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1. Introduction
We shall be dealing with the nonlinear programming problem
in the following form (1)

g(x) <0 k=1,2,...,m (1a)
f(x) - min . (1b)

where g(x) and f(x) are non-linear functions of the independent
variable X = (X[, X2, -« « 3 X o o oy Xp)-

2. Methods of nonlinear problem solution

A number of methods exist for a solution of equation (1).
We shall consider one standard approach by which the prob-
lem is reduced to a sequence of problems of step by step
reaching the feasible domain. It introduces an additional
constraint

gjj(x) = f(x) — 4; 2
and the barrier function F. (See Fig. 1.)

Fi(x) = ki e + e 3)

The process is divided into steps j. Point x; (at the beginning
it will be an arbitrarily chosen point x,; also 4;-, and 4 are
chosen) enters the searching block S (the program for un-
constrained optimisation) that searches for the ‘lowest
depression’ (which is the feasible domain) on the F surface.
The point found having smallest value F is designated as
x; y- If this point is feasible, the new step j takes place (when
4; is reduced by 4 in g;;). In the opposite case, the end is
reached and the extreme is the last found feasible point.

3. Parametrisation of constraint conditions
In the presented approach the solution will basically reduce,
from the geometrical point of view, to finding the ‘lowest
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2. Now it remains to determine parameters {/;},

depression’ on the barrier surface F.

A guarantee of success of finding the global extreme (x,¢) is
only valid if functions g,(x) are convex for all £ and the f(x)
function is convex (and thus also F(x)).

Conversely it may be expected only of a smaller or larger
probability of reaching a local extreme, more or less dlstant
from the global extreme. 2

We shall try to increase this probability by an lteratlvcz
process in which we should solve a sequence of problemg
instead of one problem. It is intended that the character of2
problems will approach, in the first phases, a favourable
convex character, and gradually reduce into the initial problemg
at the end. At the same time, during the process, the arbltrarlly;
chosen starting point x, should gradually migrate to a close&
vicinity of X,¢. o

For the sake of simplicity, we shall limit ourselves to th%
assumption that the constraint functions are defined by polyL
nomials (this assumption could eventually be extended). Ong
function from equation (1) can then be written

800 = ¥ Ax)

euu[Luog'/LUOO'd

where A,(x) are individual terms of the polynomial.

Now, we shall transform the function g(x) by a suitable:
parametrisation. We shall introduce two groups of parameters:
{1;} and {T'}. By their choice we shall achieve the parametrlsedi
function g, to form the required sequence of problems havm%g
properties 1 and 2.

1. By the election of {T} (at the arbitrarily elected {/;}), such a>
sequence of functions gp; should be achieved, that the g,,Eo
would change from the mostly deformed form to the initiafZ

AIRALS

g(x) one. <g
This can be achieved practically through function (4§

being parametrised into the form: %

r ©

gra(x; L) = X L; A(x) 5%

i=1 ;

where N

li~1 N

L,-=i7_—T+l; {T}y =(T,, Ty, ..., Ty) (6a, b)

1
The sequence T, according to (6b), is chosen arbitrarily
with only one limitation: that it should have decreasing
character in its magnitudes and that the last T,, should be
zero.

that is
I;;i =1,2,...r. These parameters will be determined so that
the parametrised function meets the three following
requirements:

(a) that it should be convex;

(b) that it should, at the same time, be a mean surface of the
original surface g(x) (with the same position on average)
in a region that will represent the vicinity of a particular
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point while the volume of this region will be of the
dimension Hrp;

(c¢) the magnitude of the dimension H; will decrease, at the
decreasing T, according to the chosen progression.

Now, instead of solving one optimisation problem with func-

tion (4) we shall solve the sequence of optimisation problems

with functions gp r(x; L;) for individual T. The extreme found
in one iteration will be the initial starting point for the follow-
ing iteration. The searching x, — X, Will be substituted by
the sequence of searching in assumed shorter distances
Xo = Xy, = X,r, = X, = X,p, = Xg, = ... = X, This
process is illustrated in Fig. 2. The practical realisation of the
sequence of iterations will consist of the following steps:

1. We shall choose the starting point x, = Xx7,. Let us now
take T = T (the first from the T sequence) — L; = /;. Then

g 1.0GL) = gX; 1) = X 1 4i) %)

Now, we shall determine parameters /; in (7) so that we will
satisfy both conditions, 2(a) as well as 2(b). At the same time,
we shall require satisfaction of the 2(b) condition in the
neighbourhood of the point x;. The magnitude of this
area is chosen with a relatively large dimension H,.

