A reconsideration of the recovery block scheme

P. A. Lee

Computing Laboratory, The University, Newcastle upon Tyne, NE1 7RU

The recovery block scheme has been introduced as a method of providing fault tolerance at the
software level in a computing system. From the widespread interest that has been expressed in the
scheme there appears to be a standard set of questions which are posed about its implementation
and utility. This paper presents a brief overview of the recovery block scheme and then examines

in detail the issues that these questions raise.
(Received January 1978)

The reliance which is being placed on present day computing
systems has led to an increasing demand for reliability,
particularly at the software levels in a system. Most techniques
for producing reliable software (for instance, methodologies
for program construction and testing) have concentrated on
the praiseworthy aim of eliminating faults from the software
before reliance is placed on its behaviour. However, it is
widely recognised that complex systems are likely to contain
residual design faults, both in the software and hardware.
Efforts aimed at providing tolerance against such faults
should have a beneficial effect on the reliability of a system.
The recovery block scheme was introduced by Horning, et al.
(1974) as a method of providing fault tolerance at the software
levels in a system, particularly against residual design faults.
The concepts of the recovery block scheme have been widely
presented by various members of the Science Research
Council sponsored ‘Reliability Project’ at Newcastle Univer-
sity, and from the questions asked at such presentations it
would appear that there is a fairly standard set of doubts
and misunderstandings about the scheme. The purpose of this
paper is twofold: firstly, to present these questions with their
answers, in the hope of clarifying the issues they raise; and
secondly, to relate the recovery block scheme to some of the
recent work of the Reliability Project.

The recovery block scheme

For completeness, this section presents a brief overview of the
recovery block scheme. For further details the reader is referred
to Horning, et al. (1974), Randell (1975) and Anderson and
Kerr (1976).

Recovery blocks provide a means for a programmer to specify
redundancy at the software level in a system by means of
standby-spare algorithms which are used, as necessary, to
replace failing algorithms. The outline of a recovery block is
presented in Fig. 1.

The essential components of a recovery block are a set of
algorithms (called alternates) and an acceptance test. The
alternates are simply statement lists, with the first or primary
alternate representing the preferred algorithm. The acceptance
test is a programmer-provided error detection mechanism
to check on the acceptability of the results produced by the

ensure {acceptance test)
by {first (primary) alternate)
else by (second alternate)

else by {nth alternate)
else error

Fig. 1 Recovery block outline

alternates. Although the recovery block scheme fits most
easily into block structured languages such as ALGOL and
PL/I, it can in fact be used with other high and low level
languages. Indeed, the scheme can also be used for much&
more abstract levels in computing systems, such as those which3
support job control languages and data base accessing. How-§_
ever, this paper concentrates on its use within individual®
sequential programs. 3
The execution of a recovery block is as follows: on mit1a13
entry, the primary alternate is entered. At the end of the alter-g
nate the acceptance test (a boolean expression) is evaluated—"
if this test yields ‘true’ (that is, the results from the altcrnateo
are acceptable) then the recovery block is exited. However
if the acceptance test yields ‘false’, or if an error is detected by3
the underlying machine during the execution of the alternate,o
then backward error recovery occurs in that the state of theg
program is automatically reset to the state that existed when theS
recovery block was entered, and then the sequence of executiong
described above is repeated except that the next alternate 185
used in place of the failing alternate. A record of the errors\
and acceptance test failures which occurred is produced for:'
subsequent use by the programmer. If all of the alternatesg
fail, then this is regarded as a failure of that recovery block=
and an error condition is raised. As recovery blocks can beg
nested to any depth (conceptually at least) the failing recoveryg
block may itself be embedded in an alternate of an enclosmgm
recovery block. If this is the case then the error condition W1ll\‘
result in the failure of the enclosing alternate. Otherwise, thecy
program is terminated. @
The underlying machine which is executing the programsm
containing recovery blocks provides the mechanisms foro
switching control between alternates and to enable the back-_.
ward error recovery of the objects of the program to be>
accomplished. (Objects for which backward error recovery is3.
provnded will be termed recoverable objects.) These mechan-}
isms will be transparent to the program and, for example,b
could be built into the hardware of the machine. A mechanism
called the recursive or recovery cache has been proposed to
implement the backward error recovery. The recovery cache
essentially provides three functions: (a) recording recovery
data; (b) performmo recovery; and (c) discarding recovery
data when recovery is no longer required. There are several
ways in which the recording of recovery data can be imple-
mented. The basis of the method proposed in the three papers
referenced above is as follows: when an object which is not
local to an alternate is updated for the first time from within
that alternate, the original value of that object together with
its address will be stored in the recovery cache, and will be
used to restore the state of that object if recovery is invoked.
Thus a minimum of recovery data is maintained in the recovery
cache. (This method implemented in hardware would be
appropriate for providing backward error recovery for simple

