Evaluation of permutation algorithms
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Six non-recursive algorithms which appear to be the best in respect of the permutation sequences
they generate, have been considered for evaluation. Since the machine/compiler used has significant
effect on the permutation algorithms, in this paper a different approach has been taken instead of
the usual timing experiments. We have obtained the number of times certain constructs would be
obeyed in terms of formulae related to n, the number of marks. A comparison based on these
formulae shows that Ives’ algorithm is the best of all.

(Received October 1976)

The algorithms for the generation of permutation sequences
have received much attention in literature. Earlier, Ord-Smith
(1970; 1971) presented a pioneering review of these algorithms
and compared execution times of six very fast permutation
algorithms. However, since then two new algorithms (Fike,
1975; Ives, 1976) and some improvements of the previously
published ones (Ehrlich, 1973; Lenstra, 1973; Rohl, 1976)
have been published. Therefore, it is worthwhile to make a
comparative study of these algorithms.

It is usual in the literature to compare permutation algorithms
by means of timing experiments. However, many authors have
noted that the machine/compiler used has significant effect on
the performance of an algorithm. Ives (1976) has indicated
an approach in which he counts the number of times certain
constructs—assignments, arithmetic operations, comparisons
and subscript references—are executed for a particular value
of n, the number of marks. A better approach would be to find
out the number of times these operations are needed in terms
of formulae related to »n, and to use these formulae to obtain
the figures-of-merit of an algorithm. This approach not only
removes the confusions of the timing experiments but also gives
an insight into the algorithms.

The present paper is divided into two parts. In the first part
the algorithms from various considerations have been reviewed
and six algorithms which appear to be the best in their respective
categories have been selected. The second part is devoted to the
analysis of the algorithms.

1. The six best algorithms

1. Permutation sequences

An important consideration during the selection of a permu-
tation algorithm for an application is the order in which the
configurations are generated and not merely the speed of the
algorithm. Keeping in view the best algorithms considered by
Ord-Smith (1971) and the algorithms published subsequently,
it may be observed that there are six different permutation
sequences. A representative of each is shown in Table 1. It
may not be out of place to mention the various combinatorial
advantages of these sequences.

It is well known that the Trotter-Johnson and Wells sequences
have the property that a configuration can be generated from
its predecessor by a single interchange of two marks. It may be
observed that all other sequences require more transpositions.
The added advantage in the Trotter-Johnson sequence is that
the marks to be transposed are always adjacent in the preced-
ing permutation.

Another property which may be called the reflection-free
property is that either half of the sequence should not contain
the reflection of any configuration belonging to that half. Two

configurations are said to be reflections of each other if one read
from left-to-right is identical with the other read from right-to-
left. Both the Trotter-Johnson and the Ives sequences share
this property (Roy, 1973; 1977) which is an advantage in
many applications (Lenstra, 1973).

The Wells, lexicographic and pseudo lexical sequences share
the combinatorial advantage that the k-th (k < n) intransitive
subgroup of permutations is generated before the (k + 1)th
mark is moved (Ord-Smith, 1968; Wells, 1971). Another
advantage of the lexicographic sequence is the ‘dictionary’
order of its configurations. These properties are of importance
in many applications. This author, however, fails to find any
combinatorial advantage of the Fike sequence.

It may be noted that the properties mentioned above are for
the sequences as shown in Table 1. A sequence may have many
related sequences such as the sequences of reflections or
inverse permutations of its configurations. An algorithm that
generates a sequence requires only minor modifications to
generate a related sequence. However, a related sequence may
not always retain the properties of the original sequence. For
example, it is easy to notice that the reflection-free property is
not retained in the sequence of inverse permutations.

2. A classification of the algorithms

Observation shows that there are only two fundamental
generating schemes. The first scheme generates the n! per-
mutations of the n marks from the knowledge of the (n — 1)!
permutations of the first (» — 1) marks. Each of these (n — 1)
permutations yields n of the n-permutations. In the algorithms
this is accomplished by moving the n-th mark through the
arrangement of the (» — 1) marks according to certain rules
(these rules differ with the algorithms). The (r — 1)! permuta-
tions of the first (» — 1) marks are generated exactly in the
same way from the (n — 2)! permutations of the first (n — 2)
marks. The process is thus repeated until the trivial case of
1-permutation of the first mark is reached. On the other hand,
the second scheme is as follows. Suppose we have a procedure

.that can generate only the (k — 1)! permutations of k — 1

(k < n) given marks. The k! permutations of the first k marks
can then be generated by repeating the said procedure k times
by taking (k — 1) of the k marks at a time and the remaining
mark occupying the k-th position. Starting with the trivial case
of k = 1, we may repeat the technique with increasing k until
k = n. For both the schemes the positions of the marks in the
given arrangement may be considered from either end.

