Algorithms supplement

Algorithm 102
CONVOLUTION INTEGRALS INVOLVING PROBABILITY
DISTRIBUTION FUNCTIONS

D. J. McConalogue
Department of Computer Science
University College, Dublin 4

Author’s note

The subroutines which follow have been developed to calculate
certain convolution integrals involving probability distribution
functions for use when closed analytical forms of the integrals do
not exist or are computationally awkward. The integrals are of
interest in applied probability theory, for instance, in certain
expressions for systems characteristics studied in reliability theory.
Two calculations are required and these can be conveniently
expressed in terms of the standard notation for the convolution of
two functions G and H, viz.

(G*H)) = J.'G(t — X)H’ (x) dx 1)
0

where H'’ is the derivative of H.
The first is the generation of approximations to the family of
functions F™ defined recursively by

F® (£) = (F®=D * F)(f)n > 1 (2)
=1 n=0

where F is a probability distribution function, and F’ is assumed
here to be given explicitly by a probability density function fe C!
[0, ©). The F™, being distribution functions, are positive and
monotonic increasing with ¢. A widely used f for which closed forms
do not exist for n > 1 is that of the Weibull distribution x,

f(t) = datelexp(— M), 0<t <0, A>0,a>0 (3)
The second is the calculation of an approximation to the integral
(GO * H®)(t) ©)]

where G and H® are the rth and sth members of families generated
from the distribution functions G and H according to the recursive
scheme (2).

The programs which follow are FORTR AN codings of an algorithm
of Cleroux and McConalogue (1976) which appears to be the first
for the problem. The heart of the algorithm is the choice of cubic
spline interpolation to give a continuous representation of the
approximation to F,_ This representation preserves the positivity
and monotonicity of the function and provides a good approxima-
tion to both the function and its first derivative. In the form presented
here, the approximation to F™ is given by a set of (m + 1) tabulated
values F"}’ at the points jh,j=0,1,...,m, together with an
associated set of (m + 1) spline coefficients C "" In the range
jh < t < jh + h, F™ is approximated by y"", where

- 27 co + _C‘
6h 6h
2=t~ jhand A% = FE[h — hC][6

The C™ are obtained as solutions to a set of (m + 1) simultaneous
equations, (m — 1) of the form

I

+(h—2)AD + 247),, (5)

n -
y(z) =

3
+ €™ + }CMy = — (FIMy — 2F® + F/),

H 242

j=1,...,m—=1 (6

which arise from imposing first derivative continuity across the
internal points of tabulation, together with

C,{:.).z - 2C,(,:'Ll + C(;,) = 0 (7)

270

which imposes third derivative continuity across (m — 1)k, and

3[RA™ — F™ dFm
Co™ + 3Cym = = - 8
o 4y = 2 [0 o) ®

which arises from setting the first derivative of the spline approxi-
mation at ¢t = 0 equal to the analytically defined first derivative
of Fm, which is

dF®

— O=f0,n=1,

7 ©) =s0),n ©
=0, n>1.

The approximation for F»+1) is generated recursively from that for

F®™,_ From (2) and (5), =
F®*D (jh) = 0,j = 0 2

1h 9

= J‘ F® (jh — x) f(x) dx,j = §

é"

kh+h 3

Z j AU = DI d. (D

F{™+1D s the approximate value of the sum in (10) obtained
evaluatmg each partial range integral by five-point Lobatto qua
rature as the weighted sum of the product integral at

x=(k+ [1+s)h,s= +1, +J3/7,0, a
the corresponding weights being 4/20, 494/180, 16h/45.

A convenient practical scheme for this calculation is suggested lﬁ[
considering F{"*!) as the inner product of two vectors. If {v:} @
the vector of the (4m + 1) weighted values of f at the Lobat%
nodes in ascending order, with vax = h f(kh)/10,k > 1, to take
account of the double occurrence of the end values in the panel by
panel quadrature, and {«}} the vector of the values of y™ at thb

pege//:sd

nesolw
oA

o0o'd

same points in the same order then =
w

F('H'“ = 2 V¢ (15

i=0 I

9

The v; being independent of n need be calculated once only and

which follow directly from (2), and evaluating the integrals
summing the vs.

The calculation of the u‘P requires the evaluation of »
equation (5) at auh, h/2 and agh, a1 = (1 — J3/1)/2, a2 =1 — 1
for m values of j. It is economical to calculate these as weighted
sums of the adjacent F’s and C’s. The expressions are:

uflyy = aaF® + aaFfRy + w1 CY + W2 Cciy

ug"}” = (F(") + F;:zl)/z - hz(C<';> + C)/16

uf{'}+3 = uF® + azF(+1 + we C‘_'P + w1 C;’.'Jl
where w1 = — k23 + [3/7)/84,and w2 = — h2(3 — 3]7)/84.
Approximations to equation (4) are calculated by analytical con-
volution of the cubic spline representations of GV and H®), say
Gj, E; and Hj, Dj defined at jh,j=0,1,....,m. If g¢ and hi
denote the continuous representations of the form (5) in the range
(kh, kh + h), it is straightforward to verify that

stored; the 4{™ have to be calculated for each n. 8
Calculatlon of F{! can be combined with the tabulation of the vg
using the relatlons Q
F0©0) =0 2

ih o

F{V = Fi¥, + f(x) dx a3

Jh—n g

by

)

of

~

14

ji—1
h
(G * H®) (jh) = E j &5-k-1 (h — 2)he (2) dz
o

k=0

The Computer Journal

j=1
= 512 {(Hk+1 bl Hk) [12(Gr—1 + Gr) - hz(Er—l + Er)] (15)

k=0
+ K2[h2(E;Dr+1 — Er -1 D)/30 — (Gr — Gr-1)(Dx+1+ Dk)]}

wherer = j — k

An error analysis of this algorithm is not possible, and it has to be
tested empirically. Such a test is described in the reference. A
working rule, based on experience on a CDC 6600 with 14 decimal
digits is that for 0 < h < 0-5, 4-decimal place accuracy (adequate
for probability calculations) can be expected and this accuracy does
not decrease with increasing n. Subsequent experience suggests that
similar accuracy can be expected from single-length working on an
IBM 360. Since the accuracy increases as h decreases, an empirical
test is always possible.

The subroutines

Experience in using the algorithm to calculate a number of systems
characteristics has shown that it is convenient for the user to have
it coded as three subroutines. These are:

1. SPSPL

This takes as input a set of equally spaced ordinates, Fj, j = 0,
1,..., m, the spacing h, the number of points and the derivative
at Fo, and returns the corresponding spline coefficients by solving
the (m + 1) simultaneous equations given by (6), (7) and 8). It is
coded so as to economise on storage. Though mostly used in
conjunction with CONVOL, it is sometimes required independently.
The number of operations is O(m).

2. CONVOL

This produces the approximations to the successive F™ of equation
(2) on successive calls. On the first call, it tabulates the v of equation
(12) via a user-supplied function subroutine to calculate the pro-
bability density function f, at the same time calculating the F (})
from equation (13). SPSPL is called to produce the C <§->. The
constants, w1, wa and —h2/16 of equations (14) required in sub-
sequent calls are also calculated.

On the (n + 1)st call, n # 0, it takes as input the F (:-), C(:.) and
returns the F{**1), C**1) as output. The Fir+1) are produced via
the summations (12). Here the summations for all values of j are done
simultaneously instead of sequentially to avoid the necessity of
storing the (4m + 1) values of 4 at the same time. This saving in
storage is paid for by a slight increase in computing time due to the
increased use of subscripted variables. The Cg."* U are again produced
by SPSPL.

On the first call, the number of operations is O(/m), on subsequent
calls, O(m2).