The Computer Journal



objects such as integers, reals and characters, and structures
of the same.) Other implementations for recording recovery
data will be discussed subsequently. The underlying machine
will also provide mechanisms to detect errors in the execution
of programs. Typical errors detected would include illegal
instructions, division by zero and memory access violations.

Doubts and misunderstandings
Q1. What types of fault are recovery blocks intended to
provide tolerance against ?

AI. There are essentially two types of fault that can occur
in a system: (a) component faults, when a component does not
function according to its specification; and (b) algorithmic
faults, which are faults in the interrelationships between com-
ponents. (This fault classification is discussed in more detail
by Randell, Lee and Treleaven (1978).) At the hardware level
in a system both component and algorithmic faults can occur,
algorithmic faults being missing or incorrect connections
between components. At the software level, faults are algo-
rithmic (although can be regarded as component faults at
another level of abstraction). Algorithmic faults are residual
design faults in a system. The location and effects of such
faults are unanticipatable, since in general they arise from
unmastered complexity in the design of the system. Recovery
blocks are designed to provide tolerance against algorithmic
faults in both the software (program ‘bugs’) and in the hard-
ware. After recovery, such faults are avoided by switching
to the next alternate in the hope, perhaps vain, that the set of
circumstances that led to the failure of the previous alternate
are not repeated. Treatment of the fault is left for manual
off-line diagnosis (aided by the error record mentioned pre-
viously) and repair.

A recovery block can also provide tolerance against some
anticipated component faults in the underlying machine. If the
underlying machine detects an error which it can attribute
to a fault in its operation but which may have caused damage
to the executing program, than an automatic retry facility
can be provided—the error recovery for the program can be
invoked to rectify any damage that may have been caused
to the data of the program, and the same alternate re-entered.
In this way, a recovery block can provide tolerance against the
damage that has been caused either by transient component
failures or by permanent component failures which result
in reconfiguration or replacement of components at the hard-
ware level.

Q2. As recovery blocks increase the size of the programming
task, in that the alternates have to be programmed, surely the
use of recovery blocks will increase the complexity of the
program and therefore detract from, rather than increase,
the overall reliability ?

A2. It is true that the use of recovery blocks increases the
size of the programming task. However, each alternate in a
recovery block, when executed, starts from exactly the same
state because of the error recovery capability that is provided.
Thus the design of each alternate can (and preferably should)
be independent of any other. The designer of one alternate
need have no knowledge of the design of the other alternates,
leave alone any responsibility for coping with any damage
that a previous alternate might have caused. Equally, the
designer of a program containing recovery blocks does not
necessarily have to be concerned with which of the various
alternates was eventually used. It is therefore argued that the
increase of size in programs containing recovery blocks does
not provide a corresponding increase in complexity. Indeed,
the structure of recovery blocks may provide a means of reduc-

Volume 21 Number 4

ing the complexity found in systems which have extensive
ad hoc error detection and recovery facilities.