Both the schemes require backtracking and their differences
are best illustrated by means of search trees (Wells, 1971). The
search tree for the algorithms based on the first scheme is
shown in Fig. 1. For easy reference we shall call these A-
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Table 1 Six different permutation sequences of the marks 1, 2, 3, 4

Ives Trotter-Johnson Fike Wells Pseudo-lexical Lexicographic
1234 1234 1234 1234 1234 1234
2134 1243 1243 2134 2134 2134
2314 1423 1432 2314 3124 1324
2341 4123 4231 3214 1324 3124
1342 4132 1324 3124 2314 2314
3142 1432 1342 1324 3214 3214
3412 1342 1423 1342 4123 1243
3421 1324 4321 3142 1423 2143
1423 3124 3214 3412 2413 1423
4123 3142 3241 4312 4213 4123
4213 3412 3412 4132 1243 2413
4231 4312 4213 1432 2143 4213
1324 4321 2134 1423 3412 1342
3124 3421 2143 4123 4312 3142
3214 3241 2431 4213 1342 1432

3241 3214 4132 2413 3142 4132 9

1243 2314 2314 2143 4132 3412 =

2143 2341 2341 1243 1432 4312 g

2413 2431 2413 3241 2341 2341 §

2431 4231 4312 2341 3241 3241 =

1432 4213 3124 2431 4231 2431 3

4132 2413 3142 4231 2431 4231 =

4312 2143 3421 4321 3421 3421 2

4321 2134 4123 3421 4321 4321 9
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Fig. 1 Search tree of 4-algorithm for n = 4 é’
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algorithms. Fig. 2 shows the search tree for the algorithms using ©©©090©0000000000000000000 LEVEL G

the second scheme. These will be called B-algorithms. The S

levels of nodes in these search trees correspond to the iteration R

levels. We shall mark these levels as 0, 1, 2,...,n(orn — 1)
starting from the terminal nodes going upwards. It may be
observed that algorithms generating the Trotter-Johnson,
Ives and Fike sequences are 4-algorithms whereas algorithms
that generate the Wells, lexicographic and pseudo-lexico-
graphic sequences are B-algorithms.

3. Improvements to the algorithms

A very common technique for improving the efficiency of a
permutation algorithm is to deal separately with the iterations
at the bottom of the search tree. Since the majority of the
iterations take place at the bottom it is obvious that this will
improve the efficiency, Still better would be to deal separately
with the iterations at levels O and 1 and in this way one might
like to handle the iterations at levels 0, 1, 2, . . . , k separately.
However, for a large k, the implementation may become
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Fig. 2 Search tree of B-algorithm for n = 4

extremely difficult. This brings us to the question: what should
be the optimum value of k?

In case of A-algorithms, for a large n (this is the situation
when we are most concerned with efficiency), the number of
iterations decreases sharply as the iteration levels increase.
Therefore, the additional advantage when k& > 0 is not much
compared to the advantage when k = 0. As an illustration, an
analysis similar to that described in Section 2 shows that the
saving in the total number of operations in case of Trotter-
Johnson algorithm is 12 n! — 5.5 (n — 1)! when k£ = 0 and is
12n! + 5.5(n — 1)! — 5.5( — 2)! when k = 1. Note that
when k = 1, the average saving per configuration decreases
as n is increased. Possibly this justifies the experimental
observation of Ehrlich (1973a). Therefore, in case of 4-algo-
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rithms, we decide to restrict ourselves to the separate handling
of iterations at level O only.

