Analysis of speed of a binary divider using a variable

number of shifts per cycle

M. R. Patel and K. H. Bennett

In a recent paper (1976), the analysis of a binary multiplier using a variable number of shifts per
multiplication cycle was described. The method was based on a discrete time finite state system
model. In this paper we continue the analysis for the more complex case of binary division. The results
enable the optimum hardware configuration to be determined for a given cost.

(Received January 1977)

1. Introduction

In Patel and Bennett (1976) the analysis of a multiplier using a
variable number of shifts per multiplication cycle was described.
Here we continue the analysis for a variable number of shifts
per cycle divider. In an analogous technique, two or more bits
of the intermediate dividend are inspected simultaneously to
speed up the division beyond one quotient bit per cycle. The
method of non restoring division is used and after each cycle
the remainder is shifted in an attempt to normalise it, thereby
forming the intermediate dividend for the next cycle. The
maximum shift possible is determined by the shift paths avail-
able in the hardware and the actual shift value used in a cycle
is the same as the number of quotient bits generated in that
cycle.

The variable shift facility on its own results in a significant
improvement in divider speed. The speed may be increased
further by providing multiples of the divisor which are negative
integral powers of two, e.g. +0-5 x divisor, +0-25 x divisor,
etc. The analysis enables us to choose the best hardware
configuration, in terms of divisor multiples and shift paths,
for a given cost.

In Section 2 the division algorithm is described in detail
and Section 3 contains a description of the divider structure
and operation. Sections 4 and 5 present the analysis. The
approach used in the analysis of the multiplier cannot be
extended directly to the divider and a modified technique is
required. In Section 6 the results of the analysis are summarised.

The divider design for the ICL 2980 computer is based on the
principles described in this paper.

2. The binary division method
Non restoring binary division has been described in a number of
publications (e.g. Phister, 1958; Richards, 1955; Walker,
1967). In Fig. 1 we demonstrate such a division, using two’s
complement representation for negative numbers. The dividend
R is assumed to be less in magnitude than the divisor D at the
start of the division (to ensure a fractional quotient) and both
have been scaled into fractions. If D is positive and R; negative
then we are omitting the actual restoration by making use of
the fact that (since R;_; — D = R)):
R, + D - 15) =R, + Lz)

where R; is the intermediate dividend (henceforth called the
dividend) at the start of the jth cycle. Hence we add the divisor
when R; is negative. The quotient is initially zero and in each
cycle the next bit of the quotient is added in at the rightmost
end. The actions for the various combinations of sign of R;
and D are summarised in Fig. 2.

Following Freiman (1961), we will say that a binary number b,
scaled into fractional form, is in normal range if 0-5 < b < 1-0.

For positive numbers the first two bits will be 0-1 and for
negative numbers 1-0.

Rather than shift the divisor to the right on each iteration,
it is more economical in hardware cost (in the divider to be
discussed) to shift the dividend to the left by a like amount
at the same time the quotient is shifted also by the same value
so that the new quotient bit is always inserted in the samg
register position.

So far the division process has yielded only one quotlenﬁ
bit per cycle. We now describe three extensions to the basx@
method with the objective of improving the speed. =4

Let S*; denote the unnormalised result of the R; + D operam
tion (before any shifting has taken place). In the method abovey
a one bit shift only is performed on S*; to form R;, ;, so thag
R;., = 2S*; which may not be normalised. As the firs§
extension to the basic division technique we introduce addi®
tional shift paths so that the amount of shlftmg from S*; t@
R;,, maybel,2...nbits(n = 1) where n is the max1mung
value of shift allowed We thus attempt to form a normallse@i
dividend for the start of each new iteration and the mcrease@
shifting capablllty means that up to n quotient bits can be
generated in one cycle.

The technique of normalising remainders to increase thé};
division speed beyond one quotlent bit per cycle has been>
described by Tocher (1958) and is illustrated in Fig. 3.

Despite the extra finite shifting capability, it is still posmblg
that the dividend R;,, cannot be normalised. In such casesg
subsequent addition or subtraction leads to a result which ié:’,
normalised, or nearly so. In the second extension to the diViw
sion process we permit two alternative courses of action in a:
division iteration:

(a) ADD . SHIFT mode. If the dividend is normalised, we’i
form S*; = R; + D and then shift to form R;,, (as
above). &

(b) ADD . SHIFT mode. If the dividend is unnormalised, w§.
do not perform the addition, but simply shift $*; = R; tcg
form R;, ;.