Q3. Is it always possible to generate alternative algorithms
for a particular problem?

A3. The simple answer to this question is yes. The justifica-
tion for this answer is as follows: there are essentially two
different ways in which a recovery block can be used. The first
and obvious situation is when it is required that each alternate
of the recovery block produces exactly the same results. For
some problems it is comparatively easy to obtain different
algorithms for the alternates—sorting and mathematical
functions such as integration are obvious examples. However,
for other problems it may be difficult for a programmer to
design different algorithms, particularly without making the
same mistakes in each algorithm. To overcome this difficulty
it is likely that separate programmers will be required, each
working independently on a speciﬁcation of the problem to
provide an alternate to be incorporated in the final program. o
This is not a new concept and, for example, has been advocated g
by Gilb (1974) and Fischler, et al. (1975).

A further source of alternates may be obtained from previous &
versions of an algorithm. A common occurrence with software =
products is that a new version is introduced, often s1mply3
for performance considerations. Clearly, there will be situations =
in which the previous version can be used as a secondarym
alternate enabling the new version to be introduced into the & 8
system with the knowledge that if (when) it failed, then the m
original version was still available as a backup.

The second situation in which recovery blocks can be usedg
is to provide what may be termed graceful degradation inS
software. It is not necessary that each alternate of a reoovery'g
block produces exactly the same results; the constraint on%
the alternates is that they produce acceptable results, asS g
defined by the acceptance test. Thus, while the primarys
alternate attempts to produce the desired results, the second & o
and subsequent alternates may only attempt to provide an2
increasingly degraded service. The more degraded the service,
the simpler the alternate may be and consequently the greater =
the hope that it does not contain any desngn faults. Similarly, &
as each alternate is essentially different, it is more likely that a &5
design fault will not be repeated in all alternates, whetherg,’
produced by the same programmer or not. As an example of a S
recovery block designed in this manner, consider the part of a<
program that has to enter a disc-to-core transfer request into a‘© <
queue of outstandmg requests. The outline of such a program 5
is presented in Fig. 2. S

The acceptance test for this recovery block sxmply checks that
the transfer queue is in a consistent state. The prlmary alternateU
attempts to place the new transfer request in the optxmal—
position in the queue, for example, to minimise disc headO
movement. The second alternate avoids the complications of ©
the primary alternate by simply placing the new request at
the end of the queue. The third alternate is more desperate,
and leaves the existing queue alone, providing a warning that
the new request has been ignored. While this may cause

apeoju

ensure {consistency of disc transfer queue)
by {algorithm which enters request

in optimal queue position)
else by (algorithm which enters request

at end of queue)
else by (send warning ‘request ignored’)
else error

Fig. 2 Recovery block example

307



problems for the program requesting the transfer, at least the
rest of the system is allowed to proceed without disruption.
If this alternate fails, indicating that the queue was inconsistent
when the recovery block was entered, then recovery has to
take place at a more global level.

It should be noted that while the recovery block scheme
enables redundancy to be specified at the algorithmic level in
programs, it does not provide for redundancy in the data
structures of programs. Thus, while an alternate can define
any data structures local to its environment, the structures
which are global to the recovery block must be fixed and their
structure invariant. Therefore, there may be situations in
which the static structure of global data adds to the problems
of designing alternates.

Q4. It is common in fault tolerant hardware systems that a
component is replaced when it fails. Does the recovery block
scheme provide a software equivalent to this?

A4. An analogy can certainly be drawn between the replace-
ment of faulty hardware components and the replacement
of faulty alternates in the recovery block scheme. Borgerson
(1973) has defined two terms for fault tolerant hardware:
spontaheous replacement, in which the failing component is
detected and replaced by an identical component; and spon-
taneous reconfiguration, which results in some degradation
of the system. The two different ways in which recovery blocks
can be used, as discussed above, could be described as providing
spontaneous replacement and spontaneous reconfiguration
at the software level. However, two points should be noted:
firstly, a hardware component is usually replaced with one of
identical design and construction—this is not usually the case
with alternates. Secondly, the replacement of a hardware
component is usually permanent; the replaced component
may be repaired, but then kept as a standby-spare until needed.
With recovery blocks, however, the failing alternate is only
temporarily replaced, just for that execution of the block.
On subsequent entries to the block that alternate will again be
used in the hope that the new set of inputs does not cause the
fault to manifest itself again.

