S}

Rtchecklist (i) =

{7 ()—x;%(RTAPS,Comp4(x),Comp2(x)| S, —);
Z(S,Comp3(x),Comp2—y,—); if y#‘R’ and ‘I’ then E20;
At S;Vi:(x11;(RTAPS,Comp4(x),Comp2|S, —);

& (S,Comp3(x), if Comp3=‘VE’ A Comp2=0 then E 38

else if Comp2#y then E39 else if Comp3 # Compl(x) v
Comp4 # Comp2(x) then E40,—);A { S)}

3.5 Error numbers

1.

Identifier is declared more than once in the same block.

2. Symbol used as label has already been declared in the same

3.

block.

Formal parameter identifier appears more than once in the

same formal parameter list.

. Formal parameter appears more than once in the same
value list.

. Formal parameter appears more than once in the specifi-
cation part of a procedure declaration.

. Identifier appears in the specification part of a procedure
declaration which does not occur in the formal parameter
list.

. One or more identifiers in the value list of a procedure
declaration do not correspond to formal parameters speci-
fied to be simple variables, arrays or labels.

. Label referred to in a designationial expression does not
exist. .

. Simple variable referred to in an expression has not been
declared.
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10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22.
23.

24.
25.
26.
27.
28.
29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

Array name referred to has not been declared.

Switch identifier referred to has not been declared.
Procedure identifier referred to has not been declared.
Label referred to in a designationial expression has been
declared to have structure different from label.

Simple variable referred to in an expression has been
declared to have structure different from simple variable.
Array name referred to has been declared to have structure
different from array.

Switch identifier referred to has been declared to have
structure different from switch.

Procedure identifier referred to has been declared to have
structure different from procedure.

Identifier used as an actual parameter has not been declared.
Identifier appearing as a left part has not been declared.
Identifier appearing as a left part has incorrect structure.
Boolean variable used as a primary in an arithmetic
expression.

Boolean procedure called in an arithmetic expression.

At least one of the operands of the operator = is not of
type integer.
Types of identifiers appearing in the left part list of an§
assignment statement are different.

An arithmetic expression assigned to a Boolean variable.
A Boolean expression assigned to an arithmetic variable.
A Boolean variable used as the controlled variable of
For statement.

An arithmetic variable used as a Boolean primary in
Boolean expression.

An arithmetic procedure used as a Boolean primary in
Boolean expression.

The number of subscripts in a subscripted variable doeso
not match the number of dimensions of the array in thcv
array declaration.
The number of actual parameters in a procedure call doe%
not match the number of formal parametersin the procedureB
declaration.
Assignment to a function identifier outside the body of theE»
function.

od

iweBeoe;fdny Bﬂou papeo]

o}

woo

|U

The type/structure of an identifier used as an actual para--s>
meter does not match the type/structure of the correspond-\l
ing formal parameter as declared in the specification part. >
The type/structure of an expression used as an actual
parameter does not match the type/structure of the corres-:g
ponding formal parameter as declared in the specnﬁcatlonm

part. g
The type of an identifier used as a formal parameter does_
not match the type required by its use. >

The structure/number of dimensions or parameters of an=
actual parameter does not match the structure/number ot'\J
dimensions or parameters of the formal parameter as it is™
used.

An expression is used as an actual parameter whereas the
corresponding formal parameter expects an identifier (e.g.
array id).

An actual parameter which is substituted for a formal
parameter used as a left-part variable of an assignment
statement, does not match the types of the other parameters
substituted as left-part variables.

An actual parameter which is substituted for a formal
parameter used as a left-part variable of an assginment
statement, does not match the structure/number of
dimensions of its use.

The type of a formal parameter used in an actual parameter
expression is causing a mismatch with the declared type (in
the specification part) of the formal parameter for which the

1



actual parameter is to be substituted.

42. The structure/number of dimensions or parameters of a
formal parameter used in an actual parameter expression
does not match its use.

43. A formal parameter used in an actual parameter expression
expects an identifier to be substituted for it, but finds
instead an expression.

