actual parameter is to be substituted.

42. The structure/number of dimensions or parameters of a
formal parameter used in an actual parameter expression
does not match its use.

43. A formal parameter used in an actual parameter expression
expects an identifier to be substituted for it, but finds
instead an expression.

4. Conclusion
This study demonstrates how the static semantic rules of
two common programming languages can be specified formally.
The static semantic rules of ALGOL60 are much more
difficult to specify than those of BASIC, partly because of the
ability to mix types within an expression under certain circum-
stances but not under others (e.g. =), and partly because the
type and structure of a formal parameter need not be declared.
For the complete specification of ALGOLG60, situations were
encountered for which the correctness could not be decided
from the original report. The implementation of such situations
is left to the compiler writer’s discretion. However, if one is to
standardise programming languages so that a program written
in a given high level language has the same syntax and produces
the same effect (wherever possible) when run on different

References
BuLL, G. M., FREEMAN, W. and GARLAND, S. J. (1973).
LEDGARD, H. F. (1969).
LEE, J. A. N. (1972).

NAUR, P. et al. (1963).
WiLLiaMs, M. H. (1978).

Specification for Standard BASIC, NCC Publications: Manchester.
A Formal System for Defining the Syntax and Semantics of Computer Languages, Ph.D. Thesis, MIT.
The Formal Definition of the BASIC Language, The Computer Journal, vol. 15, pp. 37-41.
Revised report on the algorithmic language ALGOLG60, The Computer Journal, vol. 5, pp. 349-367.
A Formal Notation for specifying Static Semantic Rules, submitted to Computer Languages.

machines, one needs to specify all aspects of the language
completely. Thus in the case of undecideable situations in
ALGOLG60 a decision was taken one way or another. Thus
the specification of ALGOL60 given here will produce a
similar effect to that produced by some ALGOL60 compilers
but not by others. It is not suggested that the specification
given here should necessarily be the generally accepted one;
however, the intention is to show that the complex static
semantic rules of ALGOL60 can be expressed in a formal
notation which is meaningful to compiler writers and hence
assist in the standardisation of such a language.

Besides its effect on standardisation such a formal specifica-
tion may also be of assistance to the compiler writer from the
point of view of the correctness of the compiler he produces
by giving him a model of how these aspects of the language
can be implemented at the very simplest level. Obviously the
compiler writer will have his own ideas as to how best to
implement certain features to provide the most efficient system.
However, at a time when the correctness of the product is as
important as its efficiency, by providing the compiler writer
with a simply implementable specification of these aspects ¢f
the language, he has a yardstick by which to measure the
correctness of his own implementation. 3

Book reviews

The Complexity of Computational Problem Solving, edited by R. S.
Anderssen and R. P. Brent, 1976; 262 pages. (University of
Queensland Press, £4-70)

The title is mildly ambiguous, since this book is not so much con-
cerned with problem solving in the usual sense (although this is
certainly involved) as complexity in all its computational aspects,
and understood indeed in a rather broad way to include efficiency in
the formulation, programming and debugging phases of program
construction. The problems are therefore primarily with respect to
the methods of computing and less with the ‘external’ problem for
which the computer is to be used.

An example of an important external problem is the last of the
fifteen articles which is called ‘the complexity of real-world schedul-
ing problems’. These problems include resource allocation and
assignment, timetabling, job/shop scheduling and the like. These
are so complicated that they require overconstrained linear pro-
grams which are heuristic in nature. The extent to which such
programs depart from optimality can also be measured.

Three papers in the book concentrate on hardware; one example
is where parallel and sequential processing are compared. The rest
of the book concentrates on software—these vary over a whole
range of matters such as complexity, strategy and stability in
algebraic and other computational methods.

The book is well organised and physically well produced, presum-
ably by a photographic method, and has a flexiback cover. It is
rather specialised in its contents, but for those in the field it is a book
that certainly deserves a place on the bookshelf. :

F. H. GeorGe (Uxbridge)

242

€/212/€/1.2/9101E/|ulWo0/ W00 dno"olWapesE/:SARY WOl POpeo

Digital System Design Automation—Languages, Simulation and Datg
Base, by Melvin A. Breuer; 1977; 417 pages. (Pitman, £13-95) §

o
This book is aimed primarily at programmers whose function is g
provide software for computer hardware designers, and generally &
anyone working near the hardware/software interface of digit:(r‘;}
systems. =]

Chapter 1, System Level Simulation, deals with conventionad
simulation languages. Implementation details are given for twg
such languages. The emphasis is mainly on the simulation of con&
puter programs, and there is a large section on graph models c,:é
programs. Chapter 2, Register Transfer Languages and Their
Translation, describes a register transfer language called DDL. In
Chapter 3, Register Transfer Language Simulation, the problem of
translating DDL descriptions into executable hardware simulation
programs is tackled. A weakness of both these chapters is that too
much emphasis is placed on minor details of a specific language;
this tends to obscure more fundamental issues such as the problems
of simulating parallel or asynchronous operations.

The fourth chapter, Design Automation Aids to Microprogram-
ming, contains a good description of microprogramming, and
illustrates the use of a register transfer language for describing the
operating of a microprogram. The final chapter, Data Structures,
Data Base and File Management, contains standard material on
data base management and the representation of data.

The book has several weaknesses; in particular, it is excessively
verbose. However there is a great shortage of literature on this
subject, and the book fills an important gap.

PETER J. MoYLAN (Newcastle, Australia)

The Computer Journal