3. CNVLTE
This is a straightforward coding of the summation (15). It takes as
input the cubic spline representation of two functions at jh,j = 0,
1, ..., mand outputs their convulate, but not its spline coefficients,
at the same points.

The number of operations is O(m?).

Acknowledgement

This work was supported by National Research Council of Canada
Grant No. A8321. I am grateful to the referee for a number of
recommendations which have greatly improved the presentation.

SUBRJOUTINF SPSPL

PURPOSE
TO CALCULATE THE CUBIC SPLINE COEFFIZ IENTS FOR A SET OF
FUNCTION VALUES TABULATED AT A CONSTANT INTERVAL, WHERE THE
DERIVATIVE AT THE INITIAL POINT IS KNOWN.

USAGE
CALL SPSPL LY sH NPT ,C+®)

DESCRIPTINN OF THE PARAMETEPS

a2 XskakakakalakakakaRaKaa ol e Na kel

Volume 21 Number3

C A VECTOR OF DIMENSION AT LEAST NPT. Y(1) TO Y(NPT) HOLD VALUES
C 0F FUNCTION IN THE CORRECT SEQUENCE ON ENTRY.
c H REAL. INTERVAL OF ARGUMENT FOR WHICH FUNCTION 1S TABULATED.
c NPT INTEGER, NUMBER OF DATA PCINTS. MUST BE .CGE. 4.
C [VECTOR OF DIMENSION AT LEAST NPT. C(1) TO C(NPT) HOLD SPLINE
C COFFFICIENTS ON EXIT.
C D VECTOR NF DIMENSION AT LEAST NPT USED AS WORKSPACE. KNOWN
C VALUE OF DFRIVATIVE AT INITTAL POINT MUST BE SET IN D(1).
C
C METHLL
C
c SCLVES SIMULTANEOQUS EQUATIONS BY GAUSSTAN ELIMINATION ANO
C BACK SUBSTITUTION.SPLINE APPROXIMATION GETS DERIVATIVE 1IN
C D(1). C(FPT=1) IS CALCULATED DIRECTLY FROM 3-POINT FINITE=-
C DIFFERENCE APPROXIMATION TO 2ND DERIVATIVE.
C
(e mmmemr mmmmemmmesme e me e ——— e mcmem—e———-————e————
c

SUBROUTINE SPSPL(Y,H,NPT,C,D)

D'MENSION Y(NPT),C(NPT),D(NPT)

A = 1./K
C
[RIGHT HANC SIDFS OF SQUATTONS INITIALLY PUT IN C,$S
c

C(1) = 3.#A%(A%(Y(2) - Y(1)) - D(1))

A = 1.S%%p

JM1 = 1

00 17 J=32,NFT

JgM2 = M)

FLANE NI |

17 C(JML) = A#(Y(JM2) - 2.%Y(JM1) + Y(I))

C(JIMYL) = 2.*C(JM1)/3.

C(JIM2) = C(JM2) = «25%C(JM1)
-
C SAUSSTAN ELIMIMNATION.
[

B = .5

A= C(Y)

DO 22 J=7,JM2

0wy = E

B = 1./(¢e = B)

A = B*(4.%C(J) = &)

rCty = 4

C BACK SURSTITUTION.
C

1 = JmM2

D0 30 J=2,JM2

M =1 -1

A = CCIMI) = a*C(]D)

ceIM1) = ¢
301 = 1M
CINPT) = 2.%C(JM1) - C(IM2)
RFTURN
END

SUBRCUT INE CONVCL

PURPJISE

wlWwoo/woo tno-olwapese)/:sdny WwoJj papeojumoq

TN GENERATE ON NTH CALL CUBIC SPLINE APPROXIMATION TO F(N) (T
DEFINEC FRECURSIVELY AS INTFGRAL FRCM X=0 TO x=T OF
F(h=1)(T=X)#DF(X), M .GF. 1, AND = 1, N=0, WHERE DF IS A
P.CoF., CONTINUOUS AND WITH CONTINUOUS FIRST DERTVATIVE.
FUNCTION VALUES AND CORFFS ARF TABULATED AT NPT PTS K#*H,
K=0s1yee NPT=1.

USAGE
CALL CONVOL (DF yHy NPT, FN, CN, WTDF , hKSP,N)
DESCRIPTION OF PARAMFTERS

DF FUNCTION SURROUTINE OF ONE ARGUMENT TO CALCULATE OF(X),
APPEARING IN 'EXTERNAL' STATEMENT IN CALLING PROGRAM,
H RFAL. STEP LENGTH, NR INTERVAL OF ARGUMENT FOR TAPULATION.
NPT INTEGER. NUMBER OF PTS MUST EE «GT. 4o MAXIMUM T = A*(NPT-1
NPT MAY RF DECREASSD BETWEEN CALLS, 8UT NOT INCREASED.
FN VECTOR OF DIMENSION AT LEAST NPT, MUST HOLD NPT VALUES FROM
T=C YO T=H*(NPT-1) OF F(N-1)(T) ON ENTRY (EXCEPT WITH N=0)e
HOLDS VALUES OF F(N)(T) ON EXIT.

CM VFCTOR OF DIMENSION AT LEAST NPT, ON ENTRY MUST HOLD cuslC
SPLINE COEFFS FOR FN(N=1)(T) (EXCEPT WITH N=r), AND HCLDS
THCSE FOR F(N)(T) ON FXIT.

WIDF VECTNP GF DIMENSION AT LEAST 4#NPT-3 TN HOLD WFIGHTED VALUFQD
OF CF AT LOBATTO NODES. NOT TO BE OVERWPITTEN BETWEEN CALLSD

WKSP VECTOR OF DIMENSION AT LEAST NPT USED FOR WORKSPACE. MAY EE =
USED BY CALLING PROGFAM PETWEEN CALLS.

N NAME OF INTEGFR REGISTER, MUST BE SET TO 2ERO BY USER REFORIO
FIRST CALL (WHEN VALUES IN FN AMC CN ARE IRRELEVANT) AND Is X
AUTCMATICALLY INCREASED BY 1 AT EACH SUBSEQUENT CALL.

61 U0 1senb Xq £62€2€/0.2//LZ/10MEY|

NTHZR SUBFOUTINFE USED
COMVOL CALLS SPSPL WHICH MUST BE LOADED WITH IT.

COMMENTS

PARAMETERS DF AND H ARE NCT REFFRRED TO AFTER FIRST CALL(N=C)
LIF DF NEEDS PAPAMETEFS OTHFR THAN ITS ARGUMENT, THESE ARE
COMMUNICATED BY “CIMMON®, PRECISION INCREASES AS H DECREASES.
RELSONARLE RESULTS CAN BE EXPECTED FOR H IN(.1,.5). SUGGESTED
INITIAL VALUE H=.25. CONVGL CAN BE USED TO CALCULATE
DIFFERENT INTEGRALS IN PARALLEL FOR THE SAME M IF EACH
FUNCTION BSSIGNSD TN DF HAS 1TS OWN SET OF REGISTERS ASSIGNED
TN FN, CN, WIDF AND N.

METHOD

F(3)(T) AT THE NPT POINTS IS GOT BY PANEL-BY-PANEL QUADRATURE
OF DF USING %-PT LOBATTC FORMULA. FOR F(N), N .GT. 1,
COMTINUOUS REPRESENTATIGN NF F(N-1) IS USED TO .CALCULATE
INTECRALS BY SAME 5-PT LOBATTO FORMULA.

mnﬁonn’\ﬂﬁnhnnﬂoﬂnnhﬁﬂv'\-"\hhﬁnﬂ’\‘\nnnﬁh:ﬁﬁﬁnﬁ'ﬁnnﬂnnnrsan.-\.‘\.ﬂmhnrv conn

2n

SUBRIUTINE CONVOL (DF 4H 4NPT ,FN,CN, WT(:F, WKSP,y N)
DIMENSTON P(4),FN(NPT),CNINPT), WTDF (NPT),WKSP (NPT)

M = NPT
IF(N.GT,.r) GC TO 30

ENTRy POINT FNR A=0 CALCULATE CONSTS FOP SUBSEQUENT CALLS. AUM,
COEFFS OF B1 AND B2 ARE =(3-RT)/84 AND —(3+RT)/84, RT=SQRT(3/7).
8,5 USED AS WEIGHTS FOR CN,S IN INTERPCLATION.