The second mode results in a larger shift than would otherwnse

have occurred. In Fig. 4 an example using the technique is

illustrated. Four cycles are required whereas five cycles were
necessary with only the variable shift facility and six cycles
would have been required for the basic method.

A further improvement in performance is achieved by intro-
ducing multiples of the divisor which are negative integral
powers of two. The correct multiple is added/subtracted
(according to the rules in Fig. 2) to the dividend when it is
unnormalised. Let a shift of y bits be required to normalise
the dividend. Then the 277 multiple of the divisor is used in
the current cycle. If that multiple is not available we enter the

ADD . SHIFT mode and proceed directly with the shifting.

IS/ 1R

The authors are respectively with International Computers Limited and the Computer Science Department, University of Keele, Staffs,

ST5 5BG.

246

The Computer Journal

R, 1-01110001 Q=0
+D 0-10110000

R, 0-00100001 0, =1
—DJ2 0-01011000

R, 1-11001001 0, =11
+ D/4 0-00101.100

R, 1-11110101 Q; = 101
+ D/8 0-00010110

R, 0-00001011 0, = 1001
—D/16 0-00001011

R, 0 Qs = 10011
Fig. 1 Example of non restoring division
Divisor Dividend Operation Quotient
sign sign
+ + SUB +1
+ - ADD -1
- + ADD -1
- - SUB +1

Fig. 2 Non restoring division: summary of action for two’s comple-
ment representation

R, 0-1000001111 Q=0
-D 0-1111100000
1-1000101111 SUB. SHIFT 1
R, 1-0001011110 o, =10
+D 0-1111100000
00000111110 ADD . SHIFT 2
R, 0-0011111000 Q, = 0100
-D 0-1111100000
R, 10100011000 SUB.SHIFTO0 Q5 = 0-101
+D 0-1111100000
00011111000 ADD . SHIFT 2
R, 0-1111100000 Q, = 0-10000
-D 0-1111100000
Rs 0 Qs = 0'1000].
Fig. 3 Example of non restoring division with variable sized shifting
only and with maximum permitted shift of two bits
R, 0-1000001111 Q=0
- D 0-1111100000
1:1000101111 SUB.SHIFT 1
R, 1-0001011110 0, =10
+ D 0-1111100000
0-:0000111110 ADD . SHIFT 2
R, 0-0011111000 ADD .SHIFT2 Q, =0-100

R, 0-1111100000 , = 0-10000
-D 01111100000
R, O 0, = 0-10001

Fig. 4 Example of non restoring division with variable sized shifting

and ADD.SHIFT mode and with maximum permitted shift
of two bits

Volume 21 Number3

This is the third modification to the basic division process.

Fig. 5 shows an example of the technique, using the same
divisor and dividend as Figs. 3 and 4. Only three cycles are
now required. Note the extra complexity to generate the
quotient.

To summarise, a division cycle consists of one of two actions—
either an addition followed by a shift, or a shift only. If the
ADD . SHIFT mode is entered, the correct multiple of the
divisor is chosen by determining the rightmost significant
bit of the dividend. These decisions are made by inspecting
the n + 1 most significant bits (including the sign) of the
dividend, where n is the maximum shift value permitted as
before. The n + 1 bits are collectively called the dividend
prefix. Note that, if a positive dividend prefix is represented
by x, then the action is exactly the same as for the negative
prefix (— x — 27") using two’s complement representation.

3. The binary divider structure
Fig. 6 is a block diagram of the divider to be discussed in this

paper. The normalised divisor and the dividend (also normalised

as long as |Ry| < ID[) are placed in single length registers asg
shown. The quotient is generated in the right hand half ofO
the double length register 7. Gated paths exist between theo
divisor and adder to generate the divisor submultiples at theQ
adder input; a similar technique is used to perform the shlftmgi';
between the reglster T and the buffer register. The behavnourO
in a division cycle is now summarised:

dny w

(@) the dividend prefix is inspected to decide whether to enter’
the ADD . SHIFT mode or the ADD . SHIFT mode; if it{,}”
is the latter, the appropriate multiple of the divisor is3
gated into the adder

(b) if we are in the ADD . SHIFT mode, the dividend alone i is5
passed through the adder and placed in the top half of 7.3
Otherwise, the adder output R; + D/2” is put in the top=.
half

(c) the quotient bit(s) are inserted at the bottom of T

O olw

0,

afo1e/ulwo:

(d) the contents of T are moved into the buffer with the appro-
priate amount of shifting by opening the correct shift paths
gates

(e) finally, the top half of the buffer is moved to the dividend>
register, whilst the bottom half overwrites the bottom halt‘”’
of the T register.

