An experimental testbed for numerical software

M. A. Hennell’

Computational Science Department, University of Liverpool, Liverpool 3

This paper describes an experimental testbed facility designed to examine some of the problems
which arise in the implementation of high quality numerical software libraries.

The testbed is used to measure the effectiveness of test programs. Effectiveness here is used in
the sense that these test programs should ensure that the routine implementation is error free
rather than to examine the numerical properties of the algorithm.

The testbed has been used in extensive investigations of the stringent test programs of the NAG
numerical algorithms library (Ford and Hague, 1974) and continuation of this work is seen as a

major application for the testbed.

(Received September 1976; revised version received October 1977)

1. Introduction
This paper describes the initial implementation of a software
testbed which is ultimately intended to be particularly suitable
for testing numerical software. In recent years there has been
a great deal of interest in developing techniques for the testing
of software up to some standard which is a guide to its quality
(ACM, 1975). Most of these techniques are designed to test
software in which the control flow is dependent on the values
contained by Boolean or integer variables.

Techniques currently in vogue for demonstrating the reli-
ability of computer software fall into three categories.

1. Formally proving correctness
This assumes a specification which the program can be proved
to satisfy.

2. Static testing

These techniques either examine the control flow predicates
and seek to demonstrate that there are no impossible paths,
unassigned variables or other logical inconsistencies. Alter-
natively the program can be executed symbolically. This
involves putting constraints on the input data and examining
the predicates algebraically to determine impossible paths or
values of input data to execute particular paths.

3. Dynamic testing '

This involves selecting input data and executing the program
to create an execution history. This enables a determination to
be made of statements or branches which are not exercised
(by this data). Sometimes the values contained by some
variables may be examined. An example of a system of this
type can be found in Fairley, 1975.

In the case of numerical software the first two techniques
become extremely difficult to employ due to the uncertainty
incurred by the use of finite arithmetic and the consequent
roundoff and truncation errors. In particular, whilst a program
may be proved to be correct, it may still be essentially useless,
since it is well known that certain programming constructs
lead to disastrous loss of numerical significance. It is also
possible that the only specification available is the algorithm
itself and that its range of valid input data may be unknown.
The testbed described here is essentially an implementation
of the third technique and was designed to examine the quality
of the testing procedures for numerical software, particularly
those routines which are intended for inclusion in quality
numerical algorithms libraries. The problem, therefore, is to
study the adequacy of programs which are designed to test
the implementation of library routines. This is not the same

Volume 21 Number 4

problem as that of designing test programs to examine the
numerical properties of the algorithm (although in practlce%
the latter are frequently used for the former purpose).

The objective of this work is to demonstrate that these tes&
programs rwlly do test the routines in the manner required
and to assist in providing improved test programs wher?,
necessary. In this paper we distinguish between routines (i. eg
routines on test) and test programs which are designed to
drive these routines and examine their properties. At presen§
the system is limited to the analysis of FORTRAN IV pI'O%
grams but an extension to ALGOL 68 is under way.

9°dno-oiw

2. System Descnptlon
The testbed is implemented on a Computer Technolog§
Modular One minicomputer, partially in machine code an@
partially in ALGOL 68. 2

The testbed consists of three phases as illustrated in Fig. l,,,,
The first is a static analysis of the specimen routines. Here the’
structural attributes of the program are recorded and statistic§,
gathered Attributes of interest are subroutine calls, contr
jumps, statement types, etc. The second phase is the creatlo%
of a runtime hlstory of the routine as it runs in a test programg’
This history is compiled from a number of program eventg;
such as entry to and exit from subroutines, jumps of control;;
entry and exit from DO loops, the assignment of values tor
identifiers and the values of predicates in conditional clauses
The system allows any of these events to be selected ina manneg
described in Section 4.

The third phase is the analysxs phase where the data bas&
created in phases 1 and 2 is integrated and analysed, not onlyj>
to discover deficiencies in the current test data, but also tG.

N
(=}
O
~
DATA BASE
1 [
Pro- Static FORTRAN Analysis Line

gram | |analysis compiler tools [| printer

VDU

Fig. 1 Block diagram of the components of the testbed
333

attempt to derive new test data which will exercise the routine
more rigorously. The system permits more than one execution
history to be recorded enabling comparisons of data depen-
dency to be made.

3. Static phase

The purpose of this phase is two-fold. Firstly to obtain data
on the structure of the program, such as the possible control
jumps. This data can then be compared with the dynamic data
to determine which jumps have not been executed by a parti-
cular test. The second is that information about programming
techniques currently in wide-spread use can greatly assist in
the design of systems such as that described here, and also, for
compilers and paging systems, etc. For these reasons we collect
a large quantity of statistics for each program and accumulate
these with the results from previous analyses. Hennell and
Prudom (1976) contains an analysis of such statistics gathered
from the NAG library. A secondary purpose of this phase is
to obtain statistics for various measures of program style and
complexity and to attempt to correlate these measures with the
difficulty of testing programs (see Hennell, Woodward and
Hedley, 1976). To date with only a small sample investigated
no clear picture has arisen from this work.

All the routines in this phase are written in ALGOL 68 with
a view to their integration into a portable system. Such a system
could incorporate a program such as BRNANL (Fosdick,
1974) which instruments the users program with subroutine
calls to provide the execution history. The static information
from this phase is stored in the data base and consists of the
following.

(a) a copy of each line of source code and its linenumber
(b) its type according to Sale’s classification (1971)

(c) a table of all jumps, DO loop entry and termination points,
subroutine calls and user supplied function calls.

From this information it is possible to obtain all the possible
branches in the program.

4. Dynamic phase
The execution history is obtained by running the routine driven
by a test program through a specially modified FORTRAN
interpreter. This interpreter, originally written as part of a
FORTRAN teaching system, provides four tracing facilities.
These can be switched on and off within the FORTRAN
program by means of embedded comment statements, such as

C-JUMPTRACE-BEGIN

C-JUMPTRACE-END
or, alternatively, the short forms

C-J-B

C-J-E
which switch the jump tracing facility on and off respectively.
When the jumptrace is switched on a record of the linenumber
at which the jump occurs together with the linenumber to
which the jump is made, is stored in the data base.

The other three facilities are:

(a) DO-trace (C-D-B, and C-D-E), which records the entry
to and exit from DO loops

(b) Sub-trace (C-S-B, and C-S-E), which records the entry to
and exit from subroutine and function calls

(c) All-trace (C-A-B, and C-A-E), which records the values of
assignments and the values of predicates in conditionals.

Since these facilities may be switched on and off freely, it is
possible to examine in detail the performance of a particular
part (or parts) of the routine.

By inserting only comments the routine code is in no way
disturbed and possible side effects are avoided (in a system

34

with inserted subroutine calls, conflicts can occur with user
supplied routines if the names are identical; also in such a
system (see Fairley, 1975) it is necessary to reformat the
program to obtain predicates, etc.). Should a system user
inadvertently insert such a comment, the only effect would be
an increase in execution time of 20 %;-50 %.

The criticism that with the use of a special interpretive system
the routine is not being tested in its normal environment is
answered by pointing out that the primary interest of the
present system is to examine library software which usually
has to run on many different compilers. The analogy can be
taken with engine testbeds where general performance data
can be obtained without the inconveniences of the normal
environment. There will of course still remain a whole class of
problems associated with specific characteristics of various
operating environments. When examining a particular test
program’s performance all four tracing facilities are switched
on at the start of the routine being tested and switched off at
its end. It has not been part of the investigation to trace the
test program. The reasons for this are outlined in Section 5.

The events selected are then stored in the data base. Pointers 5
are inserted to enable selective analyses to be made of only§
the subroutine calling sequences or flow of control. The pointers §_
enable a search of the data base to be made in either a forward &
or backward direction. At the present moment a limited 5
capability for interacting with the executing program is3
available, but to date experience with this facility has not been%
wholly encouraging. The principal problem is that the think"’
time exceeds the patience of other potential users of the mini- 3
computer system. When the dynamic phase is completed the
static and dynamic data bases are integrated.

5. Analysis phase

Analysis of the data base proceeds in two possible modes,
interactively on a visual display unit (VDU) or as batch line-
printer output.

All the programs which analyse the data base are written in =
ALGOL 68. Advantages of this are that the data base structures =
are simply handled, each word of the standard backing store © o
is addressable and channels can be opened to any VDUA
console, thereby enabling an interactive analysis to be available & 3
in a very simple manner. Portability is assumed since backing &
store and channel facilities are defined as part of the language.

The contents of the data base may be examined interactively 3
using a simple command language. The user can select a ;
‘window’ size which determines how many lines are to be<Q
output to the screen in one contiguous block; depressing the & o
blank key glves the next block. To trace line-by-line requires 5 S
a window size of unity. In response to prompts the user can _.
select a tracing mode, i.e. jump-trace, do-trace, sub-trace org
all-trace. Further prompts enable the user to set a particularS
linenumber and the frequency of occurrence of this line (this
enables tracing to commence from within a loop). An analysis ¥
routine locates this point in the execution history and tracing
may then proceed in either direction. The backward tracing
facility has proved to be extremely useful for understanding
how a particular data set drives the flow of control along a
particular path. It has a lot in common with the technique of
searching for a bug using a program trace produced by a
compiler when a catastrophic failure occurs. In the latter case
the point of the catastrophe determines the starting point in
the backward search. For general tracing the user is interested
in discovering how the computation reaches a particular basic
statement block.

In general this interactive system has proved rather disappoin-
ting. The user usually loses track of all the parameters, i.e.
loop depth, subroutine call depth, number of cycles per loop
and so on. This forces the user to change displays repeatedly
to obtain this information. This in turn overwrites much of the

e/ quuo:)/LUOO'an'o!Lu

9G¢

The Computer Journal

«JOB-FTS-3
C-NOTRACE-BEGIN
C-JUMPTRACE-BEGIN
C-SUBTRACE-BEGIN

MR=5

TRIANGLE PROGRAM

1
0 1

0 1

0 1

1 1

2 Ni=5 1

3 NCASES=4 1

u N0 10 INPUT=1,NCASES 13 6 1

5 REAN(NR,100) 1,J,K 13 6 1

6 WRITE(NY,100) 1,J,K 13 6 1

7 100 FORMAT(3110) 13 6 1
76, 13 6 1
7cC. CHECK SINES SATISFY TRIANGLE INEQUALITIES 13 6 1
7¢. 13 6 1

8 IF ((1+4J,GT.K).AND, (J+K, (T, 1) ANN, (K+1.GT.J)) GOTO 1 13 6 1

9 HRITE(NY,101) 1

9cC. 1

9 C. TRIANGLE INEQUALITIES NOT SATISFIED - NOT A TRIANGLE 1

9 c. 1

10 101 FORMAT(154 NOT A TRIANGLE) 1

1 GOTO 10 1

12 1 MATCH=0 w7 2
12 c. v 7 2
12 C. TRIANGLE INEQUALITIES SATISFIED w7 2
12 C. NOW FIND MO OF SINES EQUAL w7 2
12 c. w7 2
13 IF (1,EQ.J) MATCH=MATC!i+1 v 7 2
14 IF (J.EQ.K) MATCH=MATCH+1 w72
15 IF (K.EN, 1) MATCH=MATCH+1 v 7 2
16 IF (MATC'I-1) 2,3,4 v 7 2
17 2 HRITE(NY,102) 4

17 c. u

17 c. NO SINES ENUAL - SCALEME y

17 c. y

18 102 FORMAT(17H SCALENE TRIANGLE) y

19 A0TH 1 4

20 3 WRITE(NY,103) 8

20 C. 8

20 €. TWO SINES EQUAL - ISOSCELES 8

20 C. 8

21 103 FORMAT(19" ISOSCELES TRIANGLE) 8

22 GOTO 10 8

23 4 WRITE(NY,108) 3
23 ¢, 3
23 C. ALL SINES EQUAL - EQUILATERAL 3
23 c. 3
24 104 EORMAT(21H EQUILATERAL TRIAMGLE) 3
24 C., 3
24 C. END-90 3
25 10 CONTINUE 2 5 9 3
26 sToP 3
27 END

27 *NATA

28 1 2 3

29 3 4 5

30 1 2 2

31 1 1 1

31 *ENNJOR

Fig. 2 A lineprinter listing showing lines of FORTRAN source code
down the lefthand side and down the righthand side a display showing
the flow of control. Each column shows passage of control flow until
a jump is encountered. The succeeding flow of control is then displayed
in the adjacent (rightmost) column

contents of the screen. Some work has been performed in
Fairley (1975) on a split-screen display in which the upper half
keeps an updated display of these parameters while the lower
half scrolls the execution history. This improves the system
appreciably. Further work with this sort of multiple display
may lead to a viable general purpose system.

A second tool which has been found to be useful is a display
(on either VDU or lineprinter) showing how the flow of
control traverses the program for a particular data set. In
Fig. 2 is an example which illustrates this technique. The
dynamic flow of control proceeds sequentially down the code
until it encounters a jump to a line which is not the next
executable statement. The flow of control is then restarted
sequentially from this point. This control flow is represented
by a digit in the range 1-9 being printed in a column alongside
the source listing, the digit being incremented (modulo 9) and
printed in the adjacent rightmost column when a jump occurs,
as shown in Fig. 2. In this way the path taken by the control
flow is clearly illustrated. It has been interesting to see how
even experienced algorithm writers can be astonished at the
insight this display gives into the algorithms performance. In
terms of information content this display is better than a
simple statement execution frequency count since it enables
one to examine path frequencies as well. When more than one
execution history is available comparison of these displays
has been extremely helpful in understanding the data depen-
dency of the routines.

When choosing test data for a particular routine it is desirable
to be able to quantify the performance of various test data
sets. For this purpose, following the techniques of Brown

Volume 21 Number4

(1972), we introduce two test effectiveness ratios defined as
follows:
(no of statements executed at least once)

terl = (total number of executable statements)

(no of branches executed at least once)

ter2 = (total number of branches)

In each case the numerator can be obtained from the execution
history, whilst the denominator is obtained from the static
analysis of the first phase of the testbed. A suitable criterion
for a test-data set is that it should maximise both terl and ter2.
In practice of course, terl tends to unity before ter2. If either
quantity is not unity it implies that some code or some branches
are not exercised by the current data set. Note also that
ter2 = 1 implies terl = 1 but not vice versa.

A second possibility is that it may be desired to optimise the
program code and for this purpose the ‘coverage’ (number of
times each statement is executed) can be displayed alongside
the program listing. This highlights the statements most
frequently executed. A similar display can be given for branche

which in turn enables conditionals to be reordered so as t§
minimise the number of tests.

Both terl and ter2 for a complete program may never reacﬁ'
unity regardless of the quality of the data. This can happen«
for instance if the main program branches before the first loops
Since the program starts only once, only one branch can bg
executed. For a routine however the position is different smo%
it may be re-entered as many times as necessary. For thng
reason we usually confine tracing to routines.

o'olwape:

6. Discussion

This paper has described a software testbed which it is mtendeé
will be particularly suitable for examining the quality
testing procedures for numerical algorithms. At present thg
basic system is completed so that a great deal of useful analysis.
can be made which it is hoped will lead to improved algorithr@:
tests. So far the bulk of the experience has been gained by
analysing a number of routines from the NAG numerlczf[
algorithms library (Ford and Hague, 1974) when they are
driven by their associated strmgent test programs. This has
revealed a number of deficiencies in these tests and has helpe&
in the designing of improved tests. It is hoped in time to analysg;
the whole of the NAG library stringent test programs in thi§
way and in fact an ALGOL 68 version of the testbed is currentlg
being integrated into the NAG ALGOL 68 library coordmatloa
process (Hennell and Yates, 1978).

Future developments of the system are following three lme{;
Firstly there is the ALGOL 68 version mentioned above. As a
longer term project new analysis tools are being developed ti
help answer the problems posed by the current system. Fog
instance, when unexercised code is detected, how can wg
produce new data which will exercise this code? Currenk
research in the literature usually excludes real numbers due to
problems of roundoff and truncation errors.

With the dynamic testing technique the data dependence of
the control flow can always be found by executing the routine
for a wide range of input data and comparing the runtime
execution histories. However in practice this can lead to an
unacceptably high number of runs and indeed it is frequently
extremely difficult to identify the valid data space for a specific
algorithm. It seems obvious from this that static testing
techniques and dynamic testing must be integrated to solve
this problem, and an investigation is currently in hand.

Finally, a fully parameterised floating point package is being
produced for the Modular One computer which together with
parameterised system functions will enable an investigation
to be carried out into the sensitivity of the control flow to the
arithmetic processes.

335

7. Acknowledgements

The author would like to thank Mr A. Prudom for supplying
some of the static analysis programs, Mr D. Hedley for
assisting with modifications to the FORTRAN interpreter and

References

Dr M. Woodward for helpful discussions. Finally he would
like to thank the NAG organisation for making a copy of their
numerical algorithms library available, and the SRC for a
research grant.

ACM (1975). International Conf. on Reliable Software, see papers therein, Los Angeles.
BrownN, J. R. (1972). Practical applications of automated software tools, TRW report, TRW-ss-72-05, TRW Systems, One Space Park,

Redondo Beach, California.

FAIRLEY, R. E. (1975). An experimental program testing facility, IEEE conference on software engineering, Washington.
Forp, B. and HAGUE, S. (1974). The organisation of numerical algorithms libraries, in Software for numerical mathematics, ed. D. Evans,

Academic Press.

Fospick, L. D. (1974). BRNANL, a FORTRAN program to identify basic blocks in FORTRAN programs, University of Colorado report

cu-cs-040-74.

HennELL, M. A. and PRUDOM, A. (1976). A static analysis of the NAG Fortran library, Computational Science Dept., University of Liver-

pool technical report.

HENNELL, M. A., WoOoDWARD, M. R. and HEDLEY, D. (1976). On program analysis, Information Processing Letters, Vol. 5, pp. 136-140.
HENNELL. M. A. and YATEs, D. (1978). The ALGOL 68 NAG library coordination support system, submitted for publication in The

Computer Journal.

SALE, A. H. J. (1971). The classification of Fortran statements, The Computer Journal, Vol. 14, No. 1, pp. 10-12.

Book reviews

On-line Data Bases, Infotech State of the Art Report, 1: Analysis and
Bibliography, 2: Invited Papers. (Infotech, £110)

This is another report in the Infotech Series, in which a series of
invited papers and other source material are printed. The con-
vention is that the invited papers are printed in full in the second
volume. An editor (in this case C. H. White) presents an analysis
of the topic, using quotations drawn from these papers, in volume 1.
Additional material from other Infotech sources is included in the
analysis where it is relevant. The quotations used are printed in the
order relevant to the editorial analysis, not necessarily the order in
which the author originally wrote them. The editor decides the
structure of his analysis, provides linking text and clarifying com-
ment. The result is that volume 1 gives a logical presentation of the
ideas contained in volume 2. For completeness the references given
by authors of invited papers are listed both at the end of their papers
and in volume 1. From the above it will be apparent that most of the
material is printed twice, once in each volume. This approach does,
however, give a considerable benefit as the edited analysis gives a
broad view of the subject whilst the invited papers have, usually, a
practical approach. The reader gets more out of the two books than
he would by reading one of them twice!

The authors of the invited papers represent a wide cross-section of
data base users and providers. As one might expect, their combined
wisdom contains a great deal of commonsense and equally a great
deal of valuable information. The editorial analysis of the papers
covers aspects of online data base design from design philosophy
through implementation, data base systems, performance, reliability
and integrity to distributed data bases. The quotations used under
each heading are apt and the editorial material helps to make
volume 1 very readable. The bibliography is provided by Ian Palmer
and contains mostly the references he gave in his own book (1975).

The invited papers contained in the second volume vary in the
attention paid to detail from a brief statement of a users current
position (Gurr, pp. 117-122) to consideration of the intervals
between dumps (Davenport, pp. 65-92) via descriptions of data base
systems implemented (e.g. Salter et al., pp. 243-266).

These two books are worth careful study, particularly by someone
contemplating the installation of an online data base system. They
provide sufficient comment by users on their own experience to
enable new installations to avoid some costly mistakes or omissions.
Whilst not all of the risk can be removed, at least the ubiquitous
wheel will not be re-invented.

R. E. SMALL (London)
Reference
PALMER, I. M. (1975). Data Base Systems: A Practical Reference;
CACL

11U WoJy pepeojumog

Computer Methods for Mathematical Computations, by G. Forsythe,=
M. Malcolm and C. Moler, 1977; 259 pages. (Prentice/Hall,”.
£12-80)

peoe/

As stated in the introduction, ‘this book is concerned with solving3
mathematical problems using automatic digital computers. An®
important part of the book is a set of FORTRAN subroutines. Ing
fact, the book might well be regarded as an extensive user’s guide'g
for the subroutines’. 3
The subroutines are well documented and compare favourablyS
with available software. It would have been useful to have a few=.
sample outputs. In most cases the mathematical results are stated%
without proof. This method of presentation will of necessity narrow=:
the appeal of the text. %
There are nine chapters, namely, Floating-point computation,™
Linear systems of equations, Interpolation, Numerical integration,=
Initial value problems in ordinary differential equations, Solution§
of non-linear equations, Optimisation, Least squares and the sin-c
gular value decomposition, Random number generation and Monte‘gg
Carlo methods. The bibliography and reference are excellent. The®
problems are well chosen and graded. It seems strange to find nog
reference to the eigenvalue problem, particularly in this text witho
its stated goal. The pitfalls of computation are well illustrated by§
means of examples. The style throughout is lucid, occasionallyg
perhaps over-discursive. At £12-80 it represents reasonable value. =
M. P. J. CURRAN (Galway)g

]

Z lud

Computer Operating Systems, by D. W. Barron; 1977; 135 pages.3
(Chapman and Hall, £2-95) i

A readable paperback but a reprint of a six year old text. This is
unimportant because the practice today and history necessary to
understand the concepts remain the same.

Firstly a job supervisor is described and then multiprogramming.
Processor allocation is explained with an excellent description of
activities and semaphores. Store allocation is covered up to early
yirtual machine and paging mechanisms. The discussion of I/O and
filing systems that follows is biased towards multiaccess rather than
commercial systems. Finally linked computer systems, JCL and the
operator interface are covered. Tailoring of systems at generation
time, provision of hardware error diagnostics, real time data
acquisition and transaction processing requirements such as airline
reservation are omitted.

I recommend this as a first book on operating systems to computer
science students or professional programmers.

M. Evans (Cambridge)

The Computer Journal