The use of alternates of differing design and construction
can be contrasted with another common feature in fault
tolerant hardware systems, namely triple modular redundancy
(and its variants). In TMR systems three identical components
and voting circuits which examine the outputs from the
components are used in order to mask the effects of any single
component failure. In theory, a TMR system could be used to
provide a means of tolerating design faults, as discussed by
Avizienis (1975). This would involve the provision of three
different versions of each component which, although designed
independently, would all be intended to produce identical
answers, preferably all at the same speed. The utility of such a
scheme seems limited.

Q5. How should acceptance tests be designed ?

A5. The acceptance test is a programmer-provided error
detection mechanism which provides a check on the results
of an alternate at the last possible moment, that is just before
the recovery block is left and a set of recovery data is discarded.
Clearly, a programmer can provide as little or as much checking
as he considers necessary. Ideally, the acceptance test should
test for the absolute correctness 'of the results. However,
even if such a strict test could be designed, it may not be
appropriate for four reasons: (@) because of performance
considerations; (b) because the test for correctness may involve
objects external to the computing system—for example, a stock
control data base system may not be able to check its internal

308

ensure {frue)
by ensure {best acceptance test)
by {best algorithm) else error;

else by ensure {next best acceptance test)
by {next best algorithm) else error;

else error;

Fig. 3 Multiple acceptance tests

representation of the stock level against that actually in the
warehouse; (c) because the alternates provide an increasingly
degraded service and hence their results will not be exactly the
same; and (d) because the likely complexity of such a test
would make the acceptance test prone to design faults which
would detract from the usefulness of the recovery block by
rejecting correct results, or causing their rejection through the
occurrence of errors during the execution of the acceptances
test.

Thus in general the acceptance test will, as its name suggests, m
be a test on the acceptability of the results of the alternate(I>
rather than a test of their absolute correctness. For example,=
an acceptance test on a sorting algorithm might only check that3
the sorted elements were in order and their checksum was equalZ
to the original value, but because of performance considera-%
tions would not check that any items from the original seto
had been modified or lost. Q

When the alternates of a recovery block have been desngncdg
to provide gracefully degradable software it is clear that theo
acceptance test can only be as rigorous as a check on the results>
from the weakest alternate. This has led some people to suggestS
that there should be a separate acceptance test for each alter-g
nate. Such a structure can be easily obtained by nestmg3
recovery blocks, as illustrated in Fig. 3.

While this structure may appear satisfactory in isolation, 1t§
must be recognised that, in general, a recovery block will forma
only part of a program and that the acceptance test provides aB
check on the consistency of the results which are to be used byw
the rest of that program. (Indeed, it can be argued that theS
acceptance test should be the first part of the recovery blockg
program to be designed.) Hence, it is likely that a single test of 3
acceptance will often be required whether the alternates
produce the same or different results. @

The recovery cache mechanism can provide some run tlmem
assistance which may aid the design and implementation of”
acceptance tests: firstly, it can enable the prior values of objects .
to be referenced, so that the acceptance test can compare the
current state with that on entry to the recovery block; andS
secondly, it can be designed to monitor the behaviour of thex
acceptance test with respect to the variables that had and had’®
not been updated by an alternate. For example, it could
raise an error condition if the acceptance test did not access
all of the variables that had been updated by an alternate—
this can ensure that the acceptance test performs at least
some minimal checking of the new states of all updated objects
and enables unintended updates to be detected.

