Triangulating the human torso

A. van Oosterom

Laboratory of Medical Physics, University of Amsterdam, Herengracht 196, Amsterdam,

The Netherlands

A simple, continuous, 2-dimensional Fourier representation of closed surfaces is presented. It is
applied to the triangulation of the human torso surface for an arbitrary number of triangles. The
shape of the torso is described by a radius function expressed in the cylindrical co-ordinates z and ¢.

A listing of a FORTRAN program is given, performing this triangulation at equi- z and ¢ values.
In addition ordered vertex index triples are computed, allowing the determination of the outward

normal vector of each triangle.
(Received March 1977)

In some areas of medical research it is of interest to describe
the geometry of the human torso numerically. Examples are
the computation of dose distributions in radiotherapy (Com-
puters in Radiology, 1972) and the forward- and inverse pro-
blem in electrocardiography (Horacek and Ritsema van Eck,
1972). In the latter cases an integral of a weighted, electrical
potential over the body surface has to be calculated. The
usual approach to this problem is to represent the body surface
by a great number of small triangles, the vertices of which lie
on the body surface (Horacek and Ritsema van Eck, 1972;
Barnard et al., 1967; Ramsey, 1974). The potential is assumed
to be constant per triangle and the integral is approximated
by performing a summation over the triangles:

N
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where w; = weight
@, = potential
4S5; = area
i = triangle index

In some cases the weights depend on the spatial orientation of
the surface elements. One then needs both the co-ordinates of
the three vertices and the sequence in which these vertices
should be entered into the computation of the orientation
(outward normal vector) of each triangle (Barnard et al., 1967).

A method will now be given to obtain both data sets for any
number of triangles that one may wish to use in approximating
the torso surface. A 2-dimensional Fourier representation of
the torso shape is employed. As such it is similar to a method
described by Guardo (1972); the actual representation used
in this paper, however, being different.

The representation uses a radius function expressed in the
cylindrical co-ordinates z and ¢. The Fourier representation
for the radius function being obtained, one can compute the
co-ordinates of any vertex point as specified by z and ¢. In
the sequel the vertex points are selected in a regular fashion,
i.e. at discrete equidistant z levels z,,i = 1, M* and equi-
partitioned values ¢;, j = 1, N.

The triangulation is achieved by connecting vertex (z;, ¢;)
to vertex (z;, ¢;.,), vertex (z;, ¢;) to vertex (z;,,, ¢;) and
vertex (z;, ¢;+,) to vertex (z;4,@¢;);i =1, M*—1 and
j=1,N.If j+1>Nj+ 1 isset to 1. Vertices (z,, ¢;),

= 1, N coincide; so do vertices (zyx, ¢;),/ = 1, N.

The problem of finding an optimal triangulation as discussed
by Keppel (1975) is avoided in this way. Rather than finding an
optimal triangulation for a given number of randomly distri-
buted vertex points the method here allows a straightforward
increase in the number of triangles used until some desired
accuracy is reached.
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j=1,24.

Recording the torso shape
A special protractor was built for recording the torso shape
(Fig. 1). It resembles a similar device used by Boineau et al,
(1967) for recording the torso of a dog. It records the radius,
ri{¢;) at discrete angles ¢; (15° intervals) and at different levels
of z; (1 cm intervals) (see Fig. 2). The subject is positioned sucl‘%
that his axis coincides with the z-axis of the recording apparatUSQ
The axis of a subject has been defined as the line runnmg_ah
through the centres of two horizontal rectangles enclosing thg
torso: one at the level of the upper sternal region and one ins
the lower abdominal reglon The half plane through thqg
z-axis and the sternum is chosen as ¢ = 0. For the radiusg:
function ri(¢;) it is assumed that r(¢;) =0fori = 1;j =1, 24&3
at some height z, = 0 near the base of the neck. Also r(¢;) =
Ofori= M*;j= 1, 24atalevel z\;, = hinthe lower abdomm—g'
region thus truncating the torso. The resulting matrix r; ;(i =2
1, M*;j = 1, 24) has zero elements for i = 1 and i = M*

Luo:)'d

Care was taken to record always during a fixed phase of th
respiratory cycle.