The increase in performance is achieved at the cost of extrag
hardware to produce the divisor multiples and to shift the2
remainder and quotient. The register T is twice the length®
of the divisor register, so that a measure of the hardwareg
cost is given by 2n + m where m is the number of divisorg
multiples available and # is the number of shift paths. Posmve>
and negative versions of the same divisor multiple are regarded“
as separate for the time being.

As with the multiplier the analysis is designed to show theb
best combination of m and n for a given cost. The expression
for the cost ignores the extra control logic that is required
to organise the extended divider; this cost is relatively small
as it is required once only and not once per bit position.

ove/e/

€ceel

4. The analysis

In the analysis of the variable shift multiplier, each shift
value was regarded as a state in a finite state system. The
probability of a transition from shift state i to shift state j
was determined for all i and j. By regarding the system as a
Markov process, the limiting state probabilities were found.
A necessary characteristic of a Markovian process is that the
transition probability from i to state j is independent of the
state occupied before reaching state /. In the multiplier the
result of the operation (multiplicand + multiplier) is inde-

247

R, 0-1000001111 Qo =0
-D 0-1111100000
1-1000101111 SUB. SHIFT 1
R, 1-0001011110 0, =10
+D 0-1111100000
0-0000111110 ADD . SHIFT 2
R, 0-0011111000 Q, = 0100
—D/4 0-:0011111000 use 0-25 x D
1?3 () (2 3 = ()'1()()()1

Fig. 5 Example of non restoring division with +0-5 x divisor and
1 0-25 x divisor available and with maximum shift capability
of two bits

—

X
Divisor Sign W Dividend

T
h Prefix
X
u x

Adder

I
3
‘l‘ Quotient ¥

e =
>

BUFFER

€« | ——7— x—

Final Quotient

Fig. 6 Block diagram of the divider

Dividend Action in

prefix current cycle

000 ADD . SHIFT 2

001 ADD . SHIFT, —0-5D
010 ADD . SHIFT, — D
011 ADD . SHIFT, — D
111 ADD . SHIFT 2

110 ADD . SHIFT, +0-5D
101 ADD . SHIFT, +D
100 ADD . SHIFT, +D

Fig. 7 Action undertaken in current division cycle according to
dividend prefix

Prefix after shift
000 001 010 011 100 1

o 3+ } 3 4 0
Prefix 001 O O 4 3 0
0 1

0 3

1 110 111

before 110 0 0 0
shift 111 0 0 0

Fig. 8 Transition probability matrix 4

0
0
0
H
%

O OO —

0
0
0
3

pendent of the next bits of the multiplier to be inspected and
the Markovian condition is met.
In the divider, the result of (dividend + divisor followed by a

248

shift) determines the dividend prefix in the next iteration;
this in turn determines the mode of action and in particular
the amount of shifting, in that iteration. The probability of a
transition from shift state i to shift state j is dependent upon
the states occupied before state i and the Markovian condition
fails.

Instead we regard each possible value of the dividend prefix
as a state (there are thus 2"*! states in the system, taking
account of signs). For a given dividend prefix and divisor
the action in a division cycle is fixed and determinable un-
ambiguously, so that the possible dividend prefixes in the
next cycle and their probabilities are also known unambigu-
ously. The Markovian requirement is fulfilled.

The determination of the transition probabilities is straight-
forward. If the ADD . SHIFT mode is entered, we know the
probabilities directly; for example, if the prefix is 0-001 then
a two bit shift is performed leading to one of the prefixes
in the next iteration of 0-100, 0-101, 0-110, 0-111, each with
probability of 0-25. If the ADD . SHIFT mode is entered, we
calculate the probabilities in the same way, but using the
prefix of (R; + D -27?) instead of R;. The value of the divisop
must thus be considered and it is interesting to note thag
different divisor values lead to different speeds (Section 6§
for some configurations.

We now describe the analysis in more detail; in parallel we«
work through a simple example. The conﬁguratlon choserg
for illustration is:

Maximum shift = 2 bits
Divisor multiples = + D, + 0-5D .