SN0

HH = H
AK = HHeHH
Pl = =.0279206% K

82 =+ [435078% AK
BM - .06252AK

C LOBATTC NNDFS IN WKSP(1) TO WKSP(4)
WKSP(2) = oS*HH

C

c FOLLOWING MUM, COEFF IS (14SQRT(3/7))/2.

C
WKSP(3) =
WKSP (1) =
WKSP(&) =

LB27327#HH
HH = WKSP(3)
HH

C LOBATTO WIS IN P(1) TO P(4). NUM.CNEFFS ARE 49/18C, 16/45 AND 1/20.
P(1) =
P(2) =
P(2) =
P(4) =
ALl =

«272222%HH
P(1)
«355556%HH
o S2HE
DF(C.)

TARULATE [F AT LOBATTD NOODES MULTIPLIED BY WEIGHTS. F(1)(T) 1S GOT
AT SAMF TIME BY PANEL-RY-PANEL SUMMAT ION.

[aBaNalel

K =1
AK = P(a4)*aAl)
WTDF(1) = BK
FN(1) = (.
CK = 0.
00 29 J=24M
DO 10 L=1,4
CKP = CK + WKSP(L)
D = P(L)#*DF(CKP)
A¥ = AK ¢ D
K = K +
17 WTDF(K)
WTDF (K)
FN(J) =
AK = A¥ ¢ D
2 Ck = CKP

2.%C

L

DERIV. NF F(1)(T) AT T=D SET FCF CALCULATIONM OF SPLINE COcFFS,

ao0

WKSP (1) = £L1
GO TO 8C

ENTRY POTRT FOP N oGF. 1. USE SPLINE APPFOX. TO CALCULATE VALUES
OF F(N) AT NCDES, ONF PANEL AT A TIME IN P(1) TO P(4).

e XaXaks)

39 LD 47 J=1,M

40 WKSP(J) = €,
CvP = ON(1)
P(s) =,
AL2 C.
rLG (e
BL2 CKP#pR1
BLS CKPxR2
CO 7C J=2M
CK = CKP
CkP = CN(Y)
Ak = P(&)
P(4) = FACY)
ALl Ale
AL4 «827327#P (4)
AL3 AL2
AL2 P(4) = M4
BL1 BL&
BL4 CkP*e2
BL3 EL2
BL2 CKP*R]
P(1) = ALY ¢ AL2 + BL1 ¢ BL2
P(2) = 5%(AK + P(4)) + BM*(CK + CKP)
P(3) = AL3 + AL4 ¢ BL3 + FL4

CALCULATE CONTRIBUTION OF(J-1)TH PANEL TC SUM.

[aXaXal

MU = 0
DD 60 K=y M

NL o NU
(L)*P(I) + D
1

= WKSP(K) + D

ELIMINATE SMALL NECATIVE VALUES,

[aXakal

JF(WKSP(J) LT 04) WKSP(J) = Q.
77 FN(J) = WKSP(J)
Pr N =N ¢+ 1

CALCULATE SPLINE COFFFS INTORPORPATING INITIAL DEPIV. IN WKSP(1).

[sXaka

CALL SPSPL(FN,HH,M,CN,WKSP)
RETURN
END

SUBRIUTINE CNVLTE

PURPNSF

2 EalakaksXakakal

TC CONVOLUTE THO PNSITIVF MONOTONIC TNCREASING FUNCTIONS Y(T)

272

AND 2(T) GIVEM PY THEIR TABULATED VALUES AND CUBIC SPLINE
COEFFICIENTS AT T=K#H, K=C,1,00,NPT=1. CNVLTE RETURNS
INTEGRAL FROM X=0 TD X=K*H OF Y (K*H=X)*DZ/DT(X) FOR SAME K,S.

USAGE
CALL CAVLTE(Y,YSPL,Zy ZSPLyH NPT ,E)
DESCRIPTICN OF THE PARAMETERS
Y, YSPL, Z, 2SPL AND E AR® VECTCRS, DIMENSIOM .GF. NPT,
Y Y(1) TO Y(NFT) HOLD TABULATED Y VALUES 3N ENTFY.

YSPL YSPL(1) TO YSPL(NPT) HOLD CORRESPINDING SPLINF CGEFFICIENTS,
z 7(1) TO Z(NPT) HOLD TABULATFD Z VALUES ON ENTRY.

ZSPL 2SPL(1) TO ZSPL(NPT) HOLD CORRESPINDING SPLINE COEFFICIENTS.

H THF INTEFVAL OF TABULATION.

NPT THE MUMBEF NF TABULATED PCINTS.

€ £()) TO F(NPT) HOLD CALCULATED VALUES 0OF CONVOLUTION ON SXIT.
E MUST BE DIFFERENT FRJOM Y, YSPL, I, AND ZSPL.

METHOD

NIRECT PANEL-BY-PANEL CONVOLUTICN OF THE SPLINF FORMS FOR Y
AND DZ/CT.

AEOCECANOA AN ADAONNNO0A0ON

SUBROUTIME CNVLTE(Y,YSPL,ZyZSPLHNPT,E)
DIMENSION Y(NPT),YSPL(NPT), ZINPT),ZSPL(NPT),E (NPT)

HSQ = HxH

HF = HS0/3C.
E(1) = C.

00 20 K=2,NPT
U = 0.

YL = Y(K)

CL = YSPL(K)
y = (1)

DU = ISPL(])
M=K

0O 17 J=2,K
M=z=M-1

YU = YL

YL = Y(M)

cu = CL

CL = YSPL(M)
L = v

w =111

oL = DU

DU = ISPL(Y)
YQ = 12.%(YL + YU) - HSQ*(CL + CU)

17 U = U + (ZU=ZL)*YC + HSQ* (HF$(CUSDU-CL*DL) =~ (YU=YL)*(DU+DL))
C
c ELIMINATE SMALL NECATIVE VALUES.
C

TF(ULTele)
20 E(K) = U/24.

RETURN

END

U = 0.

0/Woo"dnoolwepese//:sdiy Woll papeojumod

Reference o
CLeroux, R. and McCoNALoGUE, D. J. (1976). A Numericgl
Algorithm for Recursively-Defined Convolution Integrals
Involving Distribution Functions, Management Science, V
22, No. 10, pp. 1138-1146.

Algorithm 103

COMPUTING THE BESSEL FUNCTIONS Yn(x + iy) A
Ku(x + iy)

nb Aq se%ze/OAZ/s/LZ/elﬂu

Vijay K. Garg

Department of Mechanical Engineering

Indian Institute of Technology, Kanpur
Author’s note g
Both ordinary and modified Bessel functions of the second kil
and of integer order and complex argument arise in many areas of
mathematical physics. For example, the solution for the propagati@
of a periodic disturbance through an elastic tube involves the
complex Bessel functions Yo(x + iy) and Yi(x + iy) as well as
Jo(x + iy) and Ji(x + iy). While computer programs for computa-
tion of the Bessel functions J.(x + iy) and In(x + iy) are available
(Scarton, 1971) for n = 0 (1) 10, that for Bessel function Ka(x + iy)
is available (Burrell, 1974) only for n = 0 and 1.