Among the available 4-algorithms, PERM1 shown in Fig. 3
may be considered as an exception to this rule. This algorithm
which generates the Ives sequence, besides the iterations at
level 0 also eliminates the iterations at all odd numbered
levels by handling them separately. This has been possible
without any implementation complexity because of the nature
of the generation rules. However, the above decision of explicit
handling of level 0 iterations in case of A-algorithms, gives us
the scope for improving Algorithm 115 (Trotter, 1962; Ord-
Smith, 1971) by exploiting this. A PL/I description of this
algorithm called PERM is shown in Fig. 4. Of the algorithms
that generate the Fike sequence, the two tuned procedures due
to Rohl (1976) conforms to the above decision. One of them,
the non-recursive tuned procedure described in PL/I with
minor changes (see paragraph 4 for details) is shown in Fig. 5.
This algorithm will be referred to by the name FIKE.

For the B-algorithms, the number of iterations decreases
rather slowly as compared to A-algorithms particularly when
n is large. Therefore, for the B-algorithms k should only be
limited by the implementation difficulty. Boothroyd (1967)
has shown a technique of dealing separately with the four
lower levels of iterations for his algorithm which generates

FIKE: PROCEDURE S
DCL X{*) FINARY FIXED», BUSY BIT(1);
OCL (N»N1»I,X,ON,TEMP) SINARY FIXED
DON1) BINARY FIXED CONTRALLEDS
ENTRY(X»3USYS 5
N=DIM(X»1): Ml=n=1;
ALLOCATE 03
D0 I=1 TQ N1
8Usy=111'5;
ENTRY(X»SUSY) 5
IF ON=0
THEN D07 TZIMP=X(HN); IN=N13
XON)=XC2IN)F X(DN)=TENMP;
RITURN;
END?
207 X(DN)I=XCN); DN=9N=13;
IF ON~=9)
THEN 003
XCN)=XC(DN)5 XCON)I=TEMP;
SETURN;
ENDS
0G;
XCN)=TEMP; TEMP=X(DIN1));
XC2ON1))=X(N1)3 X(N1)=TEMP;
K=N1;
N0 WHILE(X>2 & D(K)=1);
D(K)I=K; K=K=1;
TEMP=X(D(K) )} X(D(X))=X(K); X(K)=TEMP;
END?
IF 0(K)=1
THEN BUSY='0'8;
ELSE D03
D(K)I=D(K)=1;
TEMP=X(K); X(K)=X(D(K)); X(D(K))I=TEMP;
END’
ENDS

STATIC,
FIRST:

DCI)=I3 END;

NEXT:

ELSC

€Ls<

END?
/« END OF FIKE «/

Fig. 5 FIKE: Generates the Fike sequence

ENC3

PERM1: PRGCEDURE
DCL XCe) SINARY FIXED» BUSY SIT(1);
DCL (N»N1,MAX»LL1,K15MsLsUsJsLLsX10oXL) BINARY FIXED STATIC,
CLOC (2:3MAX)»K(2:MAX)) BINARY FIXED CONTROLLEDS?
ENTRY (X, 3USY);
N=0IM(X»1)7 N1=N=1;
MAX=N/23 X1=X(1)3 L1=1; Ki=1;
ALLOCATE LOC»K;
00 M=2 T MaAX;
LOC(M)I=M; K(M)=M;
ENDJ
BUSY=*1'3;
ENTRY(X»3USY)
IF L1<N
THEN 205 J=L1+1;
X(L1)=XCJ); X(J)I=X1}
L1=J3 RETURN;
END:
20;
X(N)=X(1)3? X(1)=X15 L1=1; K1=K1+¢1;
IF K1<N THEN RETURN;
K1=13 L=2; U=N1;
20 WHILE(U>L);
LL=LOCC(L);
IF LL=Y
THEN D05 J=L; K(L)=K(L)+1; END3
ELSE J=LL¢13 .
XL=XCLL);? XCLL)=X(J); XC(JI=XL3 LOC(L)I=J}
IF XCL)<U THEN RETURN;
K(L)=L5 L=L+1; U=U=1;
END?
3USY="9"B; RETURN;
END?
END; /« END OF PERM1 =/

PERM1: Generates the Ives sequence

FIRST:

NEXT:

Fig. 3

PERM: PROCEDURE?
CCL XC«) 3INARY FIXED, BUSY 3IT(1);
OCL (N»sJ»X»3,T) BINARY FIXED STATIC»
(VoL LL,XN,PN,DN,XN) BINARY FIXED STATIC,
(PC2:L)»D(23L)) SINARY FIXEC CINTROLLEDS
ENTRY(X»BUSY);
N=DIM(X,1)3 L=Nv1; LL=N¢1;
ALLOCATE P»D3?
IN==13 PN=N; KN=0; XN=X(N); “=1;
D0 K=2 TO L3 P(K)=K; OD(K)==1; END;
BUSY=11'3;
ENTRY(X»3USY);
IF PN == M THEN
DJ3 Q=PN+DN;
X{PN)I=X(Q); X(Q)=XN;
PN=Q: RETURN;
END;
M=LL=M7 DN==DN; J=L; X,KN=1-KN;
P(J)»Q=P(J)+D(J);
IF Q=J THEN
D03 DC(J)==1; GO TO LCOP; END;
IF 9~=0 THEN GO TO TRANSPOSE;
D(J)=1; K=K+1;
J=J=13 IF J>1 THEN GO TO INDEX;
BUSY='0'8;
TRANSPOSE:
Q=04K; K=G+l;
T=X(3); X()=X(K); X(K)=T;
END? /END OF PERM #/

Fig. 4 PERM: Generates the Trotter-Johnson sequence
(ACM 115 improved)

FIRST:

NEXT:

INDEX:S

LoGP:

300TH: PROCEDURE
DCL X{«) BINARY FIXED» BUSY BIT(1);
DCL C(N»K»XLESS1,DKsL) BINARY FIXED STATIC,
DC(4:L) BINARY FIXED CONTROLLED,
(D3, TEMP) BINARY FIXED STATIC,
0DD BIT(1) STATIC:
ENTRY(X»3USY);
N=DIM(X»1);
0DD=10'8;
IF N>2 THEN
DJ; BUSY='1'B;
IF N=3 THEN L=4;
ALLOCATE D3
D0 K=& TO L; D(K)=03
03=0;
IF N=3 THEN D(&)=3;
END?
ENTRY (X»BUSY);
IF 0DD
THEN

FIRST:

ELSE L=N;

END3

NEXT:

D03 0DN='0'8;
IF D3<2
THEN
ELSE
COUNT:

D007 D3=D3+15 X(2)=X(3)3 X(3)=TEMP; END;
DC? KLESS1=35 K=4; D3=0;

DK=D(K)?
IF DK ==
0(K)=0;
IF K<N

KLESS1 THEN GO TO SWAP;

THEN DO

KLESS1=K;3 K=K¢1;

GO TO COUNT:

END?
BUSY='0'3; RETURN;
DK»D(X)=DK¢1;
IF DK>2 THEN

D03 IF MOD(K,2)=0 THEN KLESS1=X-0K; END;

TEMP=X(K)? X(K)=X(KLESS1)3 X(KLESS1)=TEMP;
END?

SHAP:

ENDJ

ELSE D05 TEMP=X(1)3 X(1)=X(2);
XC2)=TEMP; NDD="1'8}
END3

END> /+ END NF BOOTH »/
Fig. 6 BOOTH: Generates the Wells sequence (CJ 29 improved)

the Wells sequences. But many authors (Lenstra, 1973; Ives,
1976) have observed that the technique is sensitive to the
compiler/machine used because of its heavy dependence on
switch variables. In the absence of any other elegant technique
which deals with k > 3, we decide to restrict ourselves to
k = 2 in the case of the Wells algorithm as well as other
B-algorithms. It may be remarked that the implementation of
separate handling of the three lowest levels can be done easily
for any B-algorithm. Since among the existing B-algorithms
only CJ 28 (Phillips, 1968) exploits this, we have improved the
other algorithms, namely CJ 29, ACM 308 and ACM 323
(Ord-Smith, 1971). The improved algorithms called BOOTH,
PSEUDO and BESTLEX generate the respective sequences for
n > 1. Figs. 6 to 8 give PL/I descriptions of BOOTH, PSEUDO
and BESTLEX.