2-dimensional Fourier representation of. the torso

The recorded values r; ; can be considered as the result of
2-dimensional spatial samplmg procedure carried out on the»\a
continuous function r(z, ¢). This function is defined over theJ1

/120 100e/1uluiBoy

region 0 < z < h and 0 < ¢ < 2r; the samples taken at 33
regular grid. “
The indicated region has a completely natural, periodno?i

extension for values of ¢ outside the interval (0, 2n). If one2
imagines the function to be extended periodically for z value%>
too, one can then represent the function by means of a 22
dimensional Fourier series expansion:

r(z, ¢) = Z Z oy, exp{iQnkz/h + 1$)} ¢

k= -0 I=-x

where o, ; are given by:

! rj Kz, §) expl—iQnkz/h + Ip)}dz g (2)
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Bl = T
In practice one has to work with a truncated series:
K L
Z o explinkzlh + 1)) (3)
k=-K I=-L
where K and L are set by the desired accuracy and the speed of
convergence of the series with the particular function con-

sidered. This speed can be increased by introducing the related
function R(z, ¢):

Rz, ) = / (g — 2+, 4»), @)

r¥(z, ¢) =
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Fig. 1 Protractor recording torso shape

R(z, ¢) being the distance between the surface point (z, ¢) and
the point on the z-axis at z = h/2. The expansion coefficients
of R(z, ¢) will be denoted B, ,.

The increased convergence can be demonstrated by considering
a spherical surface of radius R,. One has for this case r(z, ¢) =

r(z) = Vz(2R, — z) which can be expanded as

4 L

k=1
in which J;(x) is the first order Bessel function. In contrast
R(z, ) = R(z) = R,, which clearly requires a lower order of
harmonics. The same effect holds good for sphere-like surfaces
and to some extent for the thorax shape.

A further increase in convergence, with an associated decrease
in the required value of K, can be achieved by taking the period
of the function in the z-direction to be 24 rather than 4. The
function in the region & < z < 2h will be defined by:

R(z, ¢) = h — RQ2h — z, ¢)
This is an antisymmetric continuation around the value of
R(z, ¢) for z = h (Lanczos, 1956). By looking at Figs. 3(a) and
(b) the reason for introducing this procedure becomes clear.
In Fig. 3(a) R(z, n/2) is given for an actual torso shape. Here a
straightforward periodic continuation is shown. In Fig. 3(b) the
antisymmetric continuation is depicted.

Since in the antisymmetric case the derivatives of the function
at z =0,z = h,z = 2h... etc. are continuous, the speed of
convergence of the series is at least as fast as 1/k* as compared
to an original 1/k* (Hamming, 1962).

Finally the function R(z, ¢) can be interpreted as:

R(z, ) = hj2 + A(z, ¢) (5)
where A(z, ¢) is the deficit to the radius of a sphere just

JZQRy — 2) = Ro{lz + T (= D*J(km)/k x cos(knz/Ro)} s
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enclosing the torso. (Note that:
Az, ) = — AQ2h — z, §)
A, ¢) = A(h, §) = AQRh, ) =0.)

The series expansion of R(z, ¢) will be worked out by con-
sidering A(z, ¢). The representation will be valid for all shapes
(convex, concave, or mixed) for which R(z, ¢) is single valued.

The speed of convergence being increased values for K and L
will now be established. A study of R(z, ¢) recorded for
widely different torso shapes revealed that values of K = 25
and L = 12 produced truncation errors in the order of 5 mm.
Since the accuracy of the recording procedure, including
slight movements of the subjects, was estimated to be of this
order, it was concluded that taking N = 24 readings at
different angles for M* = M/2 = 25 different levels of :z
provides adequate sampling of the torso shape; M = 2K,
N = 2L.

The multiplicative factors two are governed by the sampling
theorem. Just the M/2 readings have to be taken because
A(z, ¢) has an antisymmetric continuation. Another con-
sequence of the sampling theorem and the periodic extension
is that the coefficients of the series expansion of R(z, ¢) caw
be computed by summation rather than integration: g

M—1 N-1
1
Bi. = N E E R, . E(— km/M — In/N)
0

m=0 n=

with: R = R(Z,,,.¢")

m,n

m=0,..., M2 -1

Ryn=h—Ry_p, m=M?2 ..., M—1
z, = 2mh/M
¢, = 2mnn/N

k=0,....,.M—1
/I=0,...,N—1

$202Z 11dy 6] UO 159N6 Aldg@daSLSissicilzannie iuluda/woo dnoolwapeoe//:sdiy WoJj papeojum