The design of acceptance tests is a difficult area and still
requires further research. While acceptance tests for specific
problems can usually be specified, it is not yet clear whether a
general methodology can be obtained, although there is some
hope that the proof-directed methodology suggested by
Anderson (1975) will provide some guidelines. It may also be
noted that while the acceptance test is important, it will not
be the only error detection mechanism in the system. As
discussed previously, the underlying machine will provide
mechanisms to detect errors in the execution of the program

ojumoq

The Computer Journal



containing recovery blocks. Further programmer-provided
checks could be incorporated into the alternates by means of
assert statements, which raise an error condition if an error
is detected. (Indeed, the structure depicted in Fig. 3 can
be obtained through the use of assert statements instead of
the nested recovery block, as described by Shrivastava and
Akinpelu (1977).)

Q6. Can the recovery cache provide backward error recovery
for all of the objects provided by the underlying machine ?

A6. Tt is likely that there will be objects on the interface
presented by the underlying machine for which backward
error recovery is not available (for instance, the pages on a
disc) or appropriate (for instance, objects shared by parallel
processes). One method of dealing with such unrecoverable
objects is to construct multi-level systems, whereby a new inter-

face is constructed by software to provide new recoverable -

objects which are abstractions of unrecoverable objects. The
implementation of the recovery for these new objects, although
achieved by programmer-provided actions, will be transparent
to the programs running on the new interface and extensions
to the recovery cache mechanism can ensure that this recovery
is automatically invoked as required. Two systems have been
constructed at Newcastle demonstrating this approach. In
the system described by Verhofstad (1977), the unrecoverable
disc pages provided by a machine are used to provide a
recoverable filing system for user programs. The second system
(Shrivastava and Banatre, 1978) provides backward error
recovery for processes sharing data for the purpose of compet-
ing for the resources of the system. It is beyond the scope of this
paper to describe the implementation of such multi-level
systems. The interested reader is referred to the paper by
Anderson, Lee and Shrivastava (1977) which describes a
conceptual model of recovery in such multi-level systems.

Q7. What happens if the recovery cache fails?

A7. In any fault tolerant system there have to be some com-
ponents which are reliable in that the correct operation of these
components is necessary for the correct operation of the fault
tolerant aspects of the system. For hardware systems, such
components are referred to as the ‘hardcore’. The recovery
cache is a major part of the ‘hardcore’ for the recovery block
scheme, and it is assumed that its operation will be reliable.
There are two justifications for placing so much reliance on the
recovery cache: firstly, it would appear that the design of the
recovery cache is sufficiently simple that standard hardware
design practices can ensure that there are no residual faults
in its design. The second justification is that in such circum-
stances any hardware component can be made as reliable as is
necessary, through the application of fault tolerance techniques
—cost is usually the only limiting factor. The recovery cache
should only be a small part of a complete system, and hence
the cost incurred in making it reliable should be acceptable.

08. What are the run time overheads involved in the use of
recovery blocks?

A8. As with any system that provides redundancy and fault
tolerance, the use of recovery blocks incurs run time space and
time overheads which may not be present in fault intolerant
programs. (It must be noted that the costs involved in a priori
testing and validation of reliable fault intolerant programs
may be substantial, and have led Hecht (1976) to suggest the
adoption of the recovery block scheme to reduce these costs.)
The space overheads for programs using recovery blocks stems
from the extra storage required for the alternates, the accept-

Volume 21 Number 4

ance tests and for use by the recovery cache. As discussed
previously, the recovery cache can record a minimum of re-
covery data, which it is hoped will in general be a small
percentage of the data space of a program. Shrivastava and
Akinpelu (1977) report on experiments in which the figures for
programs containing a single recovery block were between 3 %,
and 399, (with an average of 17 %), which are considerably
less than the 1009, overhead that recording the complete
data space of the program would have entailed.