This note describes two FORTRAN subroutines for calculating
in double precision the ordinary and modified Bessel functions of
the second kind and integer order for any point in the complex
plane. These programs have been tested for n up to 10.

Because Yn(z) of large modulus |z|, where z = x + iy, cannot be
computed directly under certain asymptotic conditions (Abram-
owitz and Stegun, 1965, p. 364, Equation (9.2.6)), it is best to
write it in terms of Kx(z), for which there is no such problem.

The ascending series for Ka(z) with z complex as given by Abramo-
witz and Stegun (1965, p. 375, Equation (9.6.11)) can be written in
the recursive form as

The Computer Journal

Ka@) = (=1 (y + In} 2)n(2) + ;:i:n
+ H—z2ym :%0(4» +um Ce, (12)
wherey = 0-577215664901532860606512, (1b)
o = - 2B g _ - (Ic, d)

e R ©
‘ 1
qSk = - '¢o =0, (e, f)
m—-1
_ z2/4 _ 1

Ck = m Ck-1,Co = o ’ (1g, h)

Degenerate properties of Ka(z) that are needed for computation
are: (i) for n # 0, Kn(z) » o as z —» 0, whereas for n =0, the
real part of Kn(z) » co while the imaginary part — —arg (z) as
z — 0; (ii) for n a negative integer, the relation (Abramowitz and
Stegun, 1965, p. 375, Equation (9.6.6)) K-n(z) = Kn(2) holds;
(iii) Kn(z) is pure real only for z real and positive while it is complex
for all other z.

K,(2) is a regular function of z throughout the z-plane cut along
the negative real axis, and for fixed z(# 0) it is an entire function
of p. Due to truncation and round-off error the effective radius of
convergence for the ascending series is reduced to a value, say
Rmaz, for a prescribed accuracy criterion. Thus, an asymptotic
series expansion for Kn(z) is required in order to compute the
modified Bessel function for a modulus larger than Rmaz.

The asymptotic expansion for K,(z) (Gray and Mathews, 1922,
p. 55) can be written in the recursive form as

R-1
t
Kn(z) = e (.2712> [Z Te + O (ﬁ)] (larg z| <), (2a)
k=0

k+n-%Hk-n-1
2kz
where y has been replaced by integer n.

withTx = —

Tx-1,To=1, (2b)

. . 3 3
Although Equation (2a) is stated to hold for — ; <argz < —: »

(Abramowitz and Stegun, 1965; Watson, 1944) it cannot hold for
argz = + m, because for z real and negative (arg z = +), both
the ascending series (equation 1(a)) and the analytic continuation
(Abramowitz and Stegun, 1965, p. 376, Equation (9.6.31)) viz.

Kn(zex™) = (= 1)* Kn(2) F miln(2) , 3)
demand that Kx(z) be a complex quantity while equation (2a) will

ma!(e Ka(z) a pure imaginary quantity. The correct range for the
validity of equation (2a) is, thus, |argz| <=. For the given

. ks
program, equation (2a) was used only for _5 < argz s’-; s and

for z in quadrants II and III, analytic continuation (equation (3))
was used along with equation (2a). Values of Ka(z) for m/2 <
larg z| < 7 using equation (2a) agree with those calculated by the
given program using analytic continuation.

Having computed Kx(z), it is now easy to compute Yx(z) from the
relations (Abramowitz and Stegun, 1965, p. 375, Equation (9.6.5);
p. 361, Equation (9.1.36)),

e—mn/z[,-(_ D I(—iz) — ?K,,(—iz)](—’-r <argz<m),
Yn(z) = ke 2
(= D[Yn(—2) = 2iJn(-2)]

ks
(-rr<argz< —5) (O]
Methods for computation of I,(z) and Jn(z) are given in Scarton
(1971).

The above relations for Kx(z) and Ya(z) have been programmed
for an IBM 7044 computer using FORTRAN 1V. Since single
precision complex arithmetic did not result in enough accuracy due
to truncation and round-off error, double precision arithmetic was
used. Due to non-availability of the double precision complex

Volume 21 Number 3

arithmetic for the IBM 7044 software, a FORTRAN package was
specially prepared for such routine operations as multiplication,
division, etc.

Three methods were used to test the accuracy of the program.
The first method involved checking the values of Kx(z) and Yn(2)
against known tabular data (Abramowitz and Stegun, 1965, Table 9,
p. 417-431; NBS, 1950). For Ko(z) and Ki(z), the values were also
compared with those obtained by using the program of Burrell
(1974). In the second method, the values for Kn(z) were substituted
into Bessel’s equation LKn(z) = €, where L = z(d|dz)(z(d/|dz))
— 22 — n2 and € is an absolute error; € would be zero if Kn(z) were
completely accurate. In the third method, the values of Kn(z)
obtained from the ascending series, equation (1), were compared
to those obtained from the asymptotic series, equation (2), in the
annular region where both series are valid. The range of parameters
n and z = R € considered in the test program was n = 0 (1) 10,
R=0(1)30, and 0 = — 7 (w/12) 7.

Defining €r to be the modulus of the ratio of the N-th term to the
N-th partial sum, and relative error 8 to be the ratio |L Kn(2)/Kn(2)|,
it was observed that for ¢, = 10-15, 8, varied with all the parameters
n, R, and 0. Comparison of the results for the two series suggested
that in order to obtain a minimum of 10 decimal places accuracy for
Ka(2), the ascending series should be used for R < Rm while the
asymptotic series should be used for R > Rm, where

(310
g5+ 19 4 o150 (o < 16| <’I>,
T 6
616
g0+ 2 4 o15m T<i8<2)
Rm =ﬁ T 6 3

12 |6] m m
60 + —— + 0-15n -< |0l <=)
T 3 2

T

o-olwapese//:sdyy wdly papeojumoq

- 610
15— 41 01 (7 <10 < 11')’
¢
with @ as the principal value of the argument of z. Equation)
valid only for 0 < n < 10 because values of » greater than 10 weﬁg

not tried. 3

The Bessel functions Kn(z) and Yx(z) are given by the subroutin
KNZ(N, A, B, C, D) and YNZ(N, A, B, C, D) respectively where
the arguments of these subroutines are to be interpreted a§
C + iD = Kn(4 + iB) and C + iD = Yn(A + iB) respectivelys’
Arguments A, B, C, and D are all real double precision numbel%
while N is an integer. =

Note that if the imaginary part of z is 0, the values of Kn(z) anﬁ
Yn(z) correspond to arg z = 7. S

SUBROUTINE KNZ (NN, AA, BB, C, D)
KNZ COMPUTES THE MODIFIED BESSEL FUNCTION OF THE SECOND KIND AND
INTEGER ORDER NN, SO THAT K(AA+I BB)=C+ID .
NN MAY BE A NEGATIVE INTEGER
DOUBLE PRECISION AA,BB,A, B, C,D, R,NU, PI,ZZR, 221, S1R, S11, S2R, S2I, RM,
1TMR, T11, T2R, T2, PK, PKN, ABSDPC, DPFACT, CE, PY
LOGICAL PLUS
DATA PY, CE/3.1415926535897932D0,1.D-15/
A=AA
B=BB
N=IABS (NN)
NU=N
R=ABSDPC(A, B)
C TESTING IF THE ARGUMENT IS ZERO
IF(N.EQ.O .AND. R.LE.1.D-26) GO TO 16
RM=R**N
IF(RM.LE.1.D-26) GO TO 17
FINDING THE BOUNDARY RADIUS RM THAT SEPARATES THE ASCENDING SERIES
FROM THE ASYMPTOTIC EXPANSION (SEE EQUATION 5)
D=DATAN2 (B, A)
PK=DABS (D)
I1F(PK.LT. PY/6.D0) GO TO 1
IF(PK.LT. PY/3.D0) GO TO 2
IF(PK.LT. PY/2.D0) GO TO 3
RM=1 5. DO-6. DO*PK/PY+NU/10. DO
GO TO 4
1 RM=8. 5D0+3.DO*PK/PY+0. 15D0*NU
GO TO 4
2 RM=8. 0DO0+6. DO®PK/PY+0.15D0™NU
GO TO 4
3 RM=6.0DO0+12. DO*PK/PY+0. 1 5D0*NU
4 1F(R.GT.RM) GO TO 12
C ASCENDING SERIES SOLUTION (EQUATION 1).
C=DLOG(R/2. D0)+0. 57721 5664901 53286D0
CALL INUZ(NU,A, B, PK, RM)
CALL MULDPC(C, D, PK, RM, C, D)
ZZR=(A*A-B*B)/4.D0
2Z1=A*B/2.D0