Fig.2 Specification of r(z, qS) in the cylindrical co-ordinates used
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R(z,3)

NI

I 1

z2=0 z=h Z=2h

Fig. 3(a) Periodic continuation of R(z,/2) period A

R(z,g)

N

| |

2.0 Zah z2=2h
Fig. 3(b) Antisymmetric continuation of R(z,7/2) period 2h

E(— km/M — In/|N) = exp{+ 2ni(— km/M —
In/N)}
The coefficients f,,; (spectrum) form the 2-dimensional
discrete Fourier representation of the matrix R,, ,; as such
they are periodic:
B+ pmor+qn = By pandg =0, £1, +2, etc.
Moreover, since R,, , is real:

_ ﬂk.l = ﬂ—k,—l = ﬂM—k,N-l
with f the complex conjugate of f, ;.
The antisymmetric continuation of the R, , values around
z = his reflected in the f matrix in the following way:

/30.0 = h/2

Bo,z =0
and in general:
M2

? E(—- ln/N)Z maSIN2nkm/M) (6)

Wlth 5,"1 =1 fork = [— 0
Ox,; = 0 otherwise
The proof of this is given in Appendix 1.
So far the analysis has resulted in a series expansion of the

radius function R(z, ¢):
K L

h
= 5 —
B ki3~

R(z, ¢) = By exp(nikz/h + ilg) @)
k=-K |l =-L

where B, ; can be found using the discrete set of readings 4, ,
defined in (5) through equation (6). As such (7) can be used
for computing the co-ordinates of any point on the surface that
one may want to use as a vertex for triangulating this surface.
The expression for f, ; can be simplified further if the surface
is symmetrical with respect to the plane ¢ = 0. This symmetry

shows up in the 4,, , matrix values in the following way:

Am,n = Am,N—n
Consequently:
N-1 N/2-1
Z E(_ In/N)Am,n = Am,O + Am,N/Z + 2 Z Am,n
n=0 n=1
Nj2
cos(2nln/N) = Z @ = 8, = 8ynj2)Amn
n=0
cos(2nin/N) with 6, = 1forn =0

0, = Ootherwise

When this result is substituted in (6) one gets, after changing
the order of summation:
M2 N/2

h 2i Z ' . Z
_ - —_— 2 —
Bt 25,,,, UN sin(2rkm/M) ( On
m=0 n=0
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8n—N/2)

cos(2n/n/N)A,, , (8)
From this expression it can be learned that:
Re B, = Ofork, [ # 0
Boy =O0forall!/#0
By.1is even in [ for fixed k
Bi.i is odd in k for fixed /.

Use of this particular odd and even nature of f, ; leads to th
following, simplified representation of (7):

Seojumog

B;L =2iﬁkL k#0

Relation (9) is the final form of the 2-dimensional Fouri
representation of the torso shape that was used in the trlanm
gulation.

g

K L g

Rz, ¢) = z Z Be., cos(l) sinkzn/h) (9F
k=0 1=0 %

In this expression the f; ;s are now real constants with §
(0]

Boo = hj2 =}

Beaw =4if, 1#0,1#L _g

Bro =2iBxo kK#0 %

g

3

o
sl
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Triangulation
The continuous form of (9) allows the computation of trxanglé)ﬂ
vertices for any z and ¢. A FORTRAN program has beem
written which uses this representation to compute the spatlakg
co-ordinates of triangle vertices at M* = M/2 equ1dlstan8
values and N-equipartitioned ¢ values.

In all NVER = N(M* — 2) + 2 vertices are computeé‘E
including top and bottom. In addition, for each of the total of2
NTR = 2N(M* — 3) + N+ N =(M* — 2)2N(=2NVER—-4§
triangles, an ordered set of three vertex indices is computeds
indicating a clockwise sequence of the three vertex pomtg
when the (closed) surface is viewed from the exterior.

A listing of a basic version of this program is given ng
Appendix 2. A more complete version, including a plotting
procedure, will be provided on request.

Results

The above procedure has been used to generate data of tri-
angulated torsos for different degrees of approximation, i.e.
for different values of M* and N. The complete set of co-
efficients f; ; (spectrum) that was used in this reconstruction
is given in Table 1.