1. The action in the current cycle is determined for eac
dividend prefix (Fig. 7) as described in Section 2.

noouH‘epe:JE//:sdnu

2. Let a prefix before normalisation have the value s. We shiff
the prefix y bits to the left to normalise it, thereby producing
one of 2’ possible new prefixes, each with probability 1/2°g
We now define a matrix 4 in which an element a; represcn@.
the probability of an unnormalised prefix s producmg &
normalised prefix ¢ after shifting. All zero rows are omltted})
for clarity in Fig. 8.

LZ/

3. Let i, j respectively be the values of the dividend prefix ma
successive division cycles. Then an element ¢(¢) of the malrg
transition probability matrix Q(’” represents the probability>
of the dividend prefix being j in the (k + 1)th cycle, glverf:’)
that it was i in the kth cycle. The transition is achieved in the»
divider either through the ADD .SHIFT mode or the<

ADD . SHIFT mode, according to the dividend preﬁxm
There is a set of transition probability matrices over thg
range of divisor prefixes d.

The transition probability in ADD .SHIFT mode i
obtained directly from element a;; of matrix 4.

®y 20z 1udPg|

4. We now consider the result of the addition. Only the n +
most significant bits of the divisor (the divisor prefix) aré
considered and the probability of a carry from the previous
bit position is assumed to be 0-5. Let z(? be the result of
the addition with no carry and z®’ the result with a carry,
in both cases the dividend prefix being i and the divisor
prefix being d. Then:
prob [transition i - j, ADD . SHIFT mode] =
4 (prob [transition z(» — j] +

+ prob [transition z{®" — j]) 1)
Again these two probabilities are obtained directly from
matrix 4, once z{¥) and z{¥)" are known.
A table of z{ and z{¥)" for the permissible values of dividend
and divisor prefixes is readily constructed (Fig. 9).

5. Since z{? and z(¥" depend on the divisor, we must evaluate

The Computer Journal

dividend prefix

011 010 101 100
divisor 011 111 000 001 000
prefix 000 001 000 111
010 110 111 000 111
111 000 111 110
(001 11 111 000 000 2@
000 000 111 111
use 0-5D
000 000 111 111
110 111 111 000 000 z(
001 000 111 000
101 000 111 000 001
100 000 111 110 111
111 110 111 000
Fig. 9 Table of z(%’ and z(¢"
dividend prefix on (k + 1)th Dividend Limiting state
cycle prefix probability
100 101 110 111 000 001 010 Otll
100 3 3 1 3 0 0 0 0 100 0-1429
dividend 101 & 4 & %+ % & 4 101 0-1429
prefixon 110 & % & 4 + & & 4 1o 0-1071
kth 1mr ¥ ¥ i+ 1+ 0 0 0 O Il 0-1071
cycle 000 0O O O O 4 4 i % 000 0-1071
(U T T S SR SR S S ool 0-1071
010 1 1 1 3 i ! 3 4 010 0-1429
011 0 0 0 0 ’\ 3 4 3 011 0-1429

Fig. 10 Probability transition matrix Q@ for divisor = 010

Fig. 11 Limiting state probability vector 7+(® for divisor prefix = 01

the mean shift for each divisor prefix. In Fig. 10 we show one
transition matrix, for the divisor prefix 010. The set of
limiting state probability vectors 7 can now be determined
(Fig. 11) by straightforward Markov analysis (see for

example Howard, 1971).

6. The mean shift 5 for divisor prefix d is given by
§@ = Tm; x (shift value for dividend i)

(2
"= Ym; x if ADD . SHIFT mode entered for dividend
i

2 ludy g1 Uo 1senb Aq £2z¢2£/9v2/c T z/ei0e/|ulwoo/woo-dno-olwepeoey/:sdijy wouy pepeojumoq

prefix i
then shift value for i

else 4 (shift value for z{ + shift value for
Z0)
fi (3)
In (2) and (3), i ranges over the values of the dividend prefix,
the divisor prefix being d. A table of 5§ and d is shown in
Fig. 12.
In this configuration, the mean shift does not vary with the
divisor prefix, but in a later example, such behaviour is
illustrated.