The idea of avoiding nesting of iterations by means of exten-
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PSEUDD: PROCEDURE
OCL X(«) BINARY FIXED» BUSY BIT(1);
DCL (N»K»MsL) BINARY FIXED STATIC,
(Q3,T) BINARY FIXED STATIC,
QC4:L) BINARY FIXED CONTROLLED»
00D SBITC(1) STAVIC;
ENTRY(X»BUSY);
N=DIM(X»1);
0DD='1'8;
IF N>2 THEN
D03 BUSY='1'R;
IF N=3 THEN L=4; ELSE L=N;
ALLOCATE Q;
00 M=4 TD L; O(M)=1; END;
Q3=1;
IF N=3 THEN Q(4)=43;
END;
NEXT: ENTRY(X,»BUSY)
IF 09D THEN
00300D='0*3;
T=X(2); X(2)=XC1)3 X(1)=T;
RETURN;
END;
0DD='1'3;
IF Q3<3 THEN
005 Q3=03+1;
XC€1)=x(3); X(3)=T;

FIRST:

RETURNS
END;
93=1; K=4;
LoogP: M=Q(K)3
IF M=K THEN
DO IF K<N THEN DO; Q(K)=15 XK=Ke¢13
ELSE DO BUSY='0'3;
IF N=3 THEN K=3;
GO TO TRINIT;
END;

GO TO LOOP; END;

END?
AK)=M+};

TRINIT: M=1;

TRANSPOSE:
T=X(M) 3 X(M)=X(K)5 X(K)=T;
M=M¢1; K=K=1;
IF M<K THEN GO T3 TRANSPOSE;
END? /« END OF PSEUDN </

Fig. 7 PSEUDO: Generates the Pseudo-lexicographic sequence
(ACM 308 improved)

SBESTLEX: PROCEDURES;

DCL X(+) BINARY FIXED» BUSY 3IT(1);
DCL (N»KoMsL) BINARY FIXED STATIC»
(Q3,T) BINARY FIXED STATIC,

QC43:L) BINARY FIXED CONVTROLLED,
00D S8ITC(1) STATICS
ENTRY(X»3USY);
N=DIM(X»1)3
00D='1'8;
IF N>2 THEN
DO; BUSY='1'8;
IF N=3 THEN L=4; ELSE L=N;
ALLOCATE &5
D3 M=4 TO L3 0(M)=1; END;
03=1; IF N=3 THEN Q(4)=4;
END;
NEXT: ENTRY (X, BUSY)
IF 0DD THEN
D03 00D=%0°'8;
T=X(2)5 X(2)=X(1)5 X(1)=T;
RETURN;
END3
0DD="1'83
IF Q3<? THEN
005 IF Q3=1
THEN 903
X€1)=X(2); X(2)=X(3); X(3)=T;
Q3=2; RETURN;

FIRST:

END;
ELSE 003
X(1)=X(3); X(3)=X(2); X(2)=T;
23=3; RETURN:?
END;
END;
03=1; K=4;
Loce: M=3(X);
IF M=K THEN
D03 IF K<N
THEN 0I5 GQ(K)=1; K=K+1; GO TO LOJP; END;
ELSE D07 BUSY='0°'B5IF N=3 THEN K=3;
GO TO TRINIT;
END’
END;
T=X(M)3 X(M)=X(K); X(K)=T;
Q(K)=M¢1; K=K=1;
TRINIT: M=1;
TRANSPOSE:T=X(M); X(M)=X(K)3 X(K)=T;
M=M+1; K=K=1;
IF M<K THEN GG TO TRANSPOSE;
END; /+ END CF BESTLEX =/

Fig. 8 BESTLEX: Generates the Lexicographic sequence
(ACM 323 improved)

sive bookkeeping is due to Ehrlich (1973). He also claimed
that the high speed of his algorithm PERMU was partly due
to its loop-free implementation. Ives (1976) observes that such
loopless implementation does not contribute to the average
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Table 2 Average number of operations required to generate
a configuration for eight algorithms

Algorithm Average operations/configuration
PERM1 9 + 1/n + 20/{n(n — 1)} + R1
PERM 9 + 19/n + 13.5/{n(n — 1)} + R2
PERMU 9 + 32/n + 23/{n(n — 1)} + R3
FIKE 11 + 22/n + 17/{n(n — 1)} + R4
BOOTH Se — 8 Cosh 1 + 10.83333 = 12.08010
PSEUDO 8¢ + 12 Sinh 1 — 18.83333 = 14.34867
BESTLEX 8¢ + 12 Cosh 1 — 25 = 15.26323
CJ 28 10.5¢ + 12 Cosh 1 — 30.66657 = 16.39226
where
Rl =@¢'(n—3) + 23¢'(n — 4)n!
R2 = 13.5 ¢(n — 3)/n!
R3 = (4(n — 3)! + 12 ¢p(n — 3))/n!
R4 = 17 ¢(n — 3)/n!
and ¢, ¢’ are same as in Table 2.