An axonometric projection of the resulting shapes is given
in Fig. 4 and Fig. 5, respectively for M* = 11, N = 12 and
for M* =19, N = 12.

At every other z level the vertex points are placed at ¢ values
which are shifted over a one half ¢ unit. In this way the
resulting triangles have an almost regular equidistant ¢
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Table 1
Full (26 x 13) input matrix B;.: c.q. B(k, [) of FORTRAN program,
specifying torso geometry.

Values given are in cm.

26.000 0.000 0.000 ©0.000 0.000 0.000 0.000 0.000 O0.000 O0.000
0.000 ©0.000 0.000
-11. 054 0.887 -3.218 -0.599 0.268 0.025 -0.025 O0.049 -0. 166 ©0. 044
-0. 101 -0. 040 0. 049
0. 466 -0. %67 -1. 413 0.314 0.434 -0.377 ©0.167 0.085 -0. 107 0. 103
-0.011 -0. 082 0. 074
1.420 0.333 -0.547 O0.143 0. 240 -0.366 0.065 0.081 -0.061 0.073
0. 054 -0. 045 0. 023
-0. 604 -0. 084 -0. 142 -0. 070 0. 195 ©0.074 -0.127 0.033 0.005 0. 007
0.032 0.003 -0. 047
0.177 0.285 0. 152 -0. 477 -0. 025 0. 291 -0.248 0.021 0.138 -0. 104
0. 024 0.086 -0. 051
-0. 567 -0. 156 0. 657 -0. 253 -0. 004 ©0. 284 -0. 177 -0. 116 0. 160 -0. 130
0. 027 0. 080 -0. 040
0.104 0.2%6 0.231 -0. 327 -0. 055 0. 204 -0. 026 -0. 084 0. 060 -0. 048
~0. 006 0. 047 -0. 021
-0.244 -0.169 0.186 O0.114 -0.115 0.041 0.042 -0.088 -0. 018 0. 065
-0. 036 -0.028 0. 009
0.31% -0. 059 -0. 105 0. 103 -0. 075 -0. 064 0.135 -0.012 -0. 091 0. 128
-0. 033 -0. 067 0. 040
-0.139 -0. 183 0.107 O0. 145 -0.014 -0. 111 0. 153 -0. 003 -0. 105 0. 094
-0. 015 -0. 080 0. 030
0.140 -0.047 0.015 0.015 0.001 -0. 006 O 061 -0.015 -0. 053 0. 033
-0. 006 -0. 047 0. 020
-0. 143 -0. 102 0. 142 0. 006 -0. 035 0.039 -0. 031 -C. 032 0.014 0. 020
-0. 004 -0.025 0.017
9 12% -0. 001 -0. 007 -0. 037 -0. 013 0.052 0. 006 -0. 006 -0. 014 0. 001
0.023 0. 027 -0. 034
-0. 010 -0. 052 -0. 015 0. 024 -0. 001 -0. 053 0.021 0.023 -0. 016 -0. 027
0.026 ©0.040 -0.018
0.181 0.008 -0. 145 0.040 O0.043 -0.084 0.026 0.005 -0.025 -0. 017
0.035 0. 001 -0. 004
-0. 021 -0.012 -0. 055 0.031 0. 039 -0. 046 -0. 001 0. 007 ~0. 010 -0. 012
0.037 0.006 -0. 012
0.118 -0. 015 0. 000 -0. 077 0.030 0.029 -0. 042 0.030 -0. 007 -0. 035
0.030 0. 030 -0. 027
-0.101 ©0.029 0.098 -0.079 0.018 0. 049 -0.079 0.012 0. 051 -0. 045
0.033 0.019 -0. 027
0.017 0.044 0.022 -0.058 0.007 0. 037 -0. 064 -0. 003 O.038 -0. 0SS
0. 005 ©0.028 -0. 013
-0.060 0.017 0.0456 O0.014 0. 019 -0. 009 -0. 034 0.010 O.009 -0.013
-0. 031 -0. 010 0. 025
0.061 -0.036 -0.027 0.052 0.012 -0.055 0.020 O 043 -0. 004 0. 017
~0. 053 -0. 010 0. 03%
-0.013 -0.082 0.01S 0.093 -0.006 -0.083 0.053 0.014 0.008 O.042
-0. 043 -0. 030 0. 02%
0.011 -0.063 -0. 003 0. 080 -0.022 -0. 015 0.062 -0. 006 -0.01S ©0.017
~0. 050 -0. 024 0. 031
~0.058 -0. 040 0.072 0.011 -0.008 0.018 0.022 -0.021 0.026 0. 021
-0. 055 -0.012 0. 026
-0.028 0.005 0. 019 -Q 015 0.008 O0.031 -0.032 0.005 0. 026 -0. 006
-0.03%5 0.018 0.020 .