. The overall mean shift S is calculated as follows. Let the
length of the operand be w bits. As before, 5 represents
the mean shift speed for divisor d. Hence the mean time for a

Volume 21 Number3

Divisor Mean speed 59
prefix d in bits per cycle
010, 101 1-8571
011, 100 1-8571
Fig. 12 Table of mean speed and divisor prefix.
Configuration: Maximum shift = 3 bits
Divisor multiples = +1 +13
Divisor considered = 0-110
Dividend prefix || Ordinary decode Improved decode [
(positive values || ¥ 29" shift | 29 'Y shift |
only show)
0010 -2 -1 25 -2 -1 25
0011 -1 0 3 -1 0 3
0100 -3 =2 15 0 1 2-5*
0101 -2 -1 25 -2 -1 25
0110 -1 0 3 -1 0 3
0111 0 1 25 0 1 25

VCU

*0-5D used rather than D.

Fig. 13 Example of improved decode

division with divisor d is given by w/5@ (in units of cycle-
times). We assume that the probability distribution for the
2" values of d is uniform. Hence, given that the divisor is

249

normalised:
w

@ cycle times (4)

Overall mean division time = %‘ Z

d
This may be expressed as a speed:
] 1 1 ..
5= 3 Z @ bits/cycle (%)

d
For our example, S = 1-8571 quotient bits/cycle.

The size of the matrices in the analysis soon becomes very
large (of the order of 22"*1) and hence an ALGOL 60 pro-
gram was written to calculate the division speeds; data for the
program consisted simply of the details of the divider con-
figuration. Maximum advantage was taken of any symmetries
in the matrices to reduce the data space required by the
program. Even so, a maximum shift value of six was the largest
that could be analysed in the small core memory (32K words)
of a CDC 7600.

5. Further performance improvement
In Section 2 it was stated that the appropriate multiple of the
divisor is chosen by determining the position of the leftmost
significant bit in the dividend. By slightly modifying this con-
dition, a significant performance improvement is gained.
The multiple of the divisor is chosen such that R; + D -277is
equal or nearest to O (positive result) or — 1 (negative result).
This ensures that the maximum shift possible is attained.

In practice the new condition means that for a given pair
of dividend and divisor prefixes, one of three situations now
arises:

1. The next smaller multiple (in magnitude) of the divisor is
needed. For example, if D would have been used previously,
it is in fact better to use 0-5D. Similarly 0-25D may be used
instead of 0-5D in other cases.

2. The next larger multiple of the divisor is needed, e.g. 0-5D
instead of 0-25D.

3. The same multiple of the divisor is needed.

An example of case 1 (and case 3) is given in Fig. 13.

The improvement relies almost completely on the use of the
next smaller multiple (case 1) when the dividend is normalised.
Results of the analysis showed an improvement at best of
about 0-39 in mean speed when the next larger multiple
(case 2) was used. The reason is that the next larger multiple is
used only in conjunction with unnormalised dividends and
these have a relatively low probability of occurrence (Fig. 14).
Hence in the derivation of the results presented in the next
section, only the use of the next smaller multiple is considered.
Let us name this technique the ‘improved decode’ and the
original technique the ‘ordinary decode’.

6. Results of analysis

The availability of both positive and negative versions of the
same divisor multiple is essential in the divider we have
described. If as is likely the adder unit is used in the execution of
other functions, e.g. multiplication, it is cheaper to provide a
complementer as an integral part of the adder and simply
have one path into the adder for each divisor multiple. For
this type of configuration the measure of hardware cost is
estimated as 2n + m/2 (cf. Section 3).

The mean shift S as determined by our analysis is listed in
Table 1 in the appendix, for various divider configurations.
In Fig. 15 some selected results have been plotted against cost.

Freiman (1961) has described the analysis of a variable shift
divider with multiples of the divisor available. In his scheme,
the amount of shift in an iteration was unlimited so his results
provide a useful but approximate comparison with the results
described here.