U

o
performance of his algorithms. We find that this is also trae
in the case of PERMU. The algorithm which generates t§e
Trotter-Johnson sequence is similar to PERM except that it2is
loop-free while PERM uses loops. On the IBM 370/153,
PERMU has been found to be slightly slower (for n = 8, the
execution time for PERMU is 6.0 secs. against 5.7 secs, ér
PERM). Our analysis in Section 2 also shows that (see Table2)
PERM is better than PERMU in terms of the average numl@r
of operations required. Thus the suggestion that loop-ffge
implementation should contribute to the performance of 2n
algorithm does not seem to be convincing. This excludes tglc
loopless algorithms from our consideration.

09/woo°d

4. Algorithm structures and the six best algorithms
Permutation algorithms have traditionally been descnbedis
non-recursive procedures, but recently it has been reporgd
that algorithms described as recursive procedures run fasger
than the corresponding non-recursive versions on some syste@s
(Lenstra, 1973; Fike, 1975; Rohl. 1976). Rohl has also observed
performances contradictory to this on a CDC 7600. HowevEr
the effect of recursion on permutation algorithms needs furtlgr
investigation and we propose to report our findings inJa
subsequent paper. Here, we wish to concentrate mainly 3n
non-recursive algorithms because: U

(a) Most algorithms are available in non-recursive descrlpn@n

(b) Non-recursive descnptlons are more universal in the sefise
that some programming languages like FORTRAXN,
COBOL and many 1mplementatlons of PL/I and ALG@L
do not permit recursive calls.

Keeping in view only the non-recursive algorithms whxch ge
not made loop-free, it may be observed that there are oitly
seven algorithms which conform to our earlier decision on the
separate handling of iteration levels at the bottom of the
search trees. These algorithms are PERMI1, PERM, FIKE,
BOOTH, PSEUDO and BESTLEX shown in Figs. 3 to 8 and
CJ 28 (Phillips, 1967; Ord-Smith, 1971). Among these both
BESTLEX and CJ 28 generate lexicographic sequence. Our
analysis in Section 2 will show that BESTLEX is superior to
CJ 28 in terms of the total number of operations required (see
Table 2).

The six best algorithms shown in Figs. 3 to 8 have been des-
cribed in the traditional form such that each call generates
the next configuration. Of these algorithms, PERMI1 is a
prevxously published algorithm (Ives, 1976) reproduced here
with a minor improvement. FIKE is a PL/l translation of
non-recursive tuned procedure of Rohl (1976). However,
FIKE in its original form was described in such a way that a



Table 3 Formulae representing the figures-of-merit for six best permutation algorithms