The execution time overheads required to support recovery
blocks will depend on the time required to evaluate the accept-
ance test and on the recovery cache implementation. As
discussed previously, the acceptance test overhead is the
responsibility of the programmer, although Kim and Rama-
moorthy (1976) have proposed an architecture which attempts
to mitigate this overhead. The overheads imposed by the re-
covery cache will depend in the main on the implementation
of the mechanism used to record recovery data. There are
many implementations known for this function, each of
which has different tradeoffs. The algorithm discussed pre-
viously, which records the old values of objects just before they
were updated, optimises the normal progress of a program at
the expense of the extra time required to restore the state if
recovery is invoked. An algorithm which inhibited the update
of an object, and recorded the new value of the object in the
recovery cache would optimise the time required for recovery.
(Indeed, with this organisation the recovery cache could act
as a high speed buffer store and also possibly increase the
speed of the normal execution of the program.) Also, at the
expense of extra space, the time to record recovery data can
be minimised or vice versa, as exemplified by the schemes
described by Horning et al. (1974) and Anderson and Kerr
(1976). It must also be noted that the recovery cache is intended
to be provided as part of the underlying machine (for example,
to be built in hardware) and should therefore be fast, particu-
larly as some of its operations could be performed in parallel
with the execution of the program. Thus it is felt that for a
given set of constraints, a suitable implementation of the
recovery cache can be specified. The programmer also has
some control over the recovery time—recovery blocks can be
nested to provide as fine a grain of recovery as is desired so
as to minimise recovery time, at the expense of course of
increased recording of recovery data.

In all of the above mechanisms the execution speed of the
majority of instructions provided by the underlying machine
will not be affected at all by the recovery block scheme.
Apart from the instructions specific to the utilisation of @
recovery blocks (for example, start recovery block, end recovery S
block) the only instructions incurring any extra overhead 2
will be those that write to the objects of a program and there- >
fore require intervention by the recovery cache mechanism.
Indeed, further optimisations can be applied so that only those S
instructions which write to an object that is external to an *
alternate are intercepted.

Although the overheads of a given mechanism can be
quantified, it is difficult (impossible) to quantify the increased
reliability that is obtained through the use of recovery blocks,
since this is totally dependant on their effective deployment
by the programmer. However, it is felt that the overheads
associated with their use and implementation can be organised
to be tolerable and acceptable.

sonb Ad 26/9G5€/90€/¥/1.Z/211E/|ulWod/Wod dno-olwspeoe)/:sdjy Woij papeojumoq

Zud

09. Is the recovery block scheme the best technique for
providing fault tolerant software?

A9. Exception handling (for example, as proposed by
Goodenough (1975)) is often advocated as an alternative to the
recovery block scheme. Exception handling can be thought of as

309



a method of programming (forward) error recovery for antici-
pated faults. Thus for specific faults which can be anticipated
and whose full consequences can be foreseen, exception hand-
ling can provide efficient recovery for it only involves correcting
the known (anticipated) errors; in contrast, backward error
recovery involves complete state restoration (albeit efficiently
implemented by the recovery cache), not just restoration of the
erroneous parts. However, the recovery block scheme can
provide tolerance against unanticipated faults, while backward
error recovery need make no assumptions about the fault
and the damage it may have caused, and is in consequence a
general recovery technique. Thus recovery blocks and exception
handling techniques should be regarded as complementary
rather than competitive approaches to achieving fault tolerant
software. These topics are discussed further by Melliar-Smith
and Randell (1977) who also present an example of a program
combining both methods, using exception handlers to deal
with simple anticipated faults, such as invalid input data,
while utilising recovery blocks to deal with unanticipated
faults, including those in the exception handlers themselves.

References
ANDERSON, T. (1975).

Provably Safe Programs, Technical Report No. 70, Computing Laboratory, University of Newcastle upon Tyne.