[oNeoNel

20z Indy 61 uo 3senb Aq £62£2€/0

[oNe]

IF(N.GT.0) GO TO 5

C FINITE SUMMATION FOR N=0 IN EQN. 1A, BEING TRIVIAL, IS HANDLED SEPARATELY

S1R=0, DO
$11=0. DO
PKN=0. DO
R=1.DO
PI=0,DO
GO TO 9
5 IF(N.GT.1) GO TO 6

C SIMILARLY, FINITE SUMMATION FOR N=1 IN EQUATION 1A IS HANDLED SEPARATELY

CALL DIVDPC(2. DO, 0.DO,A, B, S1R, S11}
PKN=1.DO
R=A/2.DO
PI=B/2.D0
GO TO 9
C FINITE SUMMATION IN EQN. 1A FOR N.GT.1
6 T1R=DPFACT(N-1,1)
CALL DPCZN(A/2.DO, B/2.DO,N, R, PI)
CALL DIVDPC(T1R, 0.DO, R, PI, T1R, T11)

S1R=T1R

PK=PK* (PK~NU)
TIR=T1R/PK
TI=T11/PK
CALL MULDPC(T1R,T11,2ZR,ZZI,T1R, T11)
S1R=S1R+T1R
7 S1I=S1I1+T1
PKN=1. DO
DO 8 K=2,N
PK=K
8 PKN=PKN+1.DO/PK
C INFINITE SUMMATION CALCULATION (EQN. 1A) = COMMON FOR ALL N
9 PK=0.DO
T2R=1. DO/DPFACT(N, 1)
T21=0. DO
S2R=PKN*T2R
$21=0, DO
DO 10 K=1, 200
T1R=K
PK=PK+1.DO/T1R
PKN=PKN+1.D0/ (T1 R+NU)
RM=T1R* (T1 R+NU)
T2R=T2R/RM
T2I=T21/RM
RM=PK+PKN
CALL MULDPC(T2R, T21, ZZR, 221, T2R, T2I)
S2R=S2R+T2R*RM
S21=S21+T21*RM
CALL DIVDPC(T2R, T2I, S2R, S2I, IR, T11)
RM=ABSDPC(T1R, T11)*RM
IF(RM.LE.CE) GO TO 11
10 CONTINUE
WRITE(6,18) RM
11 PK=-1.DO
IF(MOD(N, 2).EQ. 0) PK=1.DO
CALL MULDPC(R, PI, S2R, S21, S2R, S21)
C==PK*C+S1R/2. DO+PK*S2R/2. DO
D=-PK*D+S11/2. DO+PK*S21/2. DO
RETURN
C SOLUTION FOR LARGE Z BY ASYMPTOTIC EXPANSION (EQUATIONS 2 AND 3)
12 PI=PY/2.DO
T2R=1.DO
T21=0, DO
S2R=1.DO
§21=0. DO
PLUS=. TRUE.
I1F(A.GE.0.D0) GO TO 13
C CASE FOR NEGATIVE REAL PART OF THE ARGUMENT IS HANDLED DIFFERENTLY
C SEE DISCUSSION FOLLOWING EQNS. 2 AND 3
A=-A
B=-B
PLUS=. FALSE.
C SUMMING UP THE SERIES IN EQN. 2A
13 DO 14 J=1, 200
=J
PK==((PK+NU-0. 5D0)/ (2. DO*PK)) * (PK~NU-0. 5D0)
IF(J.GT.N .AND. DABS(PK).GT.R) GO TO 15
CALL DIVDPC(T2R, T2I,A, B, T2R, T21)
T2R=T2R*PK
T2I=T21*PK
S2R=S2R+T2R
S21=S21+T21
CALL DIVDPC(T2R, T2I, S2R, S21I, 1R, T11)
RM=ABSDPC(T1R, T11)
IF(RM.LE.CE)GO TO 15
14 CONTINUE
WRITE(6,19)J, N, A, B, T2R, T21, S2R, S21, RM
C CALCULATING KNZ ACCORDING TO EQN. 2A
15 CALL DIVDPC(PI, 0.DO, A, B, T2R, T21)
CALL SQTDPC(T2R, T21, T2R, T21)
CALL MULDPC(T2R, T21, S2R, S2I, T2R, T21)
CALL DPCEXP(-A, -B, S2R, S21)
CALL MULDPC(T2R, T21, S2R, 521, C, D)
IF(PLUS) RETURN
PK=-1.D0
IF(MOD(N, 2).EQ. 0) PK=1.DO
CALL INUZ(NU,A, B, T2R, T21)
RM=1.DO0
IF(B.GT.0.D0) RM=-1.DO
C=C*PK+2. DO*PI*T21 *RM
D=D*PK~-2. DO*PI*T2R*RM
RETURN

274

C

[eNeoNoNe]

(e}

SOLUTION FOR ZERO ARGUMENT WHEN N=0
16 C=-DLOG(R)

D=-DATAN2 (B, A)

RETURN
SOLUTION FOR ZERO ARGUMENT WHEN N.NE, 0
17 PK=2**(N-1)

PI=DPFACT(N-1,1)

PKN=NU*DATAN2(B, A)

C= DCOS (PKN)*PK*PI/RM

D=-DSIN(PKN)*PK*PI/RM

RETURN

18 FORMAT(1HO, 20X, 62HEVEN FOR 200 TERMS IN THE ASCENDING SERIES FOR K

1NZ THE RATIO =,D11.4)
19 FORMAT(1HO, 5H***** 216, 7D14. 4, 3X, SH*****)
END

SUBROUTINE YNZ (N, A, B, C,D)

YNZ COMPUTES THE BESSEL FUNCTION OF THE SECOND KIND AND INTEGER ORDER

N BY USE OF EQUATION 4, SO THAT Y(A+IB)=C+ID .
DOUBLE PRECISION A, B, C,D, X, Y,NU, R, P1, ER, EI, JR,JI, IR, I1,KR,KI
LOGICAL PLUS
DATA P1/3.1415926535897932D0/

NU=N

X=A

Y=B

PLUS=. TRUE.

R=-1.D0

IF(MOD(N, 2).EQ.0) R=1.D0

ER=-NU*P1/2. DO

CALL DPCEXP(0. DO, ER, ER, EI)
1F(X.GT.0.DO .AND. Y.GE.0.DO) GO TO 1

THE CASE (-PI.LT.ARG(Z).LE. (~P1/2)) 1S HANDLED DIFFERENTLY
X==X
y=-Y
CALL JNUZ(NU, X, Y,JR,JI)

PLUS=, FALSE.