Algorithm Permutation Expressions giving the number of Counts for Actual
sequence times the different operations n = 7 obtained counts for
are required theoretically n=17
PERM1 Ives a=4n!' +9¢'(n — 2) 21,320 21,324
+ ¢'(n — 3)
b= n'+@n—2)! 5,178 5,180
+3¢'(n—4)
c= nl+ (@n-1)! 6,138 6,139
+ 3¢'(n — 2)
d=13n!+ 7n — 2)! 16,060 16,061
+ 2¢'(n — 3)
+ 8¢'(n — 4)
PERM Trotter-Johnson a=4n! + 8n — 1! 26,604 26,608
+ 4.5¢(n — 2)
b= n!+ 50— 1! 9,020 9,022
+ 2.5¢(n — 2)
c= n!+2n-—1) 6,860 6,861
+ 2.5¢(n — 2) g
d = 3n! + 4¢(n — 1) 18,608 18,609 =
FIKE Fike a=4n! + 8(n — 1! 26,832 26,827 S
+ 6¢(n — 2) 8
b= n!+ ¢(n - 2) 5,192 5,192 g
c= n!+2¢(n—1) 6,784 6,782 =
d=5n!+ 12(n — 1)! 35,056 35,047 §’
' + 8¢(n — 2) =
BOOTH Wells a = (e + 4Sinh 1 — 13/6)n! 26,472 26,463 3
= 5.25242 n! e
b= (373 — 4Cosh 1 — 2e)n! 3,651 3,647 &
= 0.72445 n! 2
¢ = 2n! 10,080 10,077
d = (2e — 4/3)n! 20,080 20,674 =
= 4.10323 n! 8
PSEUDO Pseudo-lexicographic a = (3e + 5Sinh 1 — 47/6)n! 31,235 31,227 %
= 6.19752 n! ai»
b= (e + 2Sinh 1 — 23/6)n! 6,226 6,222 &
= 1.23535 n! >
¢ = (2e + Sinh 1 — 4.5)n! 10,643 10,642 =
= 2.11176 n! 3
d = (2e + 4 Sinh 1 — 16/3)n! 24,212 24,205 2
= 4.80404 n! %
BESTLEX Lexicographic a = (3¢ + 5Cosh 1 — 28/3)n! 32,946 32,938 2
= 6.53692 n! g
b= (e + 2Coshl — 5)n! 4,054 4,051 <
= 0.80444 n! 2
¢ = (2e + Cosh 1 — 14/3)n! 11,657 11,656 S
= 2.31298 n! 2
d = (2e + 4 Cosh 1 — 6)n! 28,269 28,261 >
= 5.60889 n! =
=
= assignments ) =n'+(m—D'+@m -2+ ...+ 2! R
= arithmetic operations dm=nl+m -2+ @m—dH' + ...+ 3 or2Y
= comparisons
= subscript references

Ao o8

single call generates all configurations successively. Therefore,
it has been modified so as to present it in the classical form in
which the other algorithms have been described. As already
mentioned the remaining four, namely PERM, BOOTH,
PSEUDO and BESTLEX are improvements of previously
published algorithms.

In the accompanying figures, each algorithm has been
described as a PL/I procedure. The parameters are the array
X containing the marks and a BIT(1) variable BUSY. At first
entry BUSY is set to ‘1’B and only when all the configurations
have been generated is it returned as ‘0’B. The first entry is
CALL FIRST (X,BUSY) and the subsequent entries are

CALL NEXT (X,BUSY).

2. Analysis of algorithms

1. Theoretical evaluation: figures-of-merit

As has been stated in the introduction, the number of assign-
ments, arithmetic operations, comparisons and subscript
references that are required for the generation of all the n!
configurations will be considered as the figures-of-merit of an
algorithm. The expressions for each of these figures-of-merit
for the six best algorithms are given in Table 3. The actual
derivation of these formulae is quite involved and is not
necessary. Here, we shall only indicate how these have been
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obtained. The description of the algorithm was considered as
divided into a number of sections of code by the control
statements involving comparisons. With reference to the search
tree, the number of times these sections would be executed
was found next. The rest is obvious. However, the following
points deserve mention in this connection.

(a) The formulae do not include the operations needed during
initialisation (the section entered on first entry) as these are
executed only once.

(b) Some variables (such as the one representing n) do not
change their value during execution. Unary minus (—)
signs preceeding such variables or constants and binary
arithmetic operations involving such variables and con-
stants have not been considered as arithmetic operations.
The reason is that one can always replace these constructs
by a variable in the initialisation section, thus avoiding the
operations during generation.

(c) In the case of a loop, the components of assignment,
arithmetic operation and comparison have been obtained
by determining the requirements of these operations, if the
statements controlling the loop were written using arith-
metic and simple IF statements only. Thus the dissection
of a loop control statement of the form DO I = 1 TO N;
... ; END; into the said components is given by one
assignment outside the loop and one assignment, one
arithmetic operation and one comparison for the number
of times the loop is repeated

(d) In BOOTH, the use of the built-in function MOD(K,2)
has been considered equivalent to two arithmetic operations

(e) In certain cases, the expressions given-in Table 3 have been
approximated under the assumption that n is large.

As a verification of these formulae, counts computed from
these and the actual counts obtained through a computer when
n = 7 have been included in Table 3.

The number of comparisons required by FIKE deserves a
note. As already mentioned, FIKE was recast in the classical
form. However because of this modification, as implemented in
Fig. 5, n! additional comparisons are required. Thus if all the
algorithms were recast in a form such that the procedure is
called once and generates all permutations, it would favour
FIKE. It may be observed that in the case of other algorithms,
the necessary change would require no extra operation.
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