250

80 9
Limiting 60 = 1
State
Probability
x 1073
40

20

T T T
0.0100 0.1000 0.1100

0.0000 0.1111
Dividend Prefix

S
Configuration: Maximum shift = 4 bits 2
Divisor multiples = #1 x D 2
Divisor prefix = 0,111 8
Fig. 14 Limiting State Probability Distribution with Dividend§
Prefix 3
3
>0
~ Table 1 Results of analysis S
Configuration Mean Shift § &
bits per iteration §
Max shift Divisor multiples ordinary improved (é
n (bits) decode decode
O
2 1 1-6667 1-6667 =
2 +1+4 1-8574 1-8574 §
3 +1 2:0768 2:0768 =
3 +1+13 22650 24173 =
3 +1+3+14 2:3504 25053 &
4 +1 2:3042 2:3042 X
4 +1+% 2:4220 26766 £
4 +1 +31+4 2:4847 27579 &
4 +1+3+4+4 25121 2-7880 <
5 +1 24307 2-4307 §
5 +1+3 2:4954 2-8027 ©
5 +1+3+3 2:5297 28493 =
) +1+1+4+4 2:5471 2-8725 §
5 +l+i+i+3 4% 2-5544 2-8809 g—
6 +1 2:4972 2:4972 =
6 +1+3 2:5312 2-8552 @
6 +1+1+4 25487 2:8790 &
6 +1+3+4+4 2:5577 28912
6 +1+i+i+i+ 4 2:5622 2:8971 13

6 +l 43+ttt 2:5640 2-8992

Using the ordinary decode, as progressively more shift paths
are provided then the probability of an unnormalised dividend
becomes increasingly smaller; in the limit there will always be
a shift path to enable S*; to be normalised. The multiples of
the divisor +0:5D, +0-25D etc. are only used in conjunction
with unnormalised dividends, so we expect the results to
converge to the + 1D case, as confirmed by Fig. 15. Freiman’s
limiting result for + 1D is 2:667 quotient bits per cycle.

A similar argument holds for the improved decode technique.
In this case the 0-5D multiples (and these two multiples only)
are used in conjunction with normalised dividends, so in the
limit they still have an effect on performance. Freiman’s

The Computer Journal

limiting result for the +1D, +0-5D case is 2-875 quotient
bits per iteration.

For the +1D case, Freiman’s limit seems too high in com-
parison with our results (Fig. 14) whilst for the +1D, +0-5D

3.09

2.87 $1, 31 x D
improved decode

Mean Shift
(bits per
iteration)

1, 3 x 0
ordinary decode

2.2

Hardware cost 2n + m/2

Fig. 15 Selected cost performance results

case it is almost certainly too low. The reason is that for these
cases Freiman has assumed a uniform probability distribution
in the range [0-5, 1-0] for the dividend, whereas the results
from our analysis (Fig. 14, normalised dividends) shows a
clear non uniform distribution for the dividend, once the
division process has started.

The non uniformity of the distribution was recognised by
Freiman who in the same paper developed the analysis to take
account of this behaviour; however, the analysis assumed an
unlimited shift capability and the choice of different configura-
tions means that Freiman’s numerical results are not directly
comparable with those described here.

In the + 1D case, the probability distribution of the dividend
favours the smaller shifts whilst in the £1D +0-5D case it
favours the larger shifts. This can be seen more clearly from
the joint probability density diagrams in Freiman’s paper.

Table 2 shows an example of how the divider speed varies
considerably with the divisor value, for n > 2.

7. Conclusions
A simulator has been written to obtain performance data for a
divider with the following configuration:

Table 2 Variations in performance with divisor prefix
4 bits
+1, +4, +%

Mean speed
(bits/iteration)

Configuration: Maximum shift =
Divisor multiples =

Divisor

prefix

01100
01101
01110
01111

Mean speed
(bits/iteration)

Divisor
prefix

01000
01001
01010
01011

2-7201
2-3985
2:2531
2:0677

2-3134
2:6947
2-8695
2-8106

RoR1R2R3R3 DgD102 RoR1R2R3Ry

DoD102D3Dy DoD10203 RoR1R2R3Ry
0

[Nk

20z udy 81 U0 1s8nb Aq £22€/€/9%2/€/ L Z/310ne/ufoo/wdo"dno-oiwepeoe)/:sdny woly papeojdmoq

)

ith most significant

i bit of divisor
Use *0.50 instead Ri = ith most significant
of *D. bit of dividend

Fig. 16 Logic required to determine the use of + 0-5 x divisor instead of + 1 x divisor for the configuration n = 4, with + D, +0-5SD available

Volume 21 Number3

251

Mean Shift
(bits per cycle)

Divider

Multiply: *1.M, + 2.M

Nivide: +1.0, #3.0

(improved decode)

T T T T T T !
2 4 6 8 10 12 1

Cost 2n + m/2 paths

Fig. 17 Comparison of variable shift division and multiplication

4 bits

+1 x divisor

Maximum permitted shift =
Divisor multiples available =

The simulator was exercised over a fairly large sample of
divisions and the mean division speed by this method was
2-3 bits/cycle. This is close to the predicted speed (Table 1)
of 2-:304 bits/cycle. The divider on the ICL 2980 has the above
configuration and its design is based on the principles described
in this paper.