arrangement for their centres (see Fig. 4). The figures are
constructed by plotting the projections of all composing
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Fig. 4 Triangulation using full spectrum at 11 z-levels and 12
¢-positions resulting in 110 vertex points and 216 triangles
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Fig. 6 Triangulation using reduced spectrum
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Fig. 7(a) z-level; base of the neck
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Fig. 7(b) z-level; just below the armpits

Fig. 7 Reconstruction of r(z,$) at various z-levels.
Asterisks: recorded values
Continuous line : reconstruction usiug full spectrum
Dashed line: reconstruction using reduced spectrum
The axes drawn point to the back and to the left

Fig. 7(c) z-level; just below the sternum

e
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ey — S SR

Fig. 7(d) z-level; 4 cm above lower truncation

triangles. In each plot the 3-dimensional nature of the shapes
is enhanced by drawing all frontal triangles by unbroken line
segments and all dorsal triangles by dashed line segments. This
was achieved in the following way.

When connecting the vertices of a triangle in the (clockwise)
sequence as computed previously, two situations will arise.
When the triangle is frontal the clockwise sequence is retained
in the projection. When the triangle is dorsal the sense of
rotation is reversed as a consequence of the projection. In
either case the sense of rotation of the plotted triangle can be
computed by considering the sign of the outer product of two
projected sides, when these projections are considered as
(3-dimensional) vectors in the plane of projection. Thus the
sign of the vector product will indicate whether a line segment
should be unbroken or dashed.

When the size of the input matrix S , is reduced the resulting
torso shape is distorted ; the more so, the greater the reduction.
In Fig. 6 the values K = 6, L = 4 have been used in the
reconstruction; while M* =19 and N = 12 as in Fig. 5.
The effect of a reduced spectrum is brought out even better in
Fig. 7(a)-(d). Here the original measurements of r(z, ¢) are
shown by asterisks. The continuous lines are drawn through
reconstructed values at 100 equiportioned ¢ values, using (9)
and (4) with the full spectrum. The dashed lines are drawn
using the reduced spectrum. The z levels at which r(z, ¢) is

Volume 21 Number3

shown are: 7(a): base of the neck; 7(b): level of the armpits;
7(c): just below the sternum; 7(d): near the bottom, 4 cm
above the truncation.

The reduction of the spectrum predictably affects those parts
most where the radius function changes most rapidly (shoulder
to neck, truncation at the bottom). The remainder is far less
affected and for some applications it may be adequate to use
just such simple representation of the thorax shape.

Conclusion

The explicit, continuous representation of closed surfaces by
means of the radius function R(z, ¢) allows for the triangula-
tion of these surfaces for any desired number of triangles.
The 2-dimensional Fourier representation of R(z, ¢)(7)
covers the general case. A more efficient representation is
possible when extra symmetry can be assumed (9). In this
case the torso can be accurately described using 26 x 13
Fourier coefficients. Limiting the number of coefficients to
values as low as 6 x 4 still gives a fair description except for
top and bottom.
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Appendix 1 C INPUT ggggﬁmopm::erens: KR, LR
. . ,10) JLR
To prove relation (6) consider: A KRM=KR-1
FPIL=2. #PI/LR
M-1 N-1 FPIK=PI/KRM
/3 1 R E( ! M nIN C TOP VERTEX
= — km —n VER(1, 1)=VER(1, 2)=0
k! MN m.n / IN) VER(1, 3)=R00
= = IDIST=2. #ROO/KRM
= = IND=1
; . C INTERMEDIATE VERTICES
The discrete form of (5) reads: o o 1702, KAM
. AIZ=12-1
Ryn= h/2 + A, with A, ., = — Ay_m.n- DO 20 L=1.LH
Now RI(L)=0
DO 30 K=2,KH
M-1 N-1 AK=K-1
5 2+ A E— kmiM — InIN 30 RI(L)=RI(L)+B(K, L) #SIN(FPIK®AIZ#AK)
= — Km — In AEVEN=1Z-(12/2)#2
k.t / + Am -") ( / / ) HEVEN=AEVEN/ 2.
“—3 DO SO JFI=1,LR
AJFI=UF 1
N-1 M-1 AJFI=AJFI-1. +HEVEN