1 CALL INUZ(NU,Y,-X,IR,II)
CALL KNZ(N, Y, =X, KR, KI)

=-11*R-2. DO*KR/PI
D=IR*R-2.DO*K1/PI

CALL MULDPC(ER, EI, C, D, C, D)
IF(PLUS) RETURN
C=R*(C+2.D0*JI)
D=R*(C~2.DO*JR)

RETURN

END

SUBROUTINE INUZ (NI, XX, YY,E, F)

INUZ COMPUTES THE MODIFIED BESSEL FUNCTION OF THE FIRST KIND AND NI-TH

ORDER (NI IS RESTRICTED TO INTEGER VALUES BUT MUST BE ENTERED AS A
DOUBLE PRECISION NUMBER ALONG WITH XX, YY,E,F). NI MAY BE NEGATIVE.
E AND F ARE THE DOUBLE PRECISION REAL AND IMAGINARY PARTS OF INUZ.

DOUBLE PRECISION RM,E2, E3, E4, R, ABSDPC, NU, C1R, C11, C2R, C2I, TEMP, SUMR
1, SUMI, GAM12, T™MN, ‘TMNR, TMNI , DPFACT, TEMP1, N, P1, E5, TEMP3, TEMP4, E, F, X, Y

2,NI, XX, YY
LOGICAL CPLUS
DATA E2,E3,E4,E5/1.D-29,1.D-37,1.D-15,1.D-13/
X=XX
Y=YY
NU=DABS (NI)
IN THE FOLLOWING 0,01 IS ADDED TO ENSURE NU1=NU AFTER TRUNCATION
NU1=NU+0, 01DO
R=ABSDPC(X, Y)
1(NI,Zz) 1S INDETERMINATE FOR Z=0 AND MUST BE HANDLED SEPARATELY.
1F(R.GT.1.0D-20)GO TO 2
F=0. 0DO
1F(NU1.EQ.0)GO TO 1
E=0, 0DO
RETURN
1 E=1.0D0
RETURN
RM IS THE BOUNDARY RADIUS THAT SEPARATES THE ASCENDING SERIES FROM
THE ASYMPTOTIC EXPANSION (SEE EQN. 8, P. 298, REF. 1).
2 RM=18.0D0+3. ODO*NU/17. ODO
TMN=1. 0DO
TEMP1=1. 0DO
IF(R.GT.RM)GO TO 6
0.LT.MAG(Z).LE.RM SOLUTION (EQ.9.6.10,P.375, REF.3)
CALL DPCZN(X/2. DO, Y/2.DO,Nu1,C1R,C11)
C2R=(X*X-Y*Y)/4.DO
C21=X*Y/2.D0
TEMP=DPFACT (NU1,1)
TMNR=C1 R/TEMP
TMNI=C11/TEMP
N1=1
NPNU=1+NU1
SUMR=TMNR
SUMI=TMNI
3 TEMP=N1*NPNU
TMNR=TMNR/TEMP
TMNI=TMNI1/TEMP
CALL MULDPC(TMNR, TMNI, C2R, C21, TMNR, TMNI)
SUMR=SUMR+TMNR
SUMI=SUMI+TMNI
1F(ABSDPC(SUMR, SUMI).GE.E2)GO TO 4
TEMP=TMN
TMN=ABSDPC (TMNR, TMNI)
1F(TEMP. GE. E3. OR. ™N. GE. E3)GO TO 5
GO TO 16
4 TEMP=TEMP|
CALL DIVDPC(TMNR, TMNI, SUMR, SUMI, C1R, C11)
TEMP1=ABSDPC(C1R, C11)
I1F(TEMP1.LT. E4. OR. TEMP. LT. E4)GO TO 16

20z udy 61 U0 188n6 Aq £62€2€/0/2/€/1Z/10148/|uf00/W0d"dNo"oILSPEDE//:SARY W) PAPEOUMOQ

The Computer Journal

5 N1=N1#1
NPNU=NPNU+1
GO TO 3

C MAG(Z).GT.RM SOLUTION ACCORDING TO EQNS.4 AND 5, P.296, REF. 1 .
6 PI1=3.1415926535897932D0

IF(Y.GE. 0, 0D0)GO TO 7
AS THIS ASYMPTOTIC SOLUTION IS NOT VALID FOR ALL VALUES OF Z IN
THE THIRD AND FOURTH QUADRANTS, WE MUST RESTRICT ARG(Z) TO THE
INTERVAL (O.LE.ARG(Z).LE.PI). IF ARG(Z) LIES IN QUADRANTS 3 OR 4,
WE MUST TRANSFORM Z INTO QUADRANTS 1 OR 2 USING ANALYTIC
CONTINUATION (EQ. 9.6.30, P. 376, REF.3).

TEMP=PI+DATAN2 (Y, X)

CALL DPCEXP(0. 0DO, TEMP, X, Y)

X=X*R

Y=Y*R
7 CALL DIVDPC(-0. 5DO, 0, 0DO, X, Y, C1R, C11)

TEMP3=NU=0. 5D0

TEMP4=-NU~0. 5D0

CPLUS=. FALSE.
8 TMNR=1.0DO

TMNI=0, ODO

SUMR=TMNR

[sNoNeNeolel

9 TEMP=(1.DO+TEMP3/N)* (TEMP4+N)
TMNR=TMNR*TEMP
TMNI=TMNI *TEMP
CALL MULDPC(TMNR, TMNI, C1R, C11, TMNR, TMNI)
SUMR=SUMR+TMNR
SUMI=SUMI+TMNI
1F(ABSDPC(SUMR, SUMI). GE.E2)GO TO 10
TEMP=TMN
TMN=ABSDPC (TMNR, TMNI)
1F(TEMP. GE, E3. OR. TMN. GE. E3)GO TO 11
GO TO 12
10 TEMP=TEMP1
CALL DIVDPC(TMNR, TMNI, SUMR, SUMI, C2R, C21)
TEMP1=ABSDPC(C2R, C21)
IF(TEMP1,LT. E4. OR. TEMP. LT. E4)GO TO 12
N=N+1, 0DO
GO TO 9
12 IF(CPLUS)GO TO 13

CPLUS=, TRUE.
C1R=-C1R
Cc11=-C11
TMN=1.DO
TEMP1=1. DO
R=SUMR
RM=SUMI
GO TO 8
C2I=PI*(NU+0. 5D0) -Y
CALL DPCEXP(-X, C2I, C2R, C21)
CALL MULDPC(C2R, C21, R, RM, C2R, C21)
CALL DPCEXP(X, Y, R, RM)
CALL MULDPC (R, RM, SUMR, SUMI, R, RM)
C2R=C2R+R
C21=C2I+RM
C CALCULATING GAMMA(N+1/2) ACCORDING TO EQN. 6.1.12, P. 255, REF. 3 .
GAM12=1. 7724 5385090551 60D0
IF(NU1.EQ. 0)GO TO 15
DO 14 I1=1,Nui
N=1
14 GAM12=GAM12*(N-0. 5D0)
15 N1=2*Nu1
TEMP=((DPFACT (N1, NU1)/GAM12)/(2.DO**N1))/1.414213562373095D0
CALL SQTDPC(X, Y, R, RM)
CALL DIVDPC(TEMP, 0. ODO, R, RM, R, RM)
CALL MULDPC(R, RM, C2R, C21, SUMR, SUMI)
IF(YY.GE.0,0D0) GO TO 16
X=XX
Y=YY
TEMP=-NU*PIL
CALL DPCEXP(O. ODO, TEMP, C1R, C11)
CALL MULDPC(C1R, C11, SUMR, SUMI, SUMR, SUMI)
C END OF ANALYTIC CONTINUATION
16 E=SUMR
F=SUMI
AS THE CONVERGENCE TENDS TO BE SLOW FOR COMPUTING THE SMALLER
OF THE REAL AND IMAGINARY PARTS OF I(NI,Z) FOR Z LYING ON THE REAL
OR IMAGINARY AXIS, WE EVOKE THE FINAL RESULT FOR THESE SPECIAL
CASES. NAMELY, I(NI,Z) IS PURE REAL FOR AN INTEGER NI AND A REAL Z,
OR FOR AN EVEN INTEGER NI AND AN IMAGINARY Z. ALSO, I(NI,Z) IS PURE
IMAGINARY FOR AN IMAGINARY Z IF NI IS AN ODD INTEGER. HENCE
N1=MOD(NU1, 2)
IF((DABS(Y).LE. E5). OR. (DABS(X).LE. E5.AND. N1, EQ. 0)) F=0.DO
IF(DABS(X).LE. E5. AND. N1. NE, 0) E=0.DO
RETURN
END