The optimum configuration for a given hardware cost can
be seen from Fig. 15. The improved decode technique is well
worthwhile, yet it is cheap to implement. Fig. 16 shows the
logic required to determine when to use the next smaller
multiple, for one configuration.

There is little to choose between providing more shift paths
or more divisor multiples with the improved decode and in
practice the choice would probably be based on other criteria.
Other CPU functions stand to gain by providing extra shift

References
AHMAD, M. (1972).
FRrREIMAN, C. V. (1961).
HAMMING, R. W. (1970).
HowaRrbp, R. A. (1971).
PATEL, M. R. and BENNETT, K. H. (1976).
Journal, Vol. 19, No. 3, pp. 254-257.
PHISTER, M. (1958).

paths (e.g. ‘scale’ and ‘rotate’ instructions) so it is more
effective to implement shift paths than extra divisor multiples.

It is slightly more cost effective with the ordinary decode
to provide extra divisor multiples, but the gains are outweighed
by the improved decode.

In Fig. 17, the mean shift of the divider (with improved
decode) is compared with the mean shift of the multiplier
described in Patel and Bennett (1976), using a cost index of
2n + m/2 paths (i.e. under the assumption that a comple-
menter is available in the adder). A satisfactory division to
multiplication performance ratio is obtained.

Freiman in his paper discussed the performance of a divider
with divisor multiples which are not negative integral powers
of two. These cannot of course be generated directly. In this
paper our interest has centred on computers where the expense
of pre-calculating and storing divisor multiples cannot be
justified. In large machines and when heavy use of division
is made, algorithms such as those described by Ahmad (1972)
would be used.

It is clear that end effects are an important practical considera-
tion of the actual performance of the divider described here.
Typically, of the order of three beats are required; the dividend
and divisor must be moved in and out of the divider, initial
normalisation may be required and condition code and other
registers may need clearing or setting. The reduction of the
time taken by end effects is often only achieved at very great
expense.

In the analysis, shift values approaching the maximum may
be inapplicable towards the end of a division. We have also
assumed that the dividend and divisor have values which are
randomly distributed to start with. This is usually a reasonable
assumption in real arithmetic (but see Hamming, 1970);
however, in many programs integer constants are mostly small
and positive. Their relative occurrence in division operations
is not known. In addition, the division process can proceed
at maximum speed as soon as a dividend of zero is obtained;

- again we do not know how often this occurs.

It was one of the objectives of the divider design to utilise
existing hardware as much as possible to minimise the cost
of the implementation of an arithmetic function whose use is
largely confined to certain computing application areas. It is
worth noting that as the trend towards large scale integration
continues, it may well turn out in the future to be cheaper to
provide a separate hardware divider for those installations
requiring this facility.

Acknowledgement

One of us (MRP) wishes to acknowledge the permission
granted by International Computers Limited to publish this
article.

Iterative schemes for high speed division, The Computer Journal, Vol. 15, No. 4.
Statistical analysis of certain binary division algorithms, Proc. I.R.E., Vol. 49, No. 1.
On the distribution of numbers, Bell Systems Tech. Journal, Vol. 49, No. 8, pp. 1609-1625.
Dynamic probabilistic systems, Vol. 1 Markov Models, Wiley, N.Y.
Analysis of speed of a binary multiplier using a-variable number of shifts per cycle, The Computer

Logical design of digital computers, Wiley, New York.

RicHARDS, R. K. (1955). Arithmetic operations in digital computers, Van Nostrand, New York.

TocHER, T. D. (1958).
Pt. 3, pp. 364-384.
WALKER, B. S. (1967).

Techniques of multiplication and division for automatic binary computers, Quart. J. Mech. Appl. Maths., Vol. 11,

Introduction to computer engineering, University of London Press.

The Computer Journal

|w)
<]
S

20z udy 81 U0 1s8nb AQ £22€/€/9%2/€/1 Z/310Ne/ufo/Wwo"dno-owspese)/:sdny Woly papeoju