Conclusion

This paper has discussed the concepts and implementation of
the recovery block scheme and has attempted to answer the
questions which most frequently arise in discussions of the
scheme. There is no other scheme known to the author which
attacks effectively the area of fault tolerant computing that
recovery blocks address, namely the tolerance of unanticipated
design faults, particularly in the software level of a system.
Experimentation with the implementation and utilisation of
recovery blocks is being continued both at Newcastle and
elsewhere and should shed further light on the scheme and
determine its actual effectiveness.

Acknowledgements

This paper owes much to the work of past and present members
of the Science Research Council sponsored ‘Reliability
Project’ at the Computing Laboratory, University of Newcastle
upon Tyne. In particular, I would like to thank Tom Anderson
and Brian Randell for critical readings of earlier drafts of this

paper.

peojumog

ANDERSON, T. and KERR, R. (1976). Recovery Blocks in Action: A System Supporting High Reliability, Proceedings of Second Internattonc&

Conference on Software Engineering, pp. 447-457.
ANDERSON, T., LEE, P. A. and SHRIVASTAVA, S. K. (1977).

A Model of Recoverablhty in Multi-level Systems, Technical Report No. 1153

Computmg Laboratory, University of Newcastle upon Tyne, to appear in IEEE Transactions on Software Engineering.

AvVIzZIENTS, A. (1975).
Conference on Reliable Software, pp. 458-463.

BORGERSON, B. R. (1973). Spontaneous Reconfiguration in a Fail-Softly Computer Utility, Datafair 73, pp. 326-331.
Distinct Software: An Approach to Reliable Computing, Proceedings of Secon

FiscHLER, M. A., FIRNSCHEIN, O. and DrRew, D. L. (1975).
USA-Japan Computer Cenference, pp. 573-579.

GILB, T. (1974). Parallel Programming, Datamation, October 1974, pp. 160-161.
GOODENOUGH, J. B. (1975). Exception Handling: Issues and a Proposed Notation, CACM, 18, 12, pp. 683-696.

Fault-Tolerance and Fault-Intolerance: Complementary Approaches to Reliable Computing, Proceedings of 197§

9°dno-oluRapeoe)/!

HecHT, H. (1976). Fault Tolerant Software for a Fault Tolerant Computer, Software Systems Engineering, Online, Uxbridge, pp. 235- 248°

HORNING, J. J., LAUER, H. C., MELLIAR-SMITH, P. M. and RANDELL, B. (1974).
pp. 177-193.

Lecture Notes in Computer Science 16, Springer Verlag, p

A Program Structure for Error Detection and Recoveryg

Kmv, K. H. and RaMAMOORTHY, C. V. (1976). Failure-Tolerant Parallel Programming and its Supporting System Architecture, AFIP.S’”:

Proceedings Vol. 45, pp. 413-423.
MELLIAR-SMITH, P. M. and RANDELL, B. (1977).

RANDELL, B. (1975).

RANDELL, B,, LEg, P. A. and TReLEAVEN, P. C. (1978).
Verlag, pp. 282-393.

SHRIVASTAVA, S. K. and AKINPELU, A. A. (1977).

Engineering, Vol. 4, pp. 230-241.
VERHOFSTAD, J. S. M. (1977).

310

Fault Tolerant Sequential Programming, Digest of Papers, FTCS 8, pp. 207-208.
SHRIVASTAVA, S. K. and BANATRE, J-P. (1978). Reliable Resource Allocation Between Unreliable Processes, IEEE Transactions on Softwar

Recovery and Crash Resistance in a Filing System, Proceedings of SIGMO D Conference, Toronto.

Software Reliability: The Role of Programmed Exception Handling, Proceedings of ACA%
Conference on Language Design for Reliable Software, pp. 95-100.

System Structure for Software Fault Tolerance. IEEE Transactions on Software Engineering, Vol. 1, pp. 220-232.
Reliable Computing Systems, Lecture Notes in Computer Science 60, Springe!

90E/V/LC/

20z Idy 61 uo ysenb Aq zB/95¢/

The Computer Journal