1 IND=IND+1
— - HULP=R00
h/2 E(— km/M — In/N) + N E FI=FPIL#AJFI
DO 40 L=1,LH
n=0 m=0 AL=L-1
N-1 40 HULP=HULP+RI (L) #COS(AL®FI)
A=ROO-A1Z#ZDIST

Z Ap.w E(— km/M — InjN) RA=SORT (HULP*HULP-A®A)

Il
/- §-
= =
X3
L

3
I
[S)

VER(IND, 1)=RA*COS(FI)
VER(IND, 2)=RA*SIN(FI)
n=-0 50 VER(IND, 3)=A
N—1 M/2-1 60 CONTINUE
| IND=IND+1

= h/2+~——ZE(—InN){§‘A,,,,,E(—kmM C BOTTOM VERTEX .
L2 E AL, A i (ERi e e oo
n=0 m- 1 NVER=IND

M- 1 C DETERM VERTEX INDEX TRIPLES
+ Z A, E(— ksiM) + Ao, E©) + P 70 ViR
IPT=J+2
s=MJ2+4 1 is'(rxr;:'plr LR+1) IAFT=IPT-LR
+ Awpzn (= KD} i e,
where 6, , = lfork =1=10 7e P
= 0 otherwise. Bo 26 122, KM
In the summation over s the substitutions = M — m is made; NEvENma~ (12102

subsequent use of A4, , = — Ay_,,, and the periodicity of E DO 50 Jei,LR

n: N2=N1+1
then resu]ts n: IF(J. EQ LR) N2=NZ-LR

N-1 Mj2-1 NZ=N2+LR

1 NA=N1+LR .
Bii =002+ — E(— In/N) A, IF (NEVEN. NE. 0) 50 TO &0
' ’ MN , : IND=IND+1
— ITRCIND, 1)=N1

n=0 ITRCIND, 2)=N2Z

(E(— km/M) — E(km|M)) ITROIND. 3)=Na
Since A¢., = Ay/y., = 0 for all n. So ITRCIND, 1)=N2

ITRCIND, Z)=NZ
ITRCIND, 3)=N4

N-1 M2
S 2 e
Bt = 01 h2 + N E(— I”/N); Amon ® TTRCIND, 1)=N3
n=0 m=0

ITROIND, 2)=N3
ITRCIND, 3)=N4
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. IND=IND+1
sin(2rek m/ M) . (6) ITRCIND,
: ITRCIND, 2
Appendlx 2 ITRCIND, 3)=N3
20 CONTINUE
€ FILE DOLLY NO= (KMM~—1) LR+1
C A VAN OOSTEROM, LAB FOR MED PHYSICS: AMSTERDAM. 15/01/76/ zfi'_:‘gi’Jd—"'-R
P =NO+.
C R(Z,FI)=B(1, 1)+5UM L=1,LH (SUM K=1,KH (B(K,L)#SIN(Z#(K-1)#PI/LENGTH))) IND=IND+1
- ITRCIND, 1)=N1
€ *COS((L-1)%FI)) )
P N2=N1+1
DIMENSION VER(210,3), ITR(410, 3), RI(26), B(26, 26) IFCJ ER LR) N2=N2-LR
ITRCIND, 2)=NZ
P1=3 14159263 100 ITRCOIND, 3)=NO+1+LR
C INPUT KH AND LH, BOTH LESS THAN 27 :F=
READ(4, 10) KH, LH NTRI=IND
¥ ! WRITE(&, 110) (I, (VER(I,.J), =1, 3), I=1, NVER)
10 FORMAT (I5) .
110 FORMAT (1X, 14, 3F3. 4)
C INPUT SPECTRUM -
WRITE(&, 120) (I, (ITR(I,J), J=1,3), I=1, NTRI)
READ(S, 20) ((B(I,J), J=1,LH), =1, KH) 120 e X atar
20 FORMAT (F10. 5) g
ROO=B(1, 1) STOP
END
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