We solve the optimisation problem with functions of the
ge,r, type by any program and obtain the solution
X.r, = Xr,.
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2. The point xp, serves as an initial point for the following
iteration. We take the next quantity from the T sequence,
ie T,.

Parameters /; in (7) (i.e. at T = T,) will be determined
so that, again, the condition 2(a) is satisfied. The satisfaction
of 2(b) is required now in the region around the point xr,.
The magnitude Hr of its dimension will reduce to Hr,.

Utilising these /;, i = 1,2, ..., rand T, we form

I —1

i = T T, +1,

1

L

and from these, we create gp, r,(x; L;) according to (5)
and (6a).

By the solution of the optimisation problem with these
functions we can obtain x,;, = Xr,.

In the following, this process repeats itself for individual T
as far as Ty,.

During each step 7, we check whether we have reached the
feasible region or not (in this case we use the method according
to Section 1 for the optimisation algorithm). We should reach
this at T = T,,. If it is not achieved, the whole process OE
searching is repeated with the new x, = X, r,,.

The assumption about the possibility of an 1mprovemenf§
in the probability of success in the iterative process is base@
upon the following geometrical consideration. =

Since the function gp r(x, L;), for first quantities of T, will be
more convex (the requirement 2(a)), the probability of finding:
correspondmg X.r = Xr (the global solution for the T stageg
is considerable.

A sequence of these x,.; will form a path that can approaclg
the point x,;. It will divide the path of the original probleni
Xo = Xeg into shorter intervals. Since the probability of stopo
ping (in the local minimum) decreases roughly with the distance
of the points (from which we start and which we are searching
the total probability of success increases. During the decrease,\
of T the convexny will decrease, though by a selection of 8
suitable progressnon for the sequence T we can achieve in thl%
stage an increasing shortening of distances of pomt@»
Xer = Xe(T+ 1)

For an increase of the probability of a success it will also bQ
essential to satisfy requirement 2(b).

During the first 7; the same posmon on average o@
gp, 1, (x; L;) with g(x) will take place in the surroundin
region of the point xy, with a large dimension Hr,. The same;
position on average of gpr and g will thus have more global’
character and will react less sensitively to the existence of thg
‘lowest trough’ of the F surface. In most cases it can be supeo
posed that in the particular broader neighbourhood of g
locally lowest trough (i.e. the feasible domain) the values of.
the F function are, on average, mostly smaller than in an)i
other position. (The character of the F surface may be undug
lating and non-convex.) N

Under this assumption there is a considerable probabxhtj&
that, in a global scale, the resulting point x;, can approach
the point x,¢.

In step T, the same position, on an average of g and gp,
will be made around the point xr, (thus already closer to
X, then was xr,) in the region of decreased dimension Hr,.
This will cause the reaction to the lowest trough of the F
surface (where there is the global extreme) to be more locally
sensitive and the resulting point Xy, could get closer to the
lowest trough, etc.

An illustration that besides condition 2(a), it is necessary to
satisfy also 2(b) is in Fig. 2. The curve b is the curve gp_ 1 , Wwhere
the selection of /; has been limited by condition 2(a) only;
whereas the choice of parameters /; for the curve a has been
limited by both 2(a) and 2(b).

It can be assumed that, in a number of situations, the described
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procedure could increase the probability of success. Even from
a clearly geometrical point of view (see basically the searching
for the lowest trough of the generally undulated surface F)
it would certainly be possible to mention special situations
when even this approach would be less successful and would
depend more on the selection of the starting point, X,.

4. Conditions for-a convexity

After outlining the essential features of the program, we
may return to consolidate condition 2(a), i.e. how to choose
properly /;;i = 1,2,...,r to cause gp(x; /;) (in the sense of (7))
to get closer to a convex character.

From the geometrical point of view, the condition for a con-
vexity of the gp function in the particular region may be
substituted by the condition that in any position of this region
the function g, should have an elliptical point (and neither
hyperbolic nor parabolic).

For a two-dimensional problem the condition for an elliptical
point in a general position x is, according to Vojtech (1946)
as follows:

__1_ _L = gPX|X1(X; Ii) gPXzXz(x; Il) - g}’}hz\'z(x; 1;) > 0 (8)
R, R, (83x,(x; 1)) + gy, (x5 1) + 1)?
where R;, R, are main curvatures of the g, surface in the
point X; gpy, x, is its second partial derivation with respect x, ;
&px,x, 18 second mixed derivation.

Since the denominator of expression (8) is always positive,
condition (8) can be written:

&rx,x,(X; 1) 8px,x, (X5 1) — 8 x, x,(x; 1) = 0 ()]
that, again, must be valid for any x from the region considered.
We shall distinguish three cases:

1. In the case that the g, function is separable (i.e. it does not
contain mixed members, but only members containing only
one variable) the gpy,x, = 0, and condition (9) is in the
form

8rx,x,(X1; 1) =0 ; grx.x,(Xr31) =0 (10
In order that condition (10) is a function consisting of only
l; parameters, point x ;- was substituted for general x. Here, X 1
is the centre point of the region where it is necessary to
satisfy the condition. The approximation originated by this
substitution can be partly compensated by satisfying require-
ment (10) with a larger reserve.

2. In the case of a general function, it seems useful to choose
I; so that in the first stage we choose the parameters /,
which are multipliers of the mixed terms g, in the form
I; < 1 (I, 2 0). Through this, these members will be sup-
pressed in comparison with separable members and thus
the problem is transformed into a problem of the first
type (where remaining /; are determined from condition
(10)). This approach can be generalised in the form of the
following constraining condition:

Let us designate:
gr(x; 1) = 3= + g™
where g3®F is the part of g, with separable members, gM'¥ is

the part of gp with mixed members. Therefore, our condition
can be expressed approximately:

¥ ) + C — ey < g5 (xr; 1) 1)
with additional condition
C—e =0 (12)

where C is the chosen constant, e, is an auxiliary parameter
which, to satisfy (11), we shall try to achieve as small as possible.

3. When gp(x; /;) consists of only mixed members, the most
approximate way is taken and it is only necessary to satisfy
condition (10) (eventually again with a larger reserve).

For a general case of n coordinates, condition (10) can
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be made general to the form:

gPXLXl(xT;Ii)>0 = ]921'--7’1 (13)
It can be seen that in order to make gp(x; ;) approach a
convex character, the selection of /; must satisfy limitations
(13) and eventually (13) and (11). This selection can then be
made in different ways, thus it is a variant problem. Let us

first elaborate the problem of achieving the same position
on average of functions gp and g.

S. Conditions for the same position on average of functions
gp and g

The aim is to find additional conditions for the selection of /; so
the gp(x, /) may be on average in the same position as g.
Let us introduce the following designation

a=| [g(x) — g (x; [)]dV =

J Vi X1

f Xi(Ty+Hr/2 -‘—xz(-r,+u-,-/2

JXyry—HT/2 X2(ry-Hr/2

 Xn(Ty+HT/2

[e(x) — gp (x; )] dx, dx, ...dx, ¢!

J Xnry—HT/2

peo@MoQ

where g(x) is again a non-parametrised function in the sense &f
(14), gp(x, 1)) is a parametrised function in the sense of (7,
A is the difference in volumes of bodies limited by the g(

and gp(x, ;) surfaces in the V region being of H, dimensich
about the centre of point x. <

Similarly
Sx. = [ [0 = gotx; 101 x, ¥
is a difference of static moments of bodies limited by g and

to the coordination axis x,. We shall define analogically t
difference of moments of inertia, products of inertia, etc.

T, = | [200 = gx; )] ¥

9z/€/1.Z/31011e/|ufwoo/FIgY dno-ojwapeoe)/:s

Jxxe = j 800 — g6 1)] %, x dV ..

Let us now require the volumes of bodies limited by g(x) an§
gp(x, 1;) to be equal and their static moments, with respect tg
individual coordinate axes, to be equal. The same would
be valid for their moments of inertia, products of inertia and
gradually moments of higher order. Then, obviously, both
g(x) and gp(x, /;) will come mutually closer and closer throu

these characteristics, i.e. they will identify themselves closer and

closer through the average. P
Our requirements can thus be written as follows: %_3?
-, <A<e, t=1,2,...,n %
— €x, < Sy, S €y, » (15)
—ex, Sy, < €y, »»

= exx. S Ixx,. < exx, »

Conditions (15) cannot be written in the form of the equations,
but in the form of inequalities, because the number of para-
meters /; being determined will generally differ from the
number of conditions (15). Best results in satisfying conditions
(15) will be achieved by trying to get the smallest magnitudes
of auxiliary parameters e.

Alternative formulation of identification conditions (15)
(i.e. achieving the same position on an average of functions
g and gp) can be by the least squares method. It can be under-
stood as a special case of a more general approach (15),
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but will thus be substantially more economical. It can be
stated

[2(x) — gp(x; [)]? dV - min - Z_f -0
1 4

i

fori=1,2,...,r (16)
thus
j [(x) — gp(x: 1)]ag‘°g Day—o, i=1,2,...,r
i

In conditions (16) the number of /; being looked for is equal
to the number of conditions. In order to determine /;, though,
conditions (13) and (11) for convexity must be respected at
the same time; for this reason conditions (16) are necessarily
expressed as inequalities.

ogp(x; 1)
— e < j [200) — &5 1] £ av <

i=12...,r an
The selection of parameters /; in such a way that g, is approach-
ing convexity and, at the same time is in the same position

on average with g, is subjected, consequently, to constraints
(11), (13), (17). A fair satisfaction of these conditions requires

f=CM€M+ZC;€(—’min (]8)

where C; are weights put on to compromise relative meeting
of individual conditions. To conditions (11), (13), (17) stated
above, additional conditions (12) and (19) are included.

20,20 ; i=12...,r (19)
It can thus be seen that the problem of finding /; is reduced to
an auxiliary problem of linear programming.

6. A flowchart of the program
Now the rough scheme of the process can be introduced. If the
method defined in Section 1 is to be used to solve an optimisation
process itself in every stage 7, then the scheme illustrated in
Fig. 1 becomes the scheme shown in Fig. 3.

There will be a change in the procedure in that each step j
(reaching the feasible region) will split into M steps of T. The
change of stages of a working point from x; tox;, rcorresponds.
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The process is shown in Section 3.

In the L. P block, during the T stage, the de-formation of
the barrier function F(x) —» F(x; L;)is performed by means of
I, parameters. These parameters are determined for each par-
ticular step T by an auxiliary problem of linear programming.
Any integration necessary, in the sense of Section 5 on the
assumption that conditions (4) hold, can be done automatically
by programming.

In the block S : F the lowest point x is being looked for on
this surface Fp 1. The process could be modified in a variety of
ways. For example a more approximate, but more economical
version would be the solution of the auxiliary lmear program-
ming problem for finding /; only in case T,.

7. Illustration problems

Problem 1

For the sake of geometrical clearness in the process following
Section 3 let us first consider a simple one-dimensional case.
The limitation (4) is chosen in the following form:

g(x) = axt + bx3 + cx? +dx, +e (20)
where g
a = 0,00792, b = —-0,245, ¢ = 2,373 , 2
d = — 17929, ¢ = 14,401 8
Then (5) and (7) are in the form: %
gp.r(X; L) = Lyax}{ + L, bx} + Ly cx? 2
+ Lydx, + Lse @ng
gr.1,(x; L)) = gp(x; ;) = Iy ax} + 1, bx} §
+lyex? +ldx, + Ise (22)§

If a simplified cycle T is chosen (i.e. parametrisation at Tlo
only), the condition for achieving the convexity in determmmg:
I according to (13) is in the form (x, = xr, = 8,5)

grx,x,(Xr,3 1) = 121 ay X} (py + 613 bx g,y + 25 ¢ =
=686/, — 12,491, + 4,741, > 0 23)3

Alternative selections /,, /,, /5 exist for satisfying the conditionnz
(23). They are based on trying to enlarge positive members ini
(23) (through the choice of corresponding /; > 1) and to
reduce negative ones (through the choice of correspondmgw
l; < 1; at/l; = 0). From this point Sf view any variant can beN
taken from the above mentioned alternatives, according to (24).2

&
R

g

«Q

1| 085 1 :
1|1 1,4 S
g
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2

O

The remaining /,, /5 can be determined from conditions of the®
same position on average of functions g, and g (SPA of g and
gp) (15). Only the first two of them will be taken which will
enable their interpretation as equations (two equations for
two remaining unknown /,, /5) under the particular selection
of (24).

A=0, Sy, =0 (25)
The form of (25) (at Hy = 8,5) is as follows:

hy = 17
j [es(x; ) — g®)] dx; =0

h, =0

j"‘ [e(x; ) - £60] x, d, = 0

h =0

If the first variant /;, = 1, /, = 0,85, I3 = 1 from (24) is
chosen and substituted into (25); then from solving (25) it
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follows /, = 2,204, /5 = 3,504.

A small number of parameters enabled us, in this case, to solve
a problem of the convexity and (SPA of g and gp) simply as the
selection of /; and as the subsequent solving of a system of
linear equations. An approach through linear programming is
obviously more general.

The procedure itself is illustrated graphically in Fig. 2.
Individual gp,7(x; L;) are graphically displayed there according
to (21) for individual T = 10, 5, 2, 1, 0. The sequence of
points X, = Xy, = X, = . . . in the sense of Section 3 is also
evident.

Curve b represents (22) where, as a contrary to curve q,
only conditions for convexity are respected (/,, /,, /3 according
to the first variant (24)) and where conditions for (SPA of g
and gp) were not respected (/, = /5 = 1).

Example 2
This is again a one-dimensional case to illustrate the influence

Table 1
No. [, 1, I3 A I h, h,
var
1 1 0,85 1 1,269 0,475 O 6
2 1 0,85 1 1,907 — 2,229 0 11
3 1 0,85 1 3,167 —-10,920 0 17
4 1 0,85 1 4,966 —-28,520 O 23
1501
1001
501 2/ 3 .
I

I\VA 45 7 9 11 / 14 2
-50-
-1001
-150;

]
Fig. 4
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9/ :

of the magnitude of H; (i.e. the integration interval) on th
character of identification.
Expressions (20) to (23) will remain the same, only the
following quantities have been changed:

a =0,0370, b = —0,889, c¢ = 6,674,
d= —-16,02, e= —11,002

We choose again a simplified mterpretatlon in the choice og
the first three parameters /,, /5, /5 in order to satisfy condmorg
(23) (now for new values of a, b, ¢, . . .) and we compute the
values of /,, /5 from (25). During this procedure (using (25)¥
H; will alternatively be changed (h,, h, are given, i.e. lowe®
and upper limits of integration of expressions (25)). &

Alternative choices /,, /,, /5 in the sense of (24) are listed i1
Table 1 together with alternative choices of H; (during thgg
solution of (25)).

In Fig. 4, curves (22) (i.e. stages of T, only) are shown. The‘—
number appearing at the curve in Fig. 4 corresponds to thg
number of the alternative in the first column of Table 1+
The curve for T = 0, i.e. g(x), is shown as the dashed line. It is
obvious from Fig. 4 that for the larger H; the (SPA of g,
and g) is of a more global character. At decreasing H the
(SPA of gp and g) has a more local character with increasing
respect for details in the course of g(x) in the particular region.

Fig. 5

Xv
9z/¢/1 /2 1ofRe/|ul®ooAuoo dno olwapeoe//:sdiy Woly papeojuMo(]

Example 3
This is a two-dimensional case that illustrates the case of
separable functions.

In Fig. 5 the graphical interpretation of the method according
to Section 1 illustrates beforehand the position of x,; that
was looked for.

In stating the problem the pa-ametrised form is given directly
in the sense of (21):
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&rjp,1(X; L) | _ 4 3 2 2

=Lyax} +Lybx} + Lycx? + Lydxy +Lse + fx5 +gx, + h (26)

g1,p,7(X; L)

where
a b c d e f g h=-4;,

& 0,00792; —0,245 2,373 -7,929 &) 30,601 0,45 -5,4 -75
g1 0,0370 -0,889 6,674 —16,020 g1 —11,002 0 2 0
268 The Computer Journal



82p,7(X;L) = — 2x, +0,5x, +1 + Lg — 1
g3.pr(X;L) = —2x, + 4,84x, — 41 + L, — 1

Functions g,, g5 are convex (planes), which means that there
was no need to parametrise them. In order to achieve the effect
of ‘gradual coming back of the system to the original form’
they were still augmented by the parameter L, — 1 (with the
choice lg = I, = — 25).

Functions g,; and g, are non-convex only in the part con-
taining x, that was parametrised; the part containing x,
is convex, which means that there was no need to parametrise
it. At the same time, it represents a typical case of separable
functions. In order to achieve their convexity, only condition
(13) is thus used

gripxsx, X3 1) 20, g4 pxx,Xr3) =0 (27)

for the numerical satisfaction of condition (27) at x; = (8,5; 6),
to choose Iy, /5, I3 according to Table 2 is satisfactory.