1

-

1

w

[ecEeNeRoNeoNel

SUBROUTINE JNUZ(NU, XX, YY, E, F)
J(NU,Z) IS COMPUTED BY FIRST COMPUTING I(NU,ZP) WHERE ZP IS A TRANSFORMED
Z AND THEN USING EQN., 9.6.3, P.375, REF.3. THE RESTRICTIONS FOR THE
ABOVE ARGUMENTS FOR JNUZ ARE IDENTICAL WITH SUBROUTINE INUZ.
DOUBLE PRECISION NU, XX, YY, E, F, PI, CIR, C11, C2R, C21
PI1=3.1415926535897932D0
IF(XX.LE, 0, 0DO. AND. YY. LT, 0. 0D0)GO TO 1
C CASE 1 (SEE EQN. 7, P. 297, REF. 1)
C11=-PI*0, 5D0
C21=NU*PI*0, 5D0
GO TO 2

C CASE 2 (SEE EQN. 7, P. 297, REF. 1)
1 C11=PI*1,5D0
C2I==NU*PI*{. 5D0
2 CALL DPCEXP(0.0DO, C1I,C1R,C1I)

oo

Volume 21 Number3

CALL DPCEXP(0. 0DO, C21, C2R, C21)
CALL MULDPC(XX, YY,C1R,C1I,C1R,C11)
CALL INUZ(NU,C1R,C1I,C1R,C11I)
CALL MULDPC(C2R, C2I,C1R,C11,E,F)
RETURN

END

SUBROUTINE MULDPC (A, B,C,D,E,F)

C MULDPC MULTIPLIES (A+IB) WITH (C+ID) TO GET (E+IF) .

DOUBLE PRECISION A,B,C,D,E,F,G
G=A*C~B*D

F=A*D+B*C

E=G

RETURN

END

SUBROUTINE DIVDPC(AA, BB, CC, DD, E, F)

C DIVDPC DIVIDES (AA+IBB) BY (CC+IDD) TO GET (E+IF) .

DOUBLE PRECISION D, E, F, AA, BB, CC, DD, G, DDCC
IF(DABS(DD). GT.DABS(CC)) GO TO 1
DDCC=DD/CC

G=CC+DD*DDCC

D=(AA+BB*DDCC)/G
F=(BB-AA*DDCC)/G

E=D

RETURN

DDCC=CC/DD

G=DD+CC*DDCC

D=(BB+AA*DDCC)/G
F=(-AA+BB*DDCC)/G

E=D

RETURN

END

SUBROUTINE SQTDPC (AA, BB, C, D)

C SQTDPC TAKES SQUARE ROOT OF (AA+IBB) TO GET (C+ID) .

[oNe]

DOUBLE PRECISION C, D, AA, BB, ABSDPC, R, TH
R=DSQRT (ABSDPC(AA, BB))
IF(DABS(AA).LE.1.D-28)GO TO 1
IF(DABS(BB).LE.1.D-28)GO TO 2
TH=DATAN2 (BB, AA)/2. DO
C=R*DCOS (TH)

D=R*DSIN(TH)

RETURN
C=R/1.4142135623730950D0

D=C

1F(BB. LT. 0.D0) D=-C

RETURN

IF(AA.LT.0.D0) GO TO 3

C=R

D=0.D0

RETURN

€=0.D0

D=R

IF(BB.LT.0.D0) D=~R

RETURN

END

SUBROUTINE DPCZN(A, B, N, C, D)

DPCZN COMPUTES Z**N=(A+IB)**N=C+ID IN DOUBLE PRECISION
N IS RESTRICTED TO N=0,1,2,3,.......

DOUBLE PRECISION A, B, C,D
1F(N,GT.0)GO TO 2
IF(DABS(A). GT.1.0D-28. OR. DABS(B). GT. 1. 0D-28)GO TO 1
€=0. 0DO

D=0, 0DO

RETURN

C=1.0D0

D=0. 0DO

RETURN

C=A

D=B

IF(N.EQ.1) RETURN

DO 3 I=2,N

CALL MULDPC(A, B, C, D, C, D)
RETURN

END

SUBROUTINE DPCEXP(AA, BB, E, F)

C DPCEXP COMPUTES EXP(AA+IBB) TO GET (E+IF) .

DOUBLE PRECISION C,E,F,AA, BB, B
C=DEXP(AA)

B=C*DCOS (BB)

F=C*DSIN(BB)

E=B

RETURN

END

DOUBLE PRECISION FUNCTION ABSDPC(A, B)

C ABSDPC COMPUTES THE ABSOLUTE VALUE OF (A+IB) .

DOUBLE PRECISION A, B,C,D
C=DABS(A)

D=DABS (B)

IF(C.GT.D) GO TO 1
ABSDPC=D*DSQRT (1. DO+(C/D)**2)
RETURN

ABSDPC=C*DSQRT (1. DO+(D/C)**2)
RETURN

END

20z udy 61 U0 188n6 Aq £62€2€/0/2/€/1Z/10148/|uf00/W0d"dNo"oILSPEDE//:SARY W) PAPEOUMOQ

275

DOUBLE PRECISION FUNCTION DPFACT(N,M)

C DPFACT COMPUTES (N FACTORIAL/M FACTORIAL) WHERE N AND M ARE POSITIVE
C INTEGERS. ALSO, M.LE.N .
DOUBLE PRECISION TEMP,II
TEMP=1. 0DO
IF(N.LE.1.0R.N.EQ.M) GO TO 2
K=M+1
DO 1 I=K,N
11=1
TEMP=TEMP*11
2 DPFACT=TEMP

RETURN

END

References
ABRAMOWITZ, M. and STEGUN, 1. A. (Eds.) (1965). Handbook of
Mathematical Functions, National Bureau of Standards,

-

Washington, DC.

BuURRrELL, K. H. (1974). CACM, Vol. 17, p. 524.

GRAY, A. and MATHEWS, G. B. (1922). A Treatise on Bessel Func-
tions and their Applications to Physics, Second Edition by Gray,
A. and MacRobert, T. M., MacMillan, reprinted by Dover
Publications, 1966.

NATIONAL BUREAU OF STANDARDS (1950). Tables of the Bessel
Functions Yo(z) and Y1(z) for Complex Arguments, Columbia
University Press, New York.

ScArTON, H. A. (1971). J. Computational Phys., Vol. 8, p. 295.

WATSON, G. N. (1944). A Treatise on the Theory of Bessel Functions
2nd ed., Cambridge Univ. Press.

Editorial Notes

Reprinting of Algorithms

Algorithms 1-9 (and subsequent comments on them) were originally
published in The Computer Bulletin between September 1964 and
December 1965. It has been decided to print these in The Computer
Journal in order to provide a complete record in a more permanent
form. This will be done as and when space permits, starting with
the algorithms below.

Algorithm 1. MINTREE A. Obruca

There occur, in a wide variety of fields, many problems which
can be represented by the vertices and lines of a graph. In the
classical travelling salesman problem, for example, the vertices
would denote the towns, and associated with the lines would be
the time taken to travel from one town to another. In an electrical
network, the vertices would be the terminal points of a circuit
and the lines would represent the connecting wires.