4. Conclusion
This study demonstrates how the static semantic rules of
two common programming languages can be specified formally.
The static semantic rules of ALGOL60 are much more
difficult to specify than those of BASIC, partly because of the
ability to mix types within an expression under certain circum-
stances but not under others (e.g. =), and partly because the
type and structure of a formal parameter need not be declared.
For the complete specification of ALGOLG60, situations were
encountered for which the correctness could not be decided
from the original report. The implementation of such situations
is left to the compiler writer’s discretion. However, if one is to
standardise programming languages so that a program written
in a given high level language has the same syntax and produces
the same effect (wherever possible) when run on different
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machines, one needs to specify all aspects of the language
completely. Thus in the case of undecideable situations in
ALGOLG60 a decision was taken one way or another. Thus
the specification of ALGOL60 given here will produce a
similar effect to that produced by some ALGOL60 compilers
but not by others. It is not suggested that the specification
given here should necessarily be the generally accepted one;
however, the intention is to show that the complex static
semantic rules of ALGOL60 can be expressed in a formal
notation which is meaningful to compiler writers and hence
assist in the standardisation of such a language.

Besides its effect on standardisation such a formal specifica-
tion may also be of assistance to the compiler writer from the
point of view of the correctness of the compiler he produces
by giving him a model of how these aspects of the language
can be implemented at the very simplest level. Obviously the
compiler writer will have his own ideas as to how best to
implement certain features to provide the most efficient system.
However, at a time when the correctness of the product is as
important as its efficiency, by providing the compiler writer
with a simply implementable specification of these aspects ¢f
the language, he has a yardstick by which to measure the
correctness of his own implementation. 3

Book reviews

The Complexity of Computational Problem Solving, edited by R. S.
Anderssen and R. P. Brent, 1976; 262 pages. (University of
Queensland Press, £4-70)

The title is mildly ambiguous, since this book is not so much con-
cerned with problem solving in the usual sense (although this is
certainly involved) as complexity in all its computational aspects,
and understood indeed in a rather broad way to include efficiency in
the formulation, programming and debugging phases of program
construction. The problems are therefore primarily with respect to
the methods of computing and less with the ‘external’ problem for
which the computer is to be used.

An example of an important external problem is the last of the
fifteen articles which is called ‘the complexity of real-world schedul-
ing problems’. These problems include resource allocation and
assignment, timetabling, job/shop scheduling and the like. These
are so complicated that they require overconstrained linear pro-
grams which are heuristic in nature. The extent to which such
programs depart from optimality can also be measured.

Three papers in the book concentrate on hardware; one example
is where parallel and sequential processing are compared. The rest
of the book concentrates on software—these vary over a whole
range of matters such as complexity, strategy and stability in
algebraic and other computational methods.

The book is well organised and physically well produced, presum-
ably by a photographic method, and has a flexiback cover. It is
rather specialised in its contents, but for those in the field it is a book
that certainly deserves a place on the bookshelf. :

F. H. GeorGe (Uxbridge)
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Digital System Design Automation— Languages, Simulation and Daf,
Base, by Melvin A. Breuer; 1977; 417 pages. (Pitman, £13-95)

a 81L& £/¥€Z/E/1.Z/2101E/|UlWo0/Woo dNo d|WapEsE//:SARY WO} POpeo

This book is aimed primarily at programmers whose function is g
provide software for computer hardware designers, and generally &
anyone working near the hardware/software interface of digit:(r‘;}
systems. =]

Chapter 1, System Level Simulation, deals with conventionad
simulation languages. Implementation details are given for twg
such languages. The emphasis is mainly on the simulation of con&
puter programs, and there is a large section on graph models c,:é
programs. Chapter 2, Register Transfer Languages and Their
Translation, describes a register transfer language called DDL. In
Chapter 3, Register Transfer Language Simulation, the problem of
translating DDL descriptions into executable hardware simulation
programs is tackled. A weakness of both these chapters is that too
much emphasis is placed on minor details of a specific language;
this tends to obscure more fundamental issues such as the problems
of simulating parallel or asynchronous operations.

The fourth chapter, Design Automation Aids to Microprogram-
ming, contains a good description of microprogramming, and
illustrates the use of a register transfer language for describing the
operating of a microprogram. The final chapter, Data Structures,
Data Base and File Management, contains standard material on
data base management and the representation of data.

The book has several weaknesses; in particular, it is excessively
verbose. However there is a great shortage of literature on this
subject, and the book fills an important gap.

PETER J. MoYLAN (Newcastle, Australia)
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