In order to achieve (SPA of g, and g), the first two conditions
from (15) are again used in the form of equations (because
only /,, /5 remain to be determined). For this, the condition
Sy, is not necessary because the direction of x, is convex.
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Table 2
1 1, Iy 1, ls
g 1 0,85 1 2,205 2,180
g, 1 0,85 1 3,167 —10,920
A=05, =0 (28)
in the form

17 pF12
j (grj:p(x; 1) — g(x)] dx, dx, =0,
(/] V]

17 12
j Ly e 0% 1) — g, 0] x, dx, dx, =
0 o

For the choice of /,, /,, /5 according to Table 2, /,, /5 were ob-
tained by solving (28). Analogically, /,, /5 for g, were obtained
as well. The simplified algorithm was again used (the
parametrisation only for T',) that is illustrated in Fig. 6 showing
the F function according to (2) for T = 10, §, 2, 1, 0. The above
mentioned point has reached x,; at j = 1 already, so furtherg
decreases of 4; in the sense of Section 2 were not necessary.2

Book review

Realization of Data Protection in Health Information Systems,
edited by G. Griesser, 1977; 214 pages. (North Holland Pub-
lishing Company, $24-00)

This book represents the proceedings of the IFIP Working Group
4.2 conference held at Kiel in June 1976. In the editing, Professor
Griesser of Kiel was assisted by Messrs J. Anderson (UK), F. Gremy
(France), H. Peterson (Sweden), K. Sauter (Germany). The organisers
of the conference adopted the procedure whereby the papers were
circulated beforehand and the conference time was devoted to
comprehensive discussions thereon. In consequence, the publication
consists of the twenty papers (pages 1 to 138) followed by forty
pages covering the detailed contributions made in the five discussion
sessions. These latter cover data protection by hardware precautions,
software techniques (two sessions), organisations means,
(ORGWARE) and interdependencies. Workers in the medical field
were introduced to the word ORGWARE, i.e. organisational
methods. This covers topics such as authorisation of personnel,
categorisation of terminals according to their location, and choice
of correct hardware for the particular job to be done at that location.

The contributed papers cover data protection in group practices,
medical research, social insurance, a cancer registry and, of course, a
total hospital information system. A few extracts will give readers a
flavour of the conference. ‘The error rates in messages were lower
than in the written record and the amount of data held in the
computer record increased appreciably. However, there was an
overhead of 309 or more in the time that the junior doctors
required to provide accurate data patient information. There were
many who felt this was far too high a price to pay for the resulting
improved record even when allowing for its accuracy and its
increased manipulative capability.’ ‘One hospital uses minicomputers
to accept input data, validate it, record the data on cassettes, these
latter then being taken by road to the DP Centre. However, central
computing is proving expensive.” ‘It has been claimed that the
structure of files designed for research is much simpler than files for
health care institutions. According to our experience, that does not
seem correct: we deal in our centre with every kind of complexity, . .
‘That should imply that the data files need not be kept any longer.
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Indeed we used to destroy these files, but experience showed us thats
one must never believe a clinician who claims that his study is3
finished . . . and henceforth, we do keep the files.’ «. . . the protection=
system of the files within our computer, the PDP 10, is ratherf:,’_
sophisticated, implying three levels of protection: ...’ ‘In general,.2
the neighbourhood health centres serve small populations (average~
of 15,000). Since the target areas for the centres often have charac-w
teristics of a small town, sensitive information may spread quxcklyc,
and cause patients embarrassment.’

In the discussion the distinction was made between ‘safety’, 1.e.§
destruction, falsification, and theft of the media; and ‘security’,}
meaning theft of contents, unauthorised access and misuse. Speakersg
recognised that these problems were not particular to the field of;
medicine. Opinions were divided as to whether a medical informa-5
tion system/data base could safely share a computer with any other~
system. On the software side, experiments have been done withS
‘scrambling’ and this has been shown to involve only a 0-1 % increasex
in processing time when passing records to and fro through theZ
scrambler program. One speaker pointed out that, with validation=:
checks in use, the data in the computer is often more accurate ando
reliable than that in manual records. R

The final chapter contains the important conclusions reached after
three days of profitable discussions. The meeting recognised that the
doctor/patient relationship is a personal relationship based on trust
and this trust must be protected by any new system. Computer
professionals must come under the same rules of confidentiality as
other medical personnel. Computer professionals have a duty to
provide systems which protect the doctors/patients from a loss or
corruption of data. In the past computer people have let their
profession down by letting down the very people they are trying to
serve.

The conference has served a useful purpose not only reviewing the
state of the art for those involved but also, through this record of
the Proceedings, making this knowledge available to those respon-
sible for originating, funding, or managing medical information
systems. This book should be read by all those in these fields.

B. RicHARDs (Manchester)