One feature is common to all such problems: they can be repre-
sented by means of a matrix, the (i, j)th element of which denotes
some property or cost associated with the line connecting points
iand j.

The following procedure computes the connected subgraph
covering all points such that the sum of the costs associated with
all the lines in the subgraph is a minimum.

procedure mintree (cost, z, below, total), value cost, z;

integer z; real roral;

integer array below [1: z], array cost [1: z, 1: z];
comment Given a complete graph of z points, numbered from
one to z, whose undirected edges have associated distance values
given in the matrix cost [i, j1, this procedure finds the minimal spanning
tree, that is, the tree covering all the z points such that the sum of the
distances associated with all the edges of the tree is a minimum.
The tree is described in the vector below [j] for 1 < j < z. As this
implies a sense of direction coming down the tree there is a point,
the root of the tree, which does not have a ‘‘below” and so below [root]
is put equal to zero. If the graph is incomplete, the corresponding
empty cost elements should be given a very high positive value, such as
1010.

The procedure is based on the article of H. Loberman and A.
Weinberger, JACM, 4 (1957). At the start of each cycle (label A)
the smallest element in the matrix is sought. On finding this, a test
is made to see if both nodes are in one sub-tree (using the procedure
root (a)). If they are, that element is replaced by 1010 so that it is
never chosen again. If one node lies in a subtree and the other does not,
that edge is added to the subtree. If the two nodes do not lie in any
subtree, they become a new subtree. If the two nodes lie in separate
subtrees, the procedure change (a, b) amalgamate., the two subtrees.
In each case the appropriate cost element is replaced by 1010. The end
of the procedure is reached when z-1 edges of the tree have been found.

Only the lower triangle of the matrix cost [i, j] is used and mutilated
by the procedure;
begir integer m, n, a, b, count;

integer procedure root (a);

real min;

value a; integer a;

276

root:= if below [a] = O then a else
root (below) [a]);
procedure change (a, b),; value a, b, integer a, b;
begin integer m,
for m:= if a = 0O then b else below [a]
while a # 0 do

begin below [a]:= b;
b:= a;a:= m;
end;
end change;

for m:= 1 step 1 until z do below [m].= O;
count:= 0; total:= 0;
A: min:= 1010,
for m:= 2 step 1 until z do
for n:= 1 step 1 until m-1 do
if cost [m, n] < min then
begin min:= cost [m, n];
a:=m; b:= n;
end;
if root (a) # root (b) then
begin count:= count + 1;
change (a, b);
total:= total + min;
if count = z-1 then go to
end;
cost [a, b]:= 1010,
goto A;

FINISH;

FINISH:
end mintree;

Note on Algorithm 1 MINTREE Computer Bulletin, Sept. 1964, 67
Anthony E. N. T. Pitman
Mathematics Department
Laporte Industries Limited.
In Algorithm 1, MINTREE, an error occurs in the specification
part of the procedure heading.
ALGOL 60 syntax does not allow for the occurrence of a bound
pair in an array specification.
To correct, delete:
integer array below [1 : z]; array cost [1 : z, 1 : z]; and substitute:
integer array below; array cost;
I have not attempted to test MINTREE on a computer as yet.

(This error was caused by a misunderstanding at the proof reading
stage. Our apologies are due to Mr. Obruéa, whose script was as in
the corrected version above, and contained a steering program and
sample results. Editor.)

Certification of Algorithm 1. MINTREE

M. H. Rogers, R. H. Thomason
University of Bristol Computer Unit.
MINTREE compiled and ran successfully on the Elliott 503,
with the following alterations:
1. In the specification of the arrays below and cost the dimensions
were deleted

The Computer Journal

20z udy 61 U0 188n6 Aq £62€2€/0/2/€/1Z/310M4e/|uf00/W0d"dNo"oILEPEDE//:SARY W) PAPEOUMOQ

2. Four semicolons immediately preceding end statements were
deleted:
i.b:=a;a:=m
ii. end
iii. a:= m; b:=
iv. go to FINISH

3. In accordance with the requirements of Elliott ALGoL, the
labels 4 and FINISH were declared by a switch at the head
of the block.

Remarks on Algorithm 1, MINTREE, Computer Bulletin, Sept.
1964, 67.
The following correspondence explains a rather interesting point
arising out of a for while statement.

I. D. Hill
Medical Research Council
Statistical Research Unit.

In Algorithm 1, MINTREE, there appears to be something
wrong with the procedure change. I am not sure just what the pro-
cedure is intended to do; is its sole purpose to change the value of
below [a]? This is all that it does do, since a and b are called by
value. In any case, the line

for m:= if a = O then b else below [a]

while a # 0 do
does not seem sensible, even though correct ALGoL. There seems to
be no point in setting m equal to b if a = 0, since the ‘while a # 0’
will immediately terminate the procedure, and m is local. This line
in fact is identical in effect with

for m:= below [a] while a # 0 do
Is this what the author intended ?

Alex K. Obruca
The University of Newcastle upon Tyne
Computing Laboratory.
The execution of a for while statement in the ALGOL report

(4.6.4.3) is:—
L3:V:=E;

if — F then go to Element exhausted,

Statement S;

go to L3;
We see that the control variable is assigned its new value before
the Boolean test is made. As the array below has a lower bound
of one, the statement:

for m:= below [a] while a # 0 do
will fail when a = 0. In order to avert this catastrophe the statement
is written as:

for m:= if a = O then b else below [a]

while a # 0 do
where b could have been any arithmetic expression. However, for
clarity, the whole statement could just as well have been written as:
L: if a # 0 then begin
= below [a];

Volume 21 Number3

below [a]:= b;
b:=a;a:= m;
go to L
end;
The sole purpose of the procedure change is to change the value
of below [a] (and any other of its successive belows in the subtree
of which a is part).

Certification of Algorithm | MINTREE
J. Boothroyd

University of Tasmania Computing Centre

This algorithm has been tested using Elliott 503 ALGoL. The cost
matrix used was that often found in pocket diaries, ‘“‘Shortest
Practicable Road Distances in the British Isles”. The results agree
with those obtained from an alternative procedure available in this
Computing Centre.

The following changes are recommended:—

1. Remove the array parameter cost from the value list.

2. Alter the procedure change (a, b) to read,
procedure change (a, b); value a, b; integer a, b;
begin integer m;
m:= a;
for a:= m while a # 0 do
begin m:= below [a]; below [a]:= b; b:= a end
end change;
This modification avoids the complex structure of the original
version
for m:= if a = 0 then b else below [a] whilea # Odo .
and in so doing improves both the clarity and the ef’ﬁcxency of the s
algorithm. This complex structure, incidentally, protects the bounds &
of the array below and avoids the attempted evaluation of below [0]2
which would result from the otherwise logically equivalent and &
simpler

for m:=

oe//:sd)Y WOJ) popEOjUMO(]

below [a] whilea # Odo . ..

Remark on Algorithm 1 MINTREE
Alex. K. Obruca
University of Newcastle upon Tyne

a|o!ue/|u[woo/w00'dno

A slight misunderstanding may arise from Mr. J. Boothroyd’s:s
first recommendation in his Certification [Computer Bulletin 9\
(June 1965), 19).

The array cost was included in the value list in order to av01d°
the mutilation of the original cost matrix in the program w1th1n(<l)
which the procedure MINTREE would be used.

But if storage is at a premium, then the parameter cost may be‘*’

removed from the value list and the original matrix restored, after‘éy
use of MINTREE, by copying from the elements of the upperg
triangle into those of the lower triangle. e
g
©
>
5
Y
o
N
~
277

